# Properties

 Label 1386.2.k.g Level $1386$ Weight $2$ Character orbit 1386.k Analytic conductor $11.067$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1386.k (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$11.0672657201$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{4} + \zeta_{6} q^{5} + ( -2 - \zeta_{6} ) q^{7} + q^{8} +O(q^{10})$$ $$q -\zeta_{6} q^{2} + ( -1 + \zeta_{6} ) q^{4} + \zeta_{6} q^{5} + ( -2 - \zeta_{6} ) q^{7} + q^{8} + ( 1 - \zeta_{6} ) q^{10} + ( 1 - \zeta_{6} ) q^{11} + 2 q^{13} + ( -1 + 3 \zeta_{6} ) q^{14} -\zeta_{6} q^{16} + ( -5 + 5 \zeta_{6} ) q^{17} + 6 \zeta_{6} q^{19} - q^{20} - q^{22} -7 \zeta_{6} q^{23} + ( 4 - 4 \zeta_{6} ) q^{25} -2 \zeta_{6} q^{26} + ( 3 - 2 \zeta_{6} ) q^{28} -8 q^{29} + ( -10 + 10 \zeta_{6} ) q^{31} + ( -1 + \zeta_{6} ) q^{32} + 5 q^{34} + ( 1 - 3 \zeta_{6} ) q^{35} + 8 \zeta_{6} q^{37} + ( 6 - 6 \zeta_{6} ) q^{38} + \zeta_{6} q^{40} + 7 q^{41} + 4 q^{43} + \zeta_{6} q^{44} + ( -7 + 7 \zeta_{6} ) q^{46} + \zeta_{6} q^{47} + ( 3 + 5 \zeta_{6} ) q^{49} -4 q^{50} + ( -2 + 2 \zeta_{6} ) q^{52} + ( -6 + 6 \zeta_{6} ) q^{53} + q^{55} + ( -2 - \zeta_{6} ) q^{56} + 8 \zeta_{6} q^{58} + ( -6 + 6 \zeta_{6} ) q^{59} -\zeta_{6} q^{61} + 10 q^{62} + q^{64} + 2 \zeta_{6} q^{65} + ( -3 + 3 \zeta_{6} ) q^{67} -5 \zeta_{6} q^{68} + ( -3 + 2 \zeta_{6} ) q^{70} -8 q^{71} + ( -10 + 10 \zeta_{6} ) q^{73} + ( 8 - 8 \zeta_{6} ) q^{74} -6 q^{76} + ( -3 + 2 \zeta_{6} ) q^{77} + 9 \zeta_{6} q^{79} + ( 1 - \zeta_{6} ) q^{80} -7 \zeta_{6} q^{82} -15 q^{83} -5 q^{85} -4 \zeta_{6} q^{86} + ( 1 - \zeta_{6} ) q^{88} + 12 \zeta_{6} q^{89} + ( -4 - 2 \zeta_{6} ) q^{91} + 7 q^{92} + ( 1 - \zeta_{6} ) q^{94} + ( -6 + 6 \zeta_{6} ) q^{95} + 13 q^{97} + ( 5 - 8 \zeta_{6} ) q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - q^{2} - q^{4} + q^{5} - 5q^{7} + 2q^{8} + O(q^{10})$$ $$2q - q^{2} - q^{4} + q^{5} - 5q^{7} + 2q^{8} + q^{10} + q^{11} + 4q^{13} + q^{14} - q^{16} - 5q^{17} + 6q^{19} - 2q^{20} - 2q^{22} - 7q^{23} + 4q^{25} - 2q^{26} + 4q^{28} - 16q^{29} - 10q^{31} - q^{32} + 10q^{34} - q^{35} + 8q^{37} + 6q^{38} + q^{40} + 14q^{41} + 8q^{43} + q^{44} - 7q^{46} + q^{47} + 11q^{49} - 8q^{50} - 2q^{52} - 6q^{53} + 2q^{55} - 5q^{56} + 8q^{58} - 6q^{59} - q^{61} + 20q^{62} + 2q^{64} + 2q^{65} - 3q^{67} - 5q^{68} - 4q^{70} - 16q^{71} - 10q^{73} + 8q^{74} - 12q^{76} - 4q^{77} + 9q^{79} + q^{80} - 7q^{82} - 30q^{83} - 10q^{85} - 4q^{86} + q^{88} + 12q^{89} - 10q^{91} + 14q^{92} + q^{94} - 6q^{95} + 26q^{97} + 2q^{98} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1386\mathbb{Z}\right)^\times$$.

 $$n$$ $$155$$ $$199$$ $$1135$$ $$\chi(n)$$ $$1$$ $$-\zeta_{6}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
793.1
 0.5 − 0.866025i 0.5 + 0.866025i
−0.500000 + 0.866025i 0 −0.500000 0.866025i 0.500000 0.866025i 0 −2.50000 + 0.866025i 1.00000 0 0.500000 + 0.866025i
991.1 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0.500000 + 0.866025i 0 −2.50000 0.866025i 1.00000 0 0.500000 0.866025i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1386.2.k.g 2
3.b odd 2 1 1386.2.k.m yes 2
7.c even 3 1 inner 1386.2.k.g 2
7.c even 3 1 9702.2.a.bj 1
7.d odd 6 1 9702.2.a.bw 1
21.g even 6 1 9702.2.a.k 1
21.h odd 6 1 1386.2.k.m yes 2
21.h odd 6 1 9702.2.a.p 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1386.2.k.g 2 1.a even 1 1 trivial
1386.2.k.g 2 7.c even 3 1 inner
1386.2.k.m yes 2 3.b odd 2 1
1386.2.k.m yes 2 21.h odd 6 1
9702.2.a.k 1 21.g even 6 1
9702.2.a.p 1 21.h odd 6 1
9702.2.a.bj 1 7.c even 3 1
9702.2.a.bw 1 7.d odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1386, [\chi])$$:

 $$T_{5}^{2} - T_{5} + 1$$ $$T_{13} - 2$$ $$T_{17}^{2} + 5 T_{17} + 25$$ $$T_{23}^{2} + 7 T_{23} + 49$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T + T^{2}$$
$3$ $$T^{2}$$
$5$ $$1 - T + T^{2}$$
$7$ $$7 + 5 T + T^{2}$$
$11$ $$1 - T + T^{2}$$
$13$ $$( -2 + T )^{2}$$
$17$ $$25 + 5 T + T^{2}$$
$19$ $$36 - 6 T + T^{2}$$
$23$ $$49 + 7 T + T^{2}$$
$29$ $$( 8 + T )^{2}$$
$31$ $$100 + 10 T + T^{2}$$
$37$ $$64 - 8 T + T^{2}$$
$41$ $$( -7 + T )^{2}$$
$43$ $$( -4 + T )^{2}$$
$47$ $$1 - T + T^{2}$$
$53$ $$36 + 6 T + T^{2}$$
$59$ $$36 + 6 T + T^{2}$$
$61$ $$1 + T + T^{2}$$
$67$ $$9 + 3 T + T^{2}$$
$71$ $$( 8 + T )^{2}$$
$73$ $$100 + 10 T + T^{2}$$
$79$ $$81 - 9 T + T^{2}$$
$83$ $$( 15 + T )^{2}$$
$89$ $$144 - 12 T + T^{2}$$
$97$ $$( -13 + T )^{2}$$