Defining parameters
Level: | \( N \) | \(=\) | \( 9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 9702.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 107 \) | ||
Sturm bound: | \(4032\) | ||
Trace bound: | \(31\) | ||
Distinguishing \(T_p\): | \(5\), \(13\), \(17\), \(19\), \(23\), \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(9702))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2080 | 169 | 1911 |
Cusp forms | 1953 | 169 | 1784 |
Eisenstein series | 127 | 0 | 127 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | \(11\) | Fricke | Dim |
---|---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | $+$ | \(5\) |
\(+\) | \(+\) | \(+\) | \(-\) | $-$ | \(9\) |
\(+\) | \(+\) | \(-\) | \(+\) | $-$ | \(11\) |
\(+\) | \(+\) | \(-\) | \(-\) | $+$ | \(8\) |
\(+\) | \(-\) | \(+\) | \(+\) | $-$ | \(13\) |
\(+\) | \(-\) | \(+\) | \(-\) | $+$ | \(13\) |
\(+\) | \(-\) | \(-\) | \(+\) | $+$ | \(13\) |
\(+\) | \(-\) | \(-\) | \(-\) | $-$ | \(13\) |
\(-\) | \(+\) | \(+\) | \(+\) | $-$ | \(9\) |
\(-\) | \(+\) | \(+\) | \(-\) | $+$ | \(5\) |
\(-\) | \(+\) | \(-\) | \(+\) | $+$ | \(8\) |
\(-\) | \(+\) | \(-\) | \(-\) | $-$ | \(11\) |
\(-\) | \(-\) | \(+\) | \(+\) | $+$ | \(11\) |
\(-\) | \(-\) | \(+\) | \(-\) | $-$ | \(15\) |
\(-\) | \(-\) | \(-\) | \(+\) | $-$ | \(14\) |
\(-\) | \(-\) | \(-\) | \(-\) | $+$ | \(11\) |
Plus space | \(+\) | \(74\) | |||
Minus space | \(-\) | \(95\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(9702))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(9702))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(9702)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(154))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(198))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(231))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(294))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(441))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(462))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(539))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(693))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(882))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1078))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1386))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1617))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3234))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4851))\)\(^{\oplus 2}\)