Properties

Label 961.4.a.n.1.2
Level $961$
Weight $4$
Character 961.1
Self dual yes
Analytic conductor $56.701$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,4,Mod(1,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,16,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.7008355155\)
Analytic rank: \(0\)
Dimension: \(64\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Character \(\chi\) \(=\) 961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.39615 q^{2} +5.75704 q^{3} +21.1185 q^{4} -7.08279 q^{5} -31.0659 q^{6} -23.7309 q^{7} -70.7893 q^{8} +6.14347 q^{9} +38.2198 q^{10} -41.3653 q^{11} +121.580 q^{12} -33.0731 q^{13} +128.056 q^{14} -40.7759 q^{15} +213.042 q^{16} +86.1662 q^{17} -33.1511 q^{18} -120.883 q^{19} -149.578 q^{20} -136.620 q^{21} +223.214 q^{22} -42.0245 q^{23} -407.537 q^{24} -74.8341 q^{25} +178.468 q^{26} -120.072 q^{27} -501.161 q^{28} -76.0693 q^{29} +220.033 q^{30} -583.295 q^{32} -238.142 q^{33} -464.966 q^{34} +168.081 q^{35} +129.741 q^{36} -16.4933 q^{37} +652.305 q^{38} -190.403 q^{39} +501.386 q^{40} +59.5959 q^{41} +737.222 q^{42} +164.381 q^{43} -873.573 q^{44} -43.5129 q^{45} +226.771 q^{46} -357.886 q^{47} +1226.49 q^{48} +220.158 q^{49} +403.816 q^{50} +496.062 q^{51} -698.454 q^{52} +485.193 q^{53} +647.926 q^{54} +292.982 q^{55} +1679.90 q^{56} -695.930 q^{57} +410.482 q^{58} +193.333 q^{59} -861.125 q^{60} +97.3901 q^{61} -145.790 q^{63} +1443.21 q^{64} +234.250 q^{65} +1285.05 q^{66} -580.891 q^{67} +1819.70 q^{68} -241.937 q^{69} -906.993 q^{70} -149.443 q^{71} -434.892 q^{72} +150.915 q^{73} +89.0003 q^{74} -430.823 q^{75} -2552.87 q^{76} +981.638 q^{77} +1027.44 q^{78} +1058.77 q^{79} -1508.93 q^{80} -857.131 q^{81} -321.589 q^{82} +823.504 q^{83} -2885.20 q^{84} -610.297 q^{85} -887.027 q^{86} -437.934 q^{87} +2928.22 q^{88} +793.082 q^{89} +234.802 q^{90} +784.856 q^{91} -887.494 q^{92} +1931.21 q^{94} +856.192 q^{95} -3358.05 q^{96} -766.204 q^{97} -1188.00 q^{98} -254.127 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 16 q^{2} + 288 q^{4} + 80 q^{5} + 112 q^{7} + 24 q^{8} + 720 q^{9} + 136 q^{10} + 712 q^{14} + 1408 q^{16} + 432 q^{18} + 608 q^{19} + 1656 q^{20} + 2000 q^{25} + 2168 q^{28} + 448 q^{32} + 1056 q^{33}+ \cdots + 16312 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.39615 −1.90783 −0.953914 0.300079i \(-0.902987\pi\)
−0.953914 + 0.300079i \(0.902987\pi\)
\(3\) 5.75704 1.10794 0.553971 0.832536i \(-0.313112\pi\)
0.553971 + 0.832536i \(0.313112\pi\)
\(4\) 21.1185 2.63981
\(5\) −7.08279 −0.633504 −0.316752 0.948508i \(-0.602592\pi\)
−0.316752 + 0.948508i \(0.602592\pi\)
\(6\) −31.0659 −2.11376
\(7\) −23.7309 −1.28135 −0.640675 0.767812i \(-0.721345\pi\)
−0.640675 + 0.767812i \(0.721345\pi\)
\(8\) −70.7893 −3.12848
\(9\) 6.14347 0.227536
\(10\) 38.2198 1.20862
\(11\) −41.3653 −1.13383 −0.566914 0.823777i \(-0.691863\pi\)
−0.566914 + 0.823777i \(0.691863\pi\)
\(12\) 121.580 2.92476
\(13\) −33.0731 −0.705602 −0.352801 0.935698i \(-0.614771\pi\)
−0.352801 + 0.935698i \(0.614771\pi\)
\(14\) 128.056 2.44460
\(15\) −40.7759 −0.701886
\(16\) 213.042 3.32879
\(17\) 86.1662 1.22932 0.614658 0.788794i \(-0.289294\pi\)
0.614658 + 0.788794i \(0.289294\pi\)
\(18\) −33.1511 −0.434100
\(19\) −120.883 −1.45961 −0.729804 0.683656i \(-0.760389\pi\)
−0.729804 + 0.683656i \(0.760389\pi\)
\(20\) −149.578 −1.67233
\(21\) −136.620 −1.41966
\(22\) 223.214 2.16315
\(23\) −42.0245 −0.380988 −0.190494 0.981688i \(-0.561009\pi\)
−0.190494 + 0.981688i \(0.561009\pi\)
\(24\) −407.537 −3.46617
\(25\) −74.8341 −0.598673
\(26\) 178.468 1.34617
\(27\) −120.072 −0.855846
\(28\) −501.161 −3.38252
\(29\) −76.0693 −0.487094 −0.243547 0.969889i \(-0.578311\pi\)
−0.243547 + 0.969889i \(0.578311\pi\)
\(30\) 220.033 1.33908
\(31\) 0 0
\(32\) −583.295 −3.22228
\(33\) −238.142 −1.25622
\(34\) −464.966 −2.34532
\(35\) 168.081 0.811741
\(36\) 129.741 0.600652
\(37\) −16.4933 −0.0732832 −0.0366416 0.999328i \(-0.511666\pi\)
−0.0366416 + 0.999328i \(0.511666\pi\)
\(38\) 652.305 2.78468
\(39\) −190.403 −0.781766
\(40\) 501.386 1.98190
\(41\) 59.5959 0.227008 0.113504 0.993538i \(-0.463793\pi\)
0.113504 + 0.993538i \(0.463793\pi\)
\(42\) 737.222 2.70847
\(43\) 164.381 0.582975 0.291488 0.956575i \(-0.405850\pi\)
0.291488 + 0.956575i \(0.405850\pi\)
\(44\) −873.573 −2.99309
\(45\) −43.5129 −0.144145
\(46\) 226.771 0.726859
\(47\) −357.886 −1.11070 −0.555351 0.831616i \(-0.687416\pi\)
−0.555351 + 0.831616i \(0.687416\pi\)
\(48\) 1226.49 3.68810
\(49\) 220.158 0.641859
\(50\) 403.816 1.14216
\(51\) 496.062 1.36201
\(52\) −698.454 −1.86266
\(53\) 485.193 1.25748 0.628739 0.777616i \(-0.283571\pi\)
0.628739 + 0.777616i \(0.283571\pi\)
\(54\) 647.926 1.63281
\(55\) 292.982 0.718285
\(56\) 1679.90 4.00867
\(57\) −695.930 −1.61716
\(58\) 410.482 0.929291
\(59\) 193.333 0.426607 0.213303 0.976986i \(-0.431578\pi\)
0.213303 + 0.976986i \(0.431578\pi\)
\(60\) −861.125 −1.85285
\(61\) 97.3901 0.204418 0.102209 0.994763i \(-0.467409\pi\)
0.102209 + 0.994763i \(0.467409\pi\)
\(62\) 0 0
\(63\) −145.790 −0.291553
\(64\) 1443.21 2.81877
\(65\) 234.250 0.447002
\(66\) 1285.05 2.39665
\(67\) −580.891 −1.05921 −0.529605 0.848244i \(-0.677660\pi\)
−0.529605 + 0.848244i \(0.677660\pi\)
\(68\) 1819.70 3.24516
\(69\) −241.937 −0.422112
\(70\) −906.993 −1.54866
\(71\) −149.443 −0.249797 −0.124898 0.992170i \(-0.539860\pi\)
−0.124898 + 0.992170i \(0.539860\pi\)
\(72\) −434.892 −0.711841
\(73\) 150.915 0.241962 0.120981 0.992655i \(-0.461396\pi\)
0.120981 + 0.992655i \(0.461396\pi\)
\(74\) 89.0003 0.139812
\(75\) −430.823 −0.663295
\(76\) −2552.87 −3.85309
\(77\) 981.638 1.45283
\(78\) 1027.44 1.49148
\(79\) 1058.77 1.50786 0.753929 0.656955i \(-0.228156\pi\)
0.753929 + 0.656955i \(0.228156\pi\)
\(80\) −1508.93 −2.10880
\(81\) −857.131 −1.17576
\(82\) −321.589 −0.433092
\(83\) 823.504 1.08905 0.544526 0.838744i \(-0.316710\pi\)
0.544526 + 0.838744i \(0.316710\pi\)
\(84\) −2885.20 −3.74764
\(85\) −610.297 −0.778777
\(86\) −887.027 −1.11222
\(87\) −437.934 −0.539672
\(88\) 2928.22 3.54716
\(89\) 793.082 0.944568 0.472284 0.881446i \(-0.343430\pi\)
0.472284 + 0.881446i \(0.343430\pi\)
\(90\) 234.802 0.275004
\(91\) 784.856 0.904124
\(92\) −887.494 −1.00574
\(93\) 0 0
\(94\) 1931.21 2.11903
\(95\) 856.192 0.924668
\(96\) −3358.05 −3.57010
\(97\) −766.204 −0.802023 −0.401012 0.916073i \(-0.631341\pi\)
−0.401012 + 0.916073i \(0.631341\pi\)
\(98\) −1188.00 −1.22456
\(99\) −254.127 −0.257987
\(100\) −1580.38 −1.58038
\(101\) 477.953 0.470872 0.235436 0.971890i \(-0.424348\pi\)
0.235436 + 0.971890i \(0.424348\pi\)
\(102\) −2676.83 −2.59848
\(103\) −1556.86 −1.48934 −0.744670 0.667433i \(-0.767393\pi\)
−0.744670 + 0.667433i \(0.767393\pi\)
\(104\) 2341.22 2.20746
\(105\) 967.650 0.899362
\(106\) −2618.18 −2.39905
\(107\) 1580.73 1.42818 0.714090 0.700054i \(-0.246841\pi\)
0.714090 + 0.700054i \(0.246841\pi\)
\(108\) −2535.73 −2.25927
\(109\) −1875.65 −1.64820 −0.824102 0.566441i \(-0.808320\pi\)
−0.824102 + 0.566441i \(0.808320\pi\)
\(110\) −1580.98 −1.37037
\(111\) −94.9524 −0.0811935
\(112\) −5055.70 −4.26534
\(113\) −1727.53 −1.43816 −0.719081 0.694926i \(-0.755437\pi\)
−0.719081 + 0.694926i \(0.755437\pi\)
\(114\) 3755.35 3.08527
\(115\) 297.651 0.241357
\(116\) −1606.47 −1.28583
\(117\) −203.184 −0.160550
\(118\) −1043.25 −0.813892
\(119\) −2044.80 −1.57518
\(120\) 2886.50 2.19583
\(121\) 380.091 0.285568
\(122\) −525.532 −0.389995
\(123\) 343.096 0.251512
\(124\) 0 0
\(125\) 1415.38 1.01277
\(126\) 786.707 0.556234
\(127\) 2672.64 1.86739 0.933696 0.358066i \(-0.116564\pi\)
0.933696 + 0.358066i \(0.116564\pi\)
\(128\) −3121.42 −2.15545
\(129\) 946.350 0.645903
\(130\) −1264.05 −0.852803
\(131\) 317.079 0.211476 0.105738 0.994394i \(-0.466280\pi\)
0.105738 + 0.994394i \(0.466280\pi\)
\(132\) −5029.19 −3.31617
\(133\) 2868.68 1.87027
\(134\) 3134.58 2.02079
\(135\) 850.443 0.542182
\(136\) −6099.65 −3.84589
\(137\) −1764.51 −1.10038 −0.550190 0.835040i \(-0.685445\pi\)
−0.550190 + 0.835040i \(0.685445\pi\)
\(138\) 1305.53 0.805318
\(139\) −1100.36 −0.671446 −0.335723 0.941961i \(-0.608981\pi\)
−0.335723 + 0.941961i \(0.608981\pi\)
\(140\) 3549.62 2.14284
\(141\) −2060.36 −1.23059
\(142\) 806.415 0.476570
\(143\) 1368.08 0.800032
\(144\) 1308.82 0.757419
\(145\) 538.783 0.308576
\(146\) −814.360 −0.461622
\(147\) 1267.46 0.711143
\(148\) −348.313 −0.193454
\(149\) 1262.60 0.694201 0.347101 0.937828i \(-0.387166\pi\)
0.347101 + 0.937828i \(0.387166\pi\)
\(150\) 2324.78 1.26545
\(151\) 187.681 0.101147 0.0505737 0.998720i \(-0.483895\pi\)
0.0505737 + 0.998720i \(0.483895\pi\)
\(152\) 8557.26 4.56635
\(153\) 529.359 0.279713
\(154\) −5297.07 −2.77175
\(155\) 0 0
\(156\) −4021.02 −2.06371
\(157\) −424.705 −0.215893 −0.107946 0.994157i \(-0.534427\pi\)
−0.107946 + 0.994157i \(0.534427\pi\)
\(158\) −5713.28 −2.87674
\(159\) 2793.27 1.39321
\(160\) 4131.35 2.04133
\(161\) 997.281 0.488179
\(162\) 4625.21 2.24315
\(163\) 46.9190 0.0225459 0.0112730 0.999936i \(-0.496412\pi\)
0.0112730 + 0.999936i \(0.496412\pi\)
\(164\) 1258.58 0.599258
\(165\) 1686.71 0.795818
\(166\) −4443.75 −2.07772
\(167\) 833.885 0.386395 0.193197 0.981160i \(-0.438114\pi\)
0.193197 + 0.981160i \(0.438114\pi\)
\(168\) 9671.23 4.44138
\(169\) −1103.17 −0.502126
\(170\) 3293.26 1.48577
\(171\) −742.643 −0.332113
\(172\) 3471.49 1.53894
\(173\) 1692.08 0.743621 0.371810 0.928309i \(-0.378737\pi\)
0.371810 + 0.928309i \(0.378737\pi\)
\(174\) 2363.16 1.02960
\(175\) 1775.88 0.767109
\(176\) −8812.57 −3.77427
\(177\) 1113.02 0.472655
\(178\) −4279.59 −1.80207
\(179\) 2837.48 1.18482 0.592411 0.805636i \(-0.298176\pi\)
0.592411 + 0.805636i \(0.298176\pi\)
\(180\) −918.927 −0.380515
\(181\) −2853.50 −1.17182 −0.585908 0.810378i \(-0.699262\pi\)
−0.585908 + 0.810378i \(0.699262\pi\)
\(182\) −4235.20 −1.72491
\(183\) 560.678 0.226484
\(184\) 2974.89 1.19191
\(185\) 116.818 0.0464252
\(186\) 0 0
\(187\) −3564.29 −1.39383
\(188\) −7558.01 −2.93204
\(189\) 2849.42 1.09664
\(190\) −4620.14 −1.76411
\(191\) 4172.75 1.58078 0.790392 0.612601i \(-0.209877\pi\)
0.790392 + 0.612601i \(0.209877\pi\)
\(192\) 8308.61 3.12303
\(193\) −3117.44 −1.16269 −0.581343 0.813659i \(-0.697473\pi\)
−0.581343 + 0.813659i \(0.697473\pi\)
\(194\) 4134.56 1.53012
\(195\) 1348.58 0.495252
\(196\) 4649.40 1.69439
\(197\) 1452.27 0.525228 0.262614 0.964901i \(-0.415415\pi\)
0.262614 + 0.964901i \(0.415415\pi\)
\(198\) 1371.31 0.492195
\(199\) 1347.87 0.480142 0.240071 0.970755i \(-0.422829\pi\)
0.240071 + 0.970755i \(0.422829\pi\)
\(200\) 5297.46 1.87293
\(201\) −3344.21 −1.17354
\(202\) −2579.11 −0.898344
\(203\) 1805.20 0.624138
\(204\) 10476.1 3.59545
\(205\) −422.106 −0.143810
\(206\) 8401.06 2.84141
\(207\) −258.176 −0.0866884
\(208\) −7045.97 −2.34880
\(209\) 5000.38 1.65495
\(210\) −5221.59 −1.71583
\(211\) 4040.68 1.31835 0.659176 0.751989i \(-0.270905\pi\)
0.659176 + 0.751989i \(0.270905\pi\)
\(212\) 10246.5 3.31950
\(213\) −860.347 −0.276760
\(214\) −8529.88 −2.72472
\(215\) −1164.28 −0.369317
\(216\) 8499.80 2.67749
\(217\) 0 0
\(218\) 10121.3 3.14449
\(219\) 868.822 0.268080
\(220\) 6187.33 1.89614
\(221\) −2849.78 −0.867408
\(222\) 512.378 0.154903
\(223\) −4834.36 −1.45172 −0.725859 0.687844i \(-0.758557\pi\)
−0.725859 + 0.687844i \(0.758557\pi\)
\(224\) 13842.1 4.12887
\(225\) −459.741 −0.136220
\(226\) 9322.02 2.74377
\(227\) 4353.76 1.27299 0.636496 0.771280i \(-0.280383\pi\)
0.636496 + 0.771280i \(0.280383\pi\)
\(228\) −14697.0 −4.26900
\(229\) 4645.61 1.34057 0.670284 0.742104i \(-0.266172\pi\)
0.670284 + 0.742104i \(0.266172\pi\)
\(230\) −1606.17 −0.460468
\(231\) 5651.33 1.60965
\(232\) 5384.90 1.52386
\(233\) −4237.39 −1.19142 −0.595709 0.803200i \(-0.703129\pi\)
−0.595709 + 0.803200i \(0.703129\pi\)
\(234\) 1096.41 0.306302
\(235\) 2534.83 0.703635
\(236\) 4082.89 1.12616
\(237\) 6095.37 1.67062
\(238\) 11034.1 3.00518
\(239\) 2150.70 0.582080 0.291040 0.956711i \(-0.405999\pi\)
0.291040 + 0.956711i \(0.405999\pi\)
\(240\) −8686.99 −2.33643
\(241\) −3237.89 −0.865439 −0.432719 0.901529i \(-0.642446\pi\)
−0.432719 + 0.901529i \(0.642446\pi\)
\(242\) −2051.03 −0.544815
\(243\) −1692.60 −0.446832
\(244\) 2056.73 0.539626
\(245\) −1559.33 −0.406620
\(246\) −1851.40 −0.479841
\(247\) 3997.99 1.02990
\(248\) 0 0
\(249\) 4740.94 1.20661
\(250\) −7637.62 −1.93218
\(251\) −4082.78 −1.02670 −0.513352 0.858178i \(-0.671597\pi\)
−0.513352 + 0.858178i \(0.671597\pi\)
\(252\) −3078.87 −0.769645
\(253\) 1738.36 0.431975
\(254\) −14422.0 −3.56266
\(255\) −3513.50 −0.862839
\(256\) 5298.00 1.29346
\(257\) −6292.12 −1.52721 −0.763603 0.645686i \(-0.776571\pi\)
−0.763603 + 0.645686i \(0.776571\pi\)
\(258\) −5106.65 −1.23227
\(259\) 391.401 0.0939014
\(260\) 4947.00 1.18000
\(261\) −467.329 −0.110831
\(262\) −1711.01 −0.403460
\(263\) −5033.00 −1.18003 −0.590015 0.807392i \(-0.700878\pi\)
−0.590015 + 0.807392i \(0.700878\pi\)
\(264\) 16857.9 3.93005
\(265\) −3436.52 −0.796618
\(266\) −15479.8 −3.56815
\(267\) 4565.80 1.04653
\(268\) −12267.5 −2.79612
\(269\) −2734.30 −0.619751 −0.309875 0.950777i \(-0.600287\pi\)
−0.309875 + 0.950777i \(0.600287\pi\)
\(270\) −4589.12 −1.03439
\(271\) 6227.53 1.39592 0.697962 0.716135i \(-0.254091\pi\)
0.697962 + 0.716135i \(0.254091\pi\)
\(272\) 18357.0 4.09213
\(273\) 4518.44 1.00172
\(274\) 9521.55 2.09933
\(275\) 3095.54 0.678792
\(276\) −5109.33 −1.11430
\(277\) −2211.10 −0.479610 −0.239805 0.970821i \(-0.577084\pi\)
−0.239805 + 0.970821i \(0.577084\pi\)
\(278\) 5937.69 1.28100
\(279\) 0 0
\(280\) −11898.4 −2.53951
\(281\) 3732.62 0.792417 0.396209 0.918160i \(-0.370326\pi\)
0.396209 + 0.918160i \(0.370326\pi\)
\(282\) 11118.0 2.34776
\(283\) −3425.35 −0.719491 −0.359746 0.933050i \(-0.617137\pi\)
−0.359746 + 0.933050i \(0.617137\pi\)
\(284\) −3156.00 −0.659416
\(285\) 4929.13 1.02448
\(286\) −7382.37 −1.52632
\(287\) −1414.27 −0.290877
\(288\) −3583.45 −0.733184
\(289\) 2511.61 0.511217
\(290\) −2907.36 −0.588710
\(291\) −4411.07 −0.888596
\(292\) 3187.09 0.638734
\(293\) 1184.49 0.236173 0.118087 0.993003i \(-0.462324\pi\)
0.118087 + 0.993003i \(0.462324\pi\)
\(294\) −6839.39 −1.35674
\(295\) −1369.34 −0.270257
\(296\) 1167.55 0.229265
\(297\) 4966.81 0.970382
\(298\) −6813.17 −1.32442
\(299\) 1389.88 0.268826
\(300\) −9098.32 −1.75097
\(301\) −3900.93 −0.746995
\(302\) −1012.76 −0.192972
\(303\) 2751.59 0.521699
\(304\) −25753.3 −4.85872
\(305\) −689.793 −0.129500
\(306\) −2856.50 −0.533645
\(307\) 9535.30 1.77267 0.886333 0.463049i \(-0.153245\pi\)
0.886333 + 0.463049i \(0.153245\pi\)
\(308\) 20730.7 3.83520
\(309\) −8962.90 −1.65010
\(310\) 0 0
\(311\) −3975.15 −0.724792 −0.362396 0.932024i \(-0.618041\pi\)
−0.362396 + 0.932024i \(0.618041\pi\)
\(312\) 13478.5 2.44574
\(313\) −201.867 −0.0364542 −0.0182271 0.999834i \(-0.505802\pi\)
−0.0182271 + 0.999834i \(0.505802\pi\)
\(314\) 2291.77 0.411886
\(315\) 1032.60 0.184700
\(316\) 22359.6 3.98046
\(317\) −5974.09 −1.05848 −0.529240 0.848472i \(-0.677523\pi\)
−0.529240 + 0.848472i \(0.677523\pi\)
\(318\) −15072.9 −2.65801
\(319\) 3146.63 0.552281
\(320\) −10221.9 −1.78570
\(321\) 9100.34 1.58234
\(322\) −5381.48 −0.931361
\(323\) −10416.1 −1.79432
\(324\) −18101.3 −3.10379
\(325\) 2475.00 0.422425
\(326\) −253.182 −0.0430137
\(327\) −10798.2 −1.82611
\(328\) −4218.76 −0.710189
\(329\) 8492.97 1.42320
\(330\) −9101.74 −1.51829
\(331\) 7864.23 1.30591 0.652957 0.757395i \(-0.273528\pi\)
0.652957 + 0.757395i \(0.273528\pi\)
\(332\) 17391.1 2.87489
\(333\) −101.326 −0.0166746
\(334\) −4499.77 −0.737175
\(335\) 4114.33 0.671014
\(336\) −29105.8 −4.72575
\(337\) −11124.6 −1.79821 −0.899104 0.437734i \(-0.855781\pi\)
−0.899104 + 0.437734i \(0.855781\pi\)
\(338\) 5952.87 0.957970
\(339\) −9945.45 −1.59340
\(340\) −12888.5 −2.05582
\(341\) 0 0
\(342\) 4007.42 0.633615
\(343\) 2915.16 0.458904
\(344\) −11636.5 −1.82382
\(345\) 1713.59 0.267410
\(346\) −9130.72 −1.41870
\(347\) −11534.7 −1.78448 −0.892238 0.451565i \(-0.850866\pi\)
−0.892238 + 0.451565i \(0.850866\pi\)
\(348\) −9248.49 −1.42463
\(349\) 7246.39 1.11143 0.555717 0.831372i \(-0.312444\pi\)
0.555717 + 0.831372i \(0.312444\pi\)
\(350\) −9582.94 −1.46351
\(351\) 3971.15 0.603886
\(352\) 24128.2 3.65351
\(353\) 3233.13 0.487485 0.243742 0.969840i \(-0.421625\pi\)
0.243742 + 0.969840i \(0.421625\pi\)
\(354\) −6006.05 −0.901745
\(355\) 1058.47 0.158247
\(356\) 16748.7 2.49348
\(357\) −11772.0 −1.74521
\(358\) −15311.5 −2.26044
\(359\) −749.795 −0.110230 −0.0551151 0.998480i \(-0.517553\pi\)
−0.0551151 + 0.998480i \(0.517553\pi\)
\(360\) 3080.25 0.450954
\(361\) 7753.80 1.13046
\(362\) 15397.9 2.23562
\(363\) 2188.20 0.316393
\(364\) 16575.0 2.38671
\(365\) −1068.90 −0.153284
\(366\) −3025.51 −0.432092
\(367\) −4879.10 −0.693970 −0.346985 0.937871i \(-0.612795\pi\)
−0.346985 + 0.937871i \(0.612795\pi\)
\(368\) −8953.00 −1.26823
\(369\) 366.126 0.0516524
\(370\) −630.370 −0.0885713
\(371\) −11514.1 −1.61127
\(372\) 0 0
\(373\) −9921.33 −1.37723 −0.688615 0.725127i \(-0.741781\pi\)
−0.688615 + 0.725127i \(0.741781\pi\)
\(374\) 19233.5 2.65920
\(375\) 8148.41 1.12209
\(376\) 25334.5 3.47481
\(377\) 2515.85 0.343694
\(378\) −15375.9 −2.09220
\(379\) 571.935 0.0775154 0.0387577 0.999249i \(-0.487660\pi\)
0.0387577 + 0.999249i \(0.487660\pi\)
\(380\) 18081.5 2.44095
\(381\) 15386.5 2.06896
\(382\) −22516.8 −3.01587
\(383\) 11153.5 1.48803 0.744015 0.668163i \(-0.232919\pi\)
0.744015 + 0.668163i \(0.232919\pi\)
\(384\) −17970.1 −2.38811
\(385\) −6952.74 −0.920375
\(386\) 16822.2 2.21821
\(387\) 1009.87 0.132648
\(388\) −16181.1 −2.11719
\(389\) 9020.99 1.17579 0.587895 0.808937i \(-0.299957\pi\)
0.587895 + 0.808937i \(0.299957\pi\)
\(390\) −7277.17 −0.944856
\(391\) −3621.09 −0.468354
\(392\) −15584.8 −2.00804
\(393\) 1825.44 0.234303
\(394\) −7836.67 −1.00205
\(395\) −7499.04 −0.955235
\(396\) −5366.77 −0.681036
\(397\) 6982.61 0.882739 0.441369 0.897326i \(-0.354493\pi\)
0.441369 + 0.897326i \(0.354493\pi\)
\(398\) −7273.34 −0.916029
\(399\) 16515.1 2.07215
\(400\) −15942.8 −1.99285
\(401\) −5347.23 −0.665905 −0.332952 0.942944i \(-0.608045\pi\)
−0.332952 + 0.942944i \(0.608045\pi\)
\(402\) 18045.9 2.23892
\(403\) 0 0
\(404\) 10093.6 1.24301
\(405\) 6070.88 0.744851
\(406\) −9741.12 −1.19075
\(407\) 682.250 0.0830906
\(408\) −35115.9 −4.26102
\(409\) 11151.7 1.34821 0.674106 0.738635i \(-0.264529\pi\)
0.674106 + 0.738635i \(0.264529\pi\)
\(410\) 2277.75 0.274366
\(411\) −10158.3 −1.21916
\(412\) −32878.5 −3.93158
\(413\) −4587.97 −0.546632
\(414\) 1393.16 0.165387
\(415\) −5832.70 −0.689919
\(416\) 19291.4 2.27365
\(417\) −6334.79 −0.743923
\(418\) −26982.8 −3.15735
\(419\) 5908.73 0.688927 0.344463 0.938800i \(-0.388061\pi\)
0.344463 + 0.938800i \(0.388061\pi\)
\(420\) 20435.3 2.37414
\(421\) 1426.38 0.165125 0.0825623 0.996586i \(-0.473690\pi\)
0.0825623 + 0.996586i \(0.473690\pi\)
\(422\) −21804.2 −2.51519
\(423\) −2198.66 −0.252725
\(424\) −34346.5 −3.93399
\(425\) −6448.17 −0.735958
\(426\) 4642.56 0.528012
\(427\) −2311.16 −0.261932
\(428\) 33382.7 3.77012
\(429\) 7876.09 0.886389
\(430\) 6282.63 0.704594
\(431\) 4552.60 0.508796 0.254398 0.967100i \(-0.418123\pi\)
0.254398 + 0.967100i \(0.418123\pi\)
\(432\) −25580.4 −2.84893
\(433\) 10329.4 1.14641 0.573207 0.819410i \(-0.305699\pi\)
0.573207 + 0.819410i \(0.305699\pi\)
\(434\) 0 0
\(435\) 3101.79 0.341884
\(436\) −39610.8 −4.35095
\(437\) 5080.07 0.556093
\(438\) −4688.30 −0.511451
\(439\) 5633.91 0.612510 0.306255 0.951950i \(-0.400924\pi\)
0.306255 + 0.951950i \(0.400924\pi\)
\(440\) −20740.0 −2.24714
\(441\) 1352.53 0.146046
\(442\) 15377.9 1.65487
\(443\) 6672.19 0.715587 0.357794 0.933801i \(-0.383529\pi\)
0.357794 + 0.933801i \(0.383529\pi\)
\(444\) −2005.25 −0.214336
\(445\) −5617.24 −0.598388
\(446\) 26087.0 2.76963
\(447\) 7268.82 0.769135
\(448\) −34248.7 −3.61183
\(449\) 18057.8 1.89800 0.948999 0.315279i \(-0.102098\pi\)
0.948999 + 0.315279i \(0.102098\pi\)
\(450\) 2480.83 0.259884
\(451\) −2465.21 −0.257388
\(452\) −36482.8 −3.79648
\(453\) 1080.49 0.112065
\(454\) −23493.6 −2.42865
\(455\) −5558.97 −0.572766
\(456\) 49264.4 5.05925
\(457\) 4522.63 0.462932 0.231466 0.972843i \(-0.425648\pi\)
0.231466 + 0.972843i \(0.425648\pi\)
\(458\) −25068.4 −2.55758
\(459\) −10346.1 −1.05210
\(460\) 6285.93 0.637137
\(461\) 4244.74 0.428845 0.214422 0.976741i \(-0.431213\pi\)
0.214422 + 0.976741i \(0.431213\pi\)
\(462\) −30495.4 −3.07094
\(463\) 11496.4 1.15396 0.576978 0.816760i \(-0.304232\pi\)
0.576978 + 0.816760i \(0.304232\pi\)
\(464\) −16206.0 −1.62143
\(465\) 0 0
\(466\) 22865.6 2.27302
\(467\) −3023.96 −0.299640 −0.149820 0.988713i \(-0.547869\pi\)
−0.149820 + 0.988713i \(0.547869\pi\)
\(468\) −4290.93 −0.423821
\(469\) 13785.1 1.35722
\(470\) −13678.3 −1.34241
\(471\) −2445.04 −0.239196
\(472\) −13685.9 −1.33463
\(473\) −6799.69 −0.660994
\(474\) −32891.6 −3.18726
\(475\) 9046.20 0.873827
\(476\) −43183.2 −4.15819
\(477\) 2980.77 0.286122
\(478\) −11605.5 −1.11051
\(479\) −5338.13 −0.509197 −0.254598 0.967047i \(-0.581943\pi\)
−0.254598 + 0.967047i \(0.581943\pi\)
\(480\) 23784.4 2.26167
\(481\) 545.484 0.0517088
\(482\) 17472.1 1.65111
\(483\) 5741.39 0.540874
\(484\) 8026.95 0.753845
\(485\) 5426.87 0.508085
\(486\) 9133.52 0.852479
\(487\) 15840.9 1.47396 0.736980 0.675914i \(-0.236251\pi\)
0.736980 + 0.675914i \(0.236251\pi\)
\(488\) −6894.18 −0.639518
\(489\) 270.115 0.0249796
\(490\) 8414.39 0.775762
\(491\) −10028.3 −0.921737 −0.460869 0.887468i \(-0.652462\pi\)
−0.460869 + 0.887468i \(0.652462\pi\)
\(492\) 7245.67 0.663943
\(493\) −6554.60 −0.598792
\(494\) −21573.8 −1.96488
\(495\) 1799.93 0.163436
\(496\) 0 0
\(497\) 3546.41 0.320077
\(498\) −25582.8 −2.30200
\(499\) −1555.85 −0.139578 −0.0697891 0.997562i \(-0.522233\pi\)
−0.0697891 + 0.997562i \(0.522233\pi\)
\(500\) 29890.7 2.67351
\(501\) 4800.70 0.428103
\(502\) 22031.3 1.95878
\(503\) 14459.8 1.28177 0.640886 0.767636i \(-0.278567\pi\)
0.640886 + 0.767636i \(0.278567\pi\)
\(504\) 10320.4 0.912118
\(505\) −3385.24 −0.298300
\(506\) −9380.45 −0.824134
\(507\) −6350.99 −0.556326
\(508\) 56442.2 4.92956
\(509\) −7508.81 −0.653875 −0.326937 0.945046i \(-0.606017\pi\)
−0.326937 + 0.945046i \(0.606017\pi\)
\(510\) 18959.4 1.64615
\(511\) −3581.35 −0.310038
\(512\) −3617.45 −0.312247
\(513\) 14514.7 1.24920
\(514\) 33953.3 2.91365
\(515\) 11026.9 0.943503
\(516\) 19985.5 1.70506
\(517\) 14804.1 1.25935
\(518\) −2112.06 −0.179148
\(519\) 9741.36 0.823889
\(520\) −16582.4 −1.39843
\(521\) 4469.83 0.375867 0.187934 0.982182i \(-0.439821\pi\)
0.187934 + 0.982182i \(0.439821\pi\)
\(522\) 2521.78 0.211447
\(523\) −17773.2 −1.48598 −0.742990 0.669302i \(-0.766593\pi\)
−0.742990 + 0.669302i \(0.766593\pi\)
\(524\) 6696.24 0.558257
\(525\) 10223.8 0.849913
\(526\) 27158.8 2.25129
\(527\) 0 0
\(528\) −50734.3 −4.18168
\(529\) −10400.9 −0.854848
\(530\) 18544.0 1.51981
\(531\) 1187.73 0.0970683
\(532\) 60582.1 4.93716
\(533\) −1971.02 −0.160177
\(534\) −24637.8 −1.99659
\(535\) −11196.0 −0.904758
\(536\) 41120.9 3.31372
\(537\) 16335.5 1.31271
\(538\) 14754.7 1.18238
\(539\) −9106.90 −0.727758
\(540\) 17960.1 1.43126
\(541\) −16721.1 −1.32883 −0.664414 0.747365i \(-0.731319\pi\)
−0.664414 + 0.747365i \(0.731319\pi\)
\(542\) −33604.7 −2.66318
\(543\) −16427.7 −1.29830
\(544\) −50260.3 −3.96120
\(545\) 13284.8 1.04414
\(546\) −24382.2 −1.91110
\(547\) 7242.44 0.566114 0.283057 0.959103i \(-0.408651\pi\)
0.283057 + 0.959103i \(0.408651\pi\)
\(548\) −37263.7 −2.90479
\(549\) 598.313 0.0465125
\(550\) −16704.0 −1.29502
\(551\) 9195.51 0.710966
\(552\) 17126.5 1.32057
\(553\) −25125.6 −1.93210
\(554\) 11931.4 0.915014
\(555\) 672.528 0.0514364
\(556\) −23237.8 −1.77249
\(557\) −15328.1 −1.16602 −0.583010 0.812465i \(-0.698125\pi\)
−0.583010 + 0.812465i \(0.698125\pi\)
\(558\) 0 0
\(559\) −5436.60 −0.411348
\(560\) 35808.4 2.70211
\(561\) −20519.8 −1.54429
\(562\) −20141.8 −1.51180
\(563\) −15754.6 −1.17935 −0.589677 0.807639i \(-0.700745\pi\)
−0.589677 + 0.807639i \(0.700745\pi\)
\(564\) −43511.7 −3.24854
\(565\) 12235.7 0.911082
\(566\) 18483.7 1.37267
\(567\) 20340.5 1.50656
\(568\) 10578.9 0.781484
\(569\) 16647.8 1.22656 0.613279 0.789866i \(-0.289850\pi\)
0.613279 + 0.789866i \(0.289850\pi\)
\(570\) −26598.3 −1.95453
\(571\) −1702.00 −0.124740 −0.0623700 0.998053i \(-0.519866\pi\)
−0.0623700 + 0.998053i \(0.519866\pi\)
\(572\) 28891.8 2.11193
\(573\) 24022.7 1.75142
\(574\) 7631.61 0.554943
\(575\) 3144.87 0.228087
\(576\) 8866.31 0.641371
\(577\) 3313.59 0.239076 0.119538 0.992830i \(-0.461859\pi\)
0.119538 + 0.992830i \(0.461859\pi\)
\(578\) −13553.0 −0.975315
\(579\) −17947.2 −1.28819
\(580\) 11378.3 0.814581
\(581\) −19542.5 −1.39546
\(582\) 23802.8 1.69529
\(583\) −20070.2 −1.42577
\(584\) −10683.2 −0.756973
\(585\) 1439.11 0.101709
\(586\) −6391.70 −0.450578
\(587\) 11210.6 0.788261 0.394130 0.919055i \(-0.371046\pi\)
0.394130 + 0.919055i \(0.371046\pi\)
\(588\) 26766.7 1.87728
\(589\) 0 0
\(590\) 7389.15 0.515604
\(591\) 8360.77 0.581923
\(592\) −3513.77 −0.243944
\(593\) −639.536 −0.0442877 −0.0221438 0.999755i \(-0.507049\pi\)
−0.0221438 + 0.999755i \(0.507049\pi\)
\(594\) −26801.7 −1.85132
\(595\) 14482.9 0.997886
\(596\) 26664.1 1.83256
\(597\) 7759.76 0.531970
\(598\) −7500.01 −0.512873
\(599\) −4674.58 −0.318862 −0.159431 0.987209i \(-0.550966\pi\)
−0.159431 + 0.987209i \(0.550966\pi\)
\(600\) 30497.6 2.07510
\(601\) −9152.10 −0.621168 −0.310584 0.950546i \(-0.600525\pi\)
−0.310584 + 0.950546i \(0.600525\pi\)
\(602\) 21050.0 1.42514
\(603\) −3568.69 −0.241009
\(604\) 3963.54 0.267010
\(605\) −2692.11 −0.180909
\(606\) −14848.0 −0.995313
\(607\) 1805.96 0.120760 0.0603802 0.998175i \(-0.480769\pi\)
0.0603802 + 0.998175i \(0.480769\pi\)
\(608\) 70510.6 4.70326
\(609\) 10392.6 0.691508
\(610\) 3722.23 0.247064
\(611\) 11836.4 0.783714
\(612\) 11179.3 0.738390
\(613\) 18355.4 1.20941 0.604706 0.796449i \(-0.293291\pi\)
0.604706 + 0.796449i \(0.293291\pi\)
\(614\) −51453.9 −3.38194
\(615\) −2430.08 −0.159334
\(616\) −69489.5 −4.54515
\(617\) −5051.36 −0.329595 −0.164797 0.986327i \(-0.552697\pi\)
−0.164797 + 0.986327i \(0.552697\pi\)
\(618\) 48365.2 3.14811
\(619\) −20397.6 −1.32448 −0.662238 0.749294i \(-0.730393\pi\)
−0.662238 + 0.749294i \(0.730393\pi\)
\(620\) 0 0
\(621\) 5045.96 0.326067
\(622\) 21450.5 1.38278
\(623\) −18820.6 −1.21032
\(624\) −40563.9 −2.60233
\(625\) −670.601 −0.0429184
\(626\) 1089.30 0.0695484
\(627\) 28787.4 1.83358
\(628\) −8969.12 −0.569915
\(629\) −1421.16 −0.0900882
\(630\) −5572.08 −0.352376
\(631\) −5659.57 −0.357058 −0.178529 0.983935i \(-0.557134\pi\)
−0.178529 + 0.983935i \(0.557134\pi\)
\(632\) −74949.6 −4.71730
\(633\) 23262.4 1.46066
\(634\) 32237.1 2.01940
\(635\) −18929.8 −1.18300
\(636\) 58989.7 3.67782
\(637\) −7281.30 −0.452897
\(638\) −16979.7 −1.05366
\(639\) −918.096 −0.0568378
\(640\) 22108.4 1.36549
\(641\) 4840.00 0.298235 0.149117 0.988820i \(-0.452357\pi\)
0.149117 + 0.988820i \(0.452357\pi\)
\(642\) −49106.8 −3.01884
\(643\) −28156.2 −1.72686 −0.863430 0.504468i \(-0.831689\pi\)
−0.863430 + 0.504468i \(0.831689\pi\)
\(644\) 21061.1 1.28870
\(645\) −6702.80 −0.409182
\(646\) 56206.7 3.42325
\(647\) −15477.7 −0.940484 −0.470242 0.882538i \(-0.655833\pi\)
−0.470242 + 0.882538i \(0.655833\pi\)
\(648\) 60675.8 3.67835
\(649\) −7997.28 −0.483699
\(650\) −13355.5 −0.805914
\(651\) 0 0
\(652\) 990.859 0.0595169
\(653\) −14428.5 −0.864674 −0.432337 0.901712i \(-0.642311\pi\)
−0.432337 + 0.901712i \(0.642311\pi\)
\(654\) 58268.5 3.48391
\(655\) −2245.81 −0.133971
\(656\) 12696.5 0.755661
\(657\) 927.141 0.0550551
\(658\) −45829.4 −2.71522
\(659\) −10106.8 −0.597428 −0.298714 0.954343i \(-0.596558\pi\)
−0.298714 + 0.954343i \(0.596558\pi\)
\(660\) 35620.7 2.10081
\(661\) −16173.1 −0.951683 −0.475841 0.879531i \(-0.657856\pi\)
−0.475841 + 0.879531i \(0.657856\pi\)
\(662\) −42436.6 −2.49146
\(663\) −16406.3 −0.961038
\(664\) −58295.3 −3.40707
\(665\) −20318.2 −1.18482
\(666\) 546.770 0.0318122
\(667\) 3196.78 0.185577
\(668\) 17610.4 1.02001
\(669\) −27831.6 −1.60842
\(670\) −22201.6 −1.28018
\(671\) −4028.57 −0.231775
\(672\) 79689.7 4.57455
\(673\) −23042.5 −1.31980 −0.659898 0.751355i \(-0.729400\pi\)
−0.659898 + 0.751355i \(0.729400\pi\)
\(674\) 60030.1 3.43067
\(675\) 8985.46 0.512371
\(676\) −23297.3 −1.32552
\(677\) −4151.60 −0.235685 −0.117843 0.993032i \(-0.537598\pi\)
−0.117843 + 0.993032i \(0.537598\pi\)
\(678\) 53667.2 3.03994
\(679\) 18182.8 1.02767
\(680\) 43202.5 2.43638
\(681\) 25064.8 1.41040
\(682\) 0 0
\(683\) −16603.3 −0.930174 −0.465087 0.885265i \(-0.653977\pi\)
−0.465087 + 0.885265i \(0.653977\pi\)
\(684\) −15683.5 −0.876716
\(685\) 12497.6 0.697095
\(686\) −15730.7 −0.875510
\(687\) 26744.9 1.48527
\(688\) 35020.2 1.94060
\(689\) −16046.8 −0.887280
\(690\) −9246.78 −0.510172
\(691\) −15504.2 −0.853556 −0.426778 0.904356i \(-0.640351\pi\)
−0.426778 + 0.904356i \(0.640351\pi\)
\(692\) 35734.1 1.96302
\(693\) 6030.67 0.330572
\(694\) 62242.8 3.40448
\(695\) 7793.59 0.425364
\(696\) 31001.0 1.68835
\(697\) 5135.16 0.279064
\(698\) −39102.6 −2.12042
\(699\) −24394.8 −1.32002
\(700\) 37504.0 2.02502
\(701\) −22509.3 −1.21279 −0.606393 0.795165i \(-0.707384\pi\)
−0.606393 + 0.795165i \(0.707384\pi\)
\(702\) −21428.9 −1.15211
\(703\) 1993.76 0.106965
\(704\) −59698.8 −3.19600
\(705\) 14593.1 0.779587
\(706\) −17446.5 −0.930038
\(707\) −11342.3 −0.603353
\(708\) 23505.4 1.24772
\(709\) 13381.8 0.708835 0.354418 0.935087i \(-0.384679\pi\)
0.354418 + 0.935087i \(0.384679\pi\)
\(710\) −5711.67 −0.301909
\(711\) 6504.52 0.343092
\(712\) −56141.8 −2.95506
\(713\) 0 0
\(714\) 63523.6 3.32957
\(715\) −9689.82 −0.506824
\(716\) 59923.2 3.12770
\(717\) 12381.6 0.644911
\(718\) 4046.01 0.210300
\(719\) 23400.2 1.21374 0.606870 0.794801i \(-0.292425\pi\)
0.606870 + 0.794801i \(0.292425\pi\)
\(720\) −9270.09 −0.479828
\(721\) 36945.8 1.90837
\(722\) −41840.7 −2.15672
\(723\) −18640.6 −0.958856
\(724\) −60261.5 −3.09337
\(725\) 5692.58 0.291610
\(726\) −11807.9 −0.603623
\(727\) 22095.5 1.12720 0.563601 0.826047i \(-0.309415\pi\)
0.563601 + 0.826047i \(0.309415\pi\)
\(728\) −55559.4 −2.82853
\(729\) 13398.2 0.680699
\(730\) 5767.94 0.292440
\(731\) 14164.1 0.716660
\(732\) 11840.7 0.597874
\(733\) −33656.5 −1.69595 −0.847974 0.530038i \(-0.822178\pi\)
−0.847974 + 0.530038i \(0.822178\pi\)
\(734\) 26328.4 1.32398
\(735\) −8977.12 −0.450512
\(736\) 24512.7 1.22765
\(737\) 24028.8 1.20096
\(738\) −1975.67 −0.0985440
\(739\) 12248.8 0.609716 0.304858 0.952398i \(-0.401391\pi\)
0.304858 + 0.952398i \(0.401391\pi\)
\(740\) 2467.03 0.122554
\(741\) 23016.6 1.14107
\(742\) 62131.8 3.07403
\(743\) 8392.84 0.414406 0.207203 0.978298i \(-0.433564\pi\)
0.207203 + 0.978298i \(0.433564\pi\)
\(744\) 0 0
\(745\) −8942.71 −0.439779
\(746\) 53537.0 2.62752
\(747\) 5059.17 0.247798
\(748\) −75272.5 −3.67946
\(749\) −37512.3 −1.83000
\(750\) −43970.1 −2.14075
\(751\) −4400.49 −0.213817 −0.106908 0.994269i \(-0.534095\pi\)
−0.106908 + 0.994269i \(0.534095\pi\)
\(752\) −76244.9 −3.69729
\(753\) −23504.7 −1.13753
\(754\) −13575.9 −0.655710
\(755\) −1329.30 −0.0640773
\(756\) 60175.4 2.89492
\(757\) 7899.31 0.379267 0.189634 0.981855i \(-0.439270\pi\)
0.189634 + 0.981855i \(0.439270\pi\)
\(758\) −3086.25 −0.147886
\(759\) 10007.8 0.478603
\(760\) −60609.3 −2.89280
\(761\) −8102.08 −0.385940 −0.192970 0.981205i \(-0.561812\pi\)
−0.192970 + 0.981205i \(0.561812\pi\)
\(762\) −83028.0 −3.94723
\(763\) 44510.8 2.11193
\(764\) 88122.2 4.17297
\(765\) −3749.34 −0.177200
\(766\) −60185.8 −2.83891
\(767\) −6394.11 −0.301014
\(768\) 30500.8 1.43308
\(769\) 22438.7 1.05222 0.526111 0.850416i \(-0.323649\pi\)
0.526111 + 0.850416i \(0.323649\pi\)
\(770\) 37518.1 1.75592
\(771\) −36224.0 −1.69206
\(772\) −65835.7 −3.06927
\(773\) −42602.9 −1.98230 −0.991151 0.132742i \(-0.957622\pi\)
−0.991151 + 0.132742i \(0.957622\pi\)
\(774\) −5449.43 −0.253069
\(775\) 0 0
\(776\) 54239.1 2.50911
\(777\) 2253.31 0.104037
\(778\) −48678.6 −2.24321
\(779\) −7204.16 −0.331343
\(780\) 28480.1 1.30737
\(781\) 6181.74 0.283227
\(782\) 19540.0 0.893540
\(783\) 9133.78 0.416877
\(784\) 46902.9 2.13661
\(785\) 3008.09 0.136769
\(786\) −9850.34 −0.447010
\(787\) −38342.8 −1.73669 −0.868343 0.495964i \(-0.834815\pi\)
−0.868343 + 0.495964i \(0.834815\pi\)
\(788\) 30669.7 1.38650
\(789\) −28975.1 −1.30740
\(790\) 40466.0 1.82242
\(791\) 40995.9 1.84279
\(792\) 17989.5 0.807106
\(793\) −3220.99 −0.144238
\(794\) −37679.3 −1.68411
\(795\) −19784.2 −0.882606
\(796\) 28465.1 1.26748
\(797\) −10977.8 −0.487896 −0.243948 0.969788i \(-0.578443\pi\)
−0.243948 + 0.969788i \(0.578443\pi\)
\(798\) −89117.9 −3.95331
\(799\) −30837.7 −1.36540
\(800\) 43650.3 1.92909
\(801\) 4872.28 0.214923
\(802\) 28854.5 1.27043
\(803\) −6242.64 −0.274344
\(804\) −70624.7 −3.09793
\(805\) −7063.53 −0.309263
\(806\) 0 0
\(807\) −15741.4 −0.686648
\(808\) −33834.0 −1.47311
\(809\) −38491.5 −1.67279 −0.836396 0.548125i \(-0.815342\pi\)
−0.836396 + 0.548125i \(0.815342\pi\)
\(810\) −32759.4 −1.42105
\(811\) −3879.02 −0.167954 −0.0839770 0.996468i \(-0.526762\pi\)
−0.0839770 + 0.996468i \(0.526762\pi\)
\(812\) 38123.0 1.64760
\(813\) 35852.1 1.54660
\(814\) −3681.53 −0.158523
\(815\) −332.318 −0.0142829
\(816\) 105682. 4.53384
\(817\) −19871.0 −0.850915
\(818\) −60176.5 −2.57216
\(819\) 4821.74 0.205721
\(820\) −8914.23 −0.379632
\(821\) 17753.7 0.754698 0.377349 0.926071i \(-0.376836\pi\)
0.377349 + 0.926071i \(0.376836\pi\)
\(822\) 54815.9 2.32594
\(823\) 4749.80 0.201176 0.100588 0.994928i \(-0.467928\pi\)
0.100588 + 0.994928i \(0.467928\pi\)
\(824\) 110209. 4.65937
\(825\) 17821.1 0.752063
\(826\) 24757.4 1.04288
\(827\) −12659.1 −0.532286 −0.266143 0.963934i \(-0.585749\pi\)
−0.266143 + 0.963934i \(0.585749\pi\)
\(828\) −5452.29 −0.228841
\(829\) −12994.3 −0.544402 −0.272201 0.962240i \(-0.587752\pi\)
−0.272201 + 0.962240i \(0.587752\pi\)
\(830\) 31474.2 1.31625
\(831\) −12729.4 −0.531380
\(832\) −47731.4 −1.98893
\(833\) 18970.1 0.789048
\(834\) 34183.5 1.41928
\(835\) −5906.23 −0.244783
\(836\) 105600. 4.36874
\(837\) 0 0
\(838\) −31884.4 −1.31435
\(839\) −2310.98 −0.0950940 −0.0475470 0.998869i \(-0.515140\pi\)
−0.0475470 + 0.998869i \(0.515140\pi\)
\(840\) −68499.3 −2.81363
\(841\) −18602.5 −0.762740
\(842\) −7696.96 −0.315029
\(843\) 21488.8 0.877953
\(844\) 85333.1 3.48020
\(845\) 7813.52 0.318099
\(846\) 11864.3 0.482156
\(847\) −9019.92 −0.365913
\(848\) 103367. 4.18588
\(849\) −19719.9 −0.797155
\(850\) 34795.3 1.40408
\(851\) 693.122 0.0279200
\(852\) −18169.2 −0.730595
\(853\) 4487.38 0.180123 0.0900615 0.995936i \(-0.471294\pi\)
0.0900615 + 0.995936i \(0.471294\pi\)
\(854\) 12471.4 0.499721
\(855\) 5259.99 0.210395
\(856\) −111899. −4.46803
\(857\) 25875.8 1.03139 0.515694 0.856773i \(-0.327534\pi\)
0.515694 + 0.856773i \(0.327534\pi\)
\(858\) −42500.6 −1.69108
\(859\) 28118.7 1.11688 0.558439 0.829545i \(-0.311400\pi\)
0.558439 + 0.829545i \(0.311400\pi\)
\(860\) −24587.8 −0.974927
\(861\) −8141.99 −0.322275
\(862\) −24566.5 −0.970696
\(863\) 5867.55 0.231441 0.115721 0.993282i \(-0.463082\pi\)
0.115721 + 0.993282i \(0.463082\pi\)
\(864\) 70037.2 2.75777
\(865\) −11984.6 −0.471087
\(866\) −55738.9 −2.18716
\(867\) 14459.4 0.566399
\(868\) 0 0
\(869\) −43796.3 −1.70965
\(870\) −16737.8 −0.652256
\(871\) 19211.9 0.747382
\(872\) 132776. 5.15637
\(873\) −4707.15 −0.182489
\(874\) −27412.8 −1.06093
\(875\) −33588.4 −1.29771
\(876\) 18348.2 0.707681
\(877\) 12360.4 0.475920 0.237960 0.971275i \(-0.423521\pi\)
0.237960 + 0.971275i \(0.423521\pi\)
\(878\) −30401.4 −1.16856
\(879\) 6819.16 0.261666
\(880\) 62417.6 2.39102
\(881\) 47633.9 1.82160 0.910799 0.412850i \(-0.135467\pi\)
0.910799 + 0.412850i \(0.135467\pi\)
\(882\) −7298.47 −0.278631
\(883\) 41600.3 1.58546 0.792730 0.609572i \(-0.208659\pi\)
0.792730 + 0.609572i \(0.208659\pi\)
\(884\) −60183.1 −2.28979
\(885\) −7883.31 −0.299429
\(886\) −36004.2 −1.36522
\(887\) −650.835 −0.0246369 −0.0123184 0.999924i \(-0.503921\pi\)
−0.0123184 + 0.999924i \(0.503921\pi\)
\(888\) 6721.62 0.254012
\(889\) −63424.4 −2.39278
\(890\) 30311.5 1.14162
\(891\) 35455.5 1.33311
\(892\) −102094. −3.83226
\(893\) 43262.5 1.62119
\(894\) −39223.6 −1.46738
\(895\) −20097.3 −0.750589
\(896\) 74074.3 2.76188
\(897\) 8001.60 0.297843
\(898\) −97442.8 −3.62106
\(899\) 0 0
\(900\) −9709.03 −0.359594
\(901\) 41807.2 1.54584
\(902\) 13302.6 0.491052
\(903\) −22457.8 −0.827628
\(904\) 122291. 4.49926
\(905\) 20210.7 0.742350
\(906\) −5830.47 −0.213802
\(907\) 44773.7 1.63913 0.819563 0.572989i \(-0.194216\pi\)
0.819563 + 0.572989i \(0.194216\pi\)
\(908\) 91944.9 3.36046
\(909\) 2936.29 0.107140
\(910\) 29997.1 1.09274
\(911\) 5486.43 0.199532 0.0997659 0.995011i \(-0.468191\pi\)
0.0997659 + 0.995011i \(0.468191\pi\)
\(912\) −148263. −5.38319
\(913\) −34064.5 −1.23480
\(914\) −24404.8 −0.883194
\(915\) −3971.17 −0.143478
\(916\) 98108.1 3.53885
\(917\) −7524.59 −0.270975
\(918\) 55829.3 2.00723
\(919\) −6448.19 −0.231454 −0.115727 0.993281i \(-0.536920\pi\)
−0.115727 + 0.993281i \(0.536920\pi\)
\(920\) −21070.5 −0.755080
\(921\) 54895.1 1.96401
\(922\) −22905.3 −0.818162
\(923\) 4942.53 0.176257
\(924\) 119347. 4.24918
\(925\) 1234.26 0.0438726
\(926\) −62036.2 −2.20155
\(927\) −9564.53 −0.338878
\(928\) 44370.8 1.56955
\(929\) 23954.4 0.845983 0.422992 0.906134i \(-0.360980\pi\)
0.422992 + 0.906134i \(0.360980\pi\)
\(930\) 0 0
\(931\) −26613.4 −0.936863
\(932\) −89487.1 −3.14512
\(933\) −22885.1 −0.803028
\(934\) 16317.7 0.571662
\(935\) 25245.1 0.882999
\(936\) 14383.2 0.502276
\(937\) 3704.00 0.129140 0.0645700 0.997913i \(-0.479432\pi\)
0.0645700 + 0.997913i \(0.479432\pi\)
\(938\) −74386.5 −2.58934
\(939\) −1162.15 −0.0403892
\(940\) 53531.8 1.85746
\(941\) 19465.6 0.674347 0.337174 0.941442i \(-0.390529\pi\)
0.337174 + 0.941442i \(0.390529\pi\)
\(942\) 13193.8 0.456346
\(943\) −2504.49 −0.0864872
\(944\) 41188.1 1.42008
\(945\) −20181.8 −0.694725
\(946\) 36692.2 1.26106
\(947\) −25974.1 −0.891285 −0.445642 0.895211i \(-0.647025\pi\)
−0.445642 + 0.895211i \(0.647025\pi\)
\(948\) 128725. 4.41012
\(949\) −4991.22 −0.170729
\(950\) −48814.7 −1.66711
\(951\) −34393.1 −1.17274
\(952\) 144750. 4.92793
\(953\) 20517.9 0.697417 0.348709 0.937231i \(-0.386620\pi\)
0.348709 + 0.937231i \(0.386620\pi\)
\(954\) −16084.7 −0.545871
\(955\) −29554.7 −1.00143
\(956\) 45419.5 1.53658
\(957\) 18115.3 0.611895
\(958\) 28805.4 0.971460
\(959\) 41873.4 1.40997
\(960\) −58848.1 −1.97845
\(961\) 0 0
\(962\) −2943.51 −0.0986515
\(963\) 9711.19 0.324962
\(964\) −68379.3 −2.28459
\(965\) 22080.2 0.736566
\(966\) −30981.4 −1.03189
\(967\) −21495.0 −0.714822 −0.357411 0.933947i \(-0.616340\pi\)
−0.357411 + 0.933947i \(0.616340\pi\)
\(968\) −26906.4 −0.893393
\(969\) −59965.6 −1.98800
\(970\) −29284.2 −0.969339
\(971\) 21426.2 0.708136 0.354068 0.935220i \(-0.384798\pi\)
0.354068 + 0.935220i \(0.384798\pi\)
\(972\) −35745.1 −1.17955
\(973\) 26112.5 0.860357
\(974\) −85479.9 −2.81206
\(975\) 14248.6 0.468022
\(976\) 20748.2 0.680465
\(977\) 6050.25 0.198122 0.0990608 0.995081i \(-0.468416\pi\)
0.0990608 + 0.995081i \(0.468416\pi\)
\(978\) −1457.58 −0.0476567
\(979\) −32806.1 −1.07098
\(980\) −32930.7 −1.07340
\(981\) −11523.0 −0.375026
\(982\) 54114.5 1.75852
\(983\) −39677.7 −1.28741 −0.643704 0.765275i \(-0.722603\pi\)
−0.643704 + 0.765275i \(0.722603\pi\)
\(984\) −24287.5 −0.786848
\(985\) −10286.1 −0.332734
\(986\) 35369.6 1.14239
\(987\) 48894.3 1.57682
\(988\) 84431.5 2.71875
\(989\) −6908.05 −0.222106
\(990\) −9712.68 −0.311807
\(991\) −48098.8 −1.54178 −0.770892 0.636966i \(-0.780189\pi\)
−0.770892 + 0.636966i \(0.780189\pi\)
\(992\) 0 0
\(993\) 45274.7 1.44688
\(994\) −19137.0 −0.610653
\(995\) −9546.71 −0.304172
\(996\) 100121. 3.18521
\(997\) 4309.44 0.136892 0.0684459 0.997655i \(-0.478196\pi\)
0.0684459 + 0.997655i \(0.478196\pi\)
\(998\) 8395.62 0.266291
\(999\) 1980.38 0.0627191
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.4.a.n.1.2 yes 64
31.30 odd 2 inner 961.4.a.n.1.1 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.4.a.n.1.1 64 31.30 odd 2 inner
961.4.a.n.1.2 yes 64 1.1 even 1 trivial