gp: [N,k,chi] = [961,4,Mod(1,961)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(961, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("961.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [64,16,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(31\)
\( +1 \)
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(961))\):
\( T_{2}^{32} - 8 T_{2}^{31} - 168 T_{2}^{30} + 1468 T_{2}^{29} + 12080 T_{2}^{28} - 119488 T_{2}^{27} + \cdots + 5845588901888 \)
T2^32 - 8*T2^31 - 168*T2^30 + 1468*T2^29 + 12080*T2^28 - 119488*T2^27 - 478010*T2^26 + 5692816*T2^25 + 10866925*T2^24 - 176493108*T2^23 - 118602496*T2^22 + 3745925828*T2^21 - 520077327*T2^20 - 55777268408*T2^19 + 39558904494*T2^18 + 587568166504*T2^17 - 666889499518*T2^16 - 4360506379292*T2^15 + 6430472188020*T2^14 + 22413672468680*T2^13 - 39766472865457*T2^12 - 77085725059888*T2^11 + 160959465009120*T2^10 + 165639440889280*T2^9 - 419058530556416*T2^8 - 187365088904192*T2^7 + 666259966189312*T2^6 + 35091068700672*T2^5 - 577185285664512*T2^4 + 130986746691584*T2^3 + 199833642926080*T2^2 - 88287895093248*T2 + 5845588901888
\( T_{3}^{64} - 1224 T_{3}^{62} + 707884 T_{3}^{60} - 257341744 T_{3}^{58} + 65999300318 T_{3}^{56} + \cdots + 28\!\cdots\!96 \)
T3^64 - 1224*T3^62 + 707884*T3^60 - 257341744*T3^58 + 65999300318*T3^56 - 12704665665696*T3^54 + 1906828226211904*T3^52 - 228836531016096256*T3^50 + 22343951503685040388*T3^48 - 1796947455939665233952*T3^46 + 120057761950869952209776*T3^44 - 6703103029199726524532288*T3^42 + 313907117284072890203769736*T3^40 - 12353365462916776124282356480*T3^38 + 408648261015821904329494182400*T3^36 - 11349204752602120565164643264768*T3^34 + 263916519338355387892238958888944*T3^32 - 5117205465952643865585668131243904*T3^30 + 82251630913864631077838327982475456*T3^28 - 1087697050675077737930920082897483008*T3^26 + 11720603605469802938187516345160656160*T3^24 - 101689707492439846947113366915231532032*T3^22 + 699993159017645914625929078568407241216*T3^20 - 3754696190318591162362991340397829869568*T3^18 + 15352381368793270157032483071481027184128*T3^16 - 46586753259633880701560651079904887414784*T3^14 + 101534641358590046234440757213894089351168*T3^12 - 152662020434823427978565545638408574156800*T3^10 + 150547262985339144579677056833373611886592*T3^8 - 91035269490440202154431326468042741710848*T3^6 + 30604543908251745801258998025786297024512*T3^4 - 4924287268958176381141321008079769174016*T3^2 + 280656007924781229161171101976070455296