Properties

Label 961.4.a.l.1.5
Level $961$
Weight $4$
Character 961.1
Self dual yes
Analytic conductor $56.701$
Analytic rank $1$
Dimension $28$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,4,Mod(1,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,2,-19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.7008355155\)
Analytic rank: \(1\)
Dimension: \(28\)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Character \(\chi\) \(=\) 961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.17989 q^{2} +2.81358 q^{3} +9.47150 q^{4} +13.7074 q^{5} -11.7605 q^{6} -1.03173 q^{7} -6.15072 q^{8} -19.0838 q^{9} -57.2953 q^{10} +39.1312 q^{11} +26.6488 q^{12} -4.96895 q^{13} +4.31253 q^{14} +38.5668 q^{15} -50.0627 q^{16} +54.9893 q^{17} +79.7681 q^{18} -152.324 q^{19} +129.829 q^{20} -2.90286 q^{21} -163.564 q^{22} -32.9438 q^{23} -17.3056 q^{24} +62.8916 q^{25} +20.7697 q^{26} -129.660 q^{27} -9.77205 q^{28} +135.801 q^{29} -161.205 q^{30} +258.462 q^{32} +110.099 q^{33} -229.849 q^{34} -14.1423 q^{35} -180.752 q^{36} -300.492 q^{37} +636.699 q^{38} -13.9806 q^{39} -84.3102 q^{40} -374.549 q^{41} +12.1337 q^{42} -466.961 q^{43} +370.631 q^{44} -261.588 q^{45} +137.701 q^{46} -25.2166 q^{47} -140.855 q^{48} -341.936 q^{49} -262.880 q^{50} +154.717 q^{51} -47.0634 q^{52} -208.003 q^{53} +541.967 q^{54} +536.385 q^{55} +6.34590 q^{56} -428.577 q^{57} -567.633 q^{58} +492.254 q^{59} +365.285 q^{60} -712.413 q^{61} +19.6893 q^{63} -679.844 q^{64} -68.1112 q^{65} -460.201 q^{66} -485.742 q^{67} +520.831 q^{68} -92.6900 q^{69} +59.1134 q^{70} -165.662 q^{71} +117.379 q^{72} +922.888 q^{73} +1256.03 q^{74} +176.951 q^{75} -1442.74 q^{76} -40.3729 q^{77} +58.4372 q^{78} +514.408 q^{79} -686.227 q^{80} +150.451 q^{81} +1565.58 q^{82} -407.845 q^{83} -27.4945 q^{84} +753.758 q^{85} +1951.85 q^{86} +382.087 q^{87} -240.685 q^{88} +1057.67 q^{89} +1093.41 q^{90} +5.12663 q^{91} -312.027 q^{92} +105.403 q^{94} -2087.96 q^{95} +727.205 q^{96} -332.230 q^{97} +1429.25 q^{98} -746.770 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 2 q^{2} - 19 q^{3} + 104 q^{4} - 53 q^{6} + 31 q^{7} + 99 q^{8} + 211 q^{9} - 3 q^{10} - 185 q^{11} - 266 q^{12} - 145 q^{13} - 225 q^{14} - 261 q^{15} + 284 q^{16} - 259 q^{17} + 305 q^{18} + 73 q^{19}+ \cdots - 6383 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.17989 −1.47782 −0.738908 0.673807i \(-0.764658\pi\)
−0.738908 + 0.673807i \(0.764658\pi\)
\(3\) 2.81358 0.541474 0.270737 0.962653i \(-0.412733\pi\)
0.270737 + 0.962653i \(0.412733\pi\)
\(4\) 9.47150 1.18394
\(5\) 13.7074 1.22602 0.613012 0.790074i \(-0.289958\pi\)
0.613012 + 0.790074i \(0.289958\pi\)
\(6\) −11.7605 −0.800199
\(7\) −1.03173 −0.0557083 −0.0278541 0.999612i \(-0.508867\pi\)
−0.0278541 + 0.999612i \(0.508867\pi\)
\(8\) −6.15072 −0.271826
\(9\) −19.0838 −0.706806
\(10\) −57.2953 −1.81184
\(11\) 39.1312 1.07259 0.536295 0.844031i \(-0.319823\pi\)
0.536295 + 0.844031i \(0.319823\pi\)
\(12\) 26.6488 0.641072
\(13\) −4.96895 −0.106011 −0.0530054 0.998594i \(-0.516880\pi\)
−0.0530054 + 0.998594i \(0.516880\pi\)
\(14\) 4.31253 0.0823266
\(15\) 38.5668 0.663860
\(16\) −50.0627 −0.782229
\(17\) 54.9893 0.784521 0.392261 0.919854i \(-0.371693\pi\)
0.392261 + 0.919854i \(0.371693\pi\)
\(18\) 79.7681 1.04453
\(19\) −152.324 −1.83924 −0.919620 0.392808i \(-0.871504\pi\)
−0.919620 + 0.392808i \(0.871504\pi\)
\(20\) 129.829 1.45154
\(21\) −2.90286 −0.0301646
\(22\) −163.564 −1.58509
\(23\) −32.9438 −0.298663 −0.149332 0.988787i \(-0.547712\pi\)
−0.149332 + 0.988787i \(0.547712\pi\)
\(24\) −17.3056 −0.147187
\(25\) 62.8916 0.503133
\(26\) 20.7697 0.156664
\(27\) −129.660 −0.924191
\(28\) −9.77205 −0.0659552
\(29\) 135.801 0.869572 0.434786 0.900534i \(-0.356824\pi\)
0.434786 + 0.900534i \(0.356824\pi\)
\(30\) −161.205 −0.981062
\(31\) 0 0
\(32\) 258.462 1.42782
\(33\) 110.099 0.580779
\(34\) −229.849 −1.15938
\(35\) −14.1423 −0.0682997
\(36\) −180.752 −0.836814
\(37\) −300.492 −1.33515 −0.667576 0.744542i \(-0.732668\pi\)
−0.667576 + 0.744542i \(0.732668\pi\)
\(38\) 636.699 2.71806
\(39\) −13.9806 −0.0574021
\(40\) −84.3102 −0.333265
\(41\) −374.549 −1.42670 −0.713351 0.700807i \(-0.752824\pi\)
−0.713351 + 0.700807i \(0.752824\pi\)
\(42\) 12.1337 0.0445777
\(43\) −466.961 −1.65607 −0.828034 0.560678i \(-0.810541\pi\)
−0.828034 + 0.560678i \(0.810541\pi\)
\(44\) 370.631 1.26988
\(45\) −261.588 −0.866560
\(46\) 137.701 0.441369
\(47\) −25.2166 −0.0782601 −0.0391300 0.999234i \(-0.512459\pi\)
−0.0391300 + 0.999234i \(0.512459\pi\)
\(48\) −140.855 −0.423557
\(49\) −341.936 −0.996897
\(50\) −262.880 −0.743537
\(51\) 154.717 0.424798
\(52\) −47.0634 −0.125510
\(53\) −208.003 −0.539084 −0.269542 0.962989i \(-0.586872\pi\)
−0.269542 + 0.962989i \(0.586872\pi\)
\(54\) 541.967 1.36578
\(55\) 536.385 1.31502
\(56\) 6.34590 0.0151430
\(57\) −428.577 −0.995901
\(58\) −567.633 −1.28507
\(59\) 492.254 1.08620 0.543102 0.839667i \(-0.317250\pi\)
0.543102 + 0.839667i \(0.317250\pi\)
\(60\) 365.285 0.785969
\(61\) −712.413 −1.49533 −0.747665 0.664076i \(-0.768825\pi\)
−0.747665 + 0.664076i \(0.768825\pi\)
\(62\) 0 0
\(63\) 19.6893 0.0393750
\(64\) −679.844 −1.32782
\(65\) −68.1112 −0.129972
\(66\) −460.201 −0.858285
\(67\) −485.742 −0.885714 −0.442857 0.896592i \(-0.646035\pi\)
−0.442857 + 0.896592i \(0.646035\pi\)
\(68\) 520.831 0.928824
\(69\) −92.6900 −0.161718
\(70\) 59.1134 0.100934
\(71\) −165.662 −0.276908 −0.138454 0.990369i \(-0.544213\pi\)
−0.138454 + 0.990369i \(0.544213\pi\)
\(72\) 117.379 0.192128
\(73\) 922.888 1.47967 0.739835 0.672789i \(-0.234904\pi\)
0.739835 + 0.672789i \(0.234904\pi\)
\(74\) 1256.03 1.97311
\(75\) 176.951 0.272433
\(76\) −1442.74 −2.17755
\(77\) −40.3729 −0.0597521
\(78\) 58.4372 0.0848296
\(79\) 514.408 0.732600 0.366300 0.930497i \(-0.380624\pi\)
0.366300 + 0.930497i \(0.380624\pi\)
\(80\) −686.227 −0.959031
\(81\) 150.451 0.206381
\(82\) 1565.58 2.10840
\(83\) −407.845 −0.539359 −0.269680 0.962950i \(-0.586918\pi\)
−0.269680 + 0.962950i \(0.586918\pi\)
\(84\) −27.4945 −0.0357130
\(85\) 753.758 0.961841
\(86\) 1951.85 2.44736
\(87\) 382.087 0.470851
\(88\) −240.685 −0.291558
\(89\) 1057.67 1.25969 0.629845 0.776721i \(-0.283119\pi\)
0.629845 + 0.776721i \(0.283119\pi\)
\(90\) 1093.41 1.28062
\(91\) 5.12663 0.00590568
\(92\) −312.027 −0.353599
\(93\) 0 0
\(94\) 105.403 0.115654
\(95\) −2087.96 −2.25495
\(96\) 727.205 0.773125
\(97\) −332.230 −0.347762 −0.173881 0.984767i \(-0.555631\pi\)
−0.173881 + 0.984767i \(0.555631\pi\)
\(98\) 1429.25 1.47323
\(99\) −746.770 −0.758113
\(100\) 595.678 0.595678
\(101\) 1498.89 1.47668 0.738341 0.674428i \(-0.235610\pi\)
0.738341 + 0.674428i \(0.235610\pi\)
\(102\) −646.700 −0.627773
\(103\) 610.913 0.584418 0.292209 0.956355i \(-0.405610\pi\)
0.292209 + 0.956355i \(0.405610\pi\)
\(104\) 30.5627 0.0288165
\(105\) −39.7906 −0.0369825
\(106\) 869.431 0.796666
\(107\) −6.99679 −0.00632154 −0.00316077 0.999995i \(-0.501006\pi\)
−0.00316077 + 0.999995i \(0.501006\pi\)
\(108\) −1228.08 −1.09418
\(109\) 1611.30 1.41592 0.707958 0.706254i \(-0.249617\pi\)
0.707958 + 0.706254i \(0.249617\pi\)
\(110\) −2242.03 −1.94336
\(111\) −845.459 −0.722950
\(112\) 51.6512 0.0435766
\(113\) −283.279 −0.235828 −0.117914 0.993024i \(-0.537621\pi\)
−0.117914 + 0.993024i \(0.537621\pi\)
\(114\) 1791.40 1.47176
\(115\) −451.572 −0.366168
\(116\) 1286.24 1.02952
\(117\) 94.8263 0.0749290
\(118\) −2057.57 −1.60521
\(119\) −56.7342 −0.0437043
\(120\) −237.214 −0.180454
\(121\) 200.247 0.150449
\(122\) 2977.81 2.20982
\(123\) −1053.83 −0.772522
\(124\) 0 0
\(125\) −851.342 −0.609171
\(126\) −82.2993 −0.0581889
\(127\) −1789.56 −1.25037 −0.625186 0.780475i \(-0.714977\pi\)
−0.625186 + 0.780475i \(0.714977\pi\)
\(128\) 773.974 0.534456
\(129\) −1313.83 −0.896718
\(130\) 284.698 0.192074
\(131\) 776.747 0.518051 0.259026 0.965870i \(-0.416599\pi\)
0.259026 + 0.965870i \(0.416599\pi\)
\(132\) 1042.80 0.687607
\(133\) 157.158 0.102461
\(134\) 2030.35 1.30892
\(135\) −1777.30 −1.13308
\(136\) −338.224 −0.213253
\(137\) −1202.46 −0.749875 −0.374938 0.927050i \(-0.622336\pi\)
−0.374938 + 0.927050i \(0.622336\pi\)
\(138\) 387.434 0.238990
\(139\) −807.670 −0.492846 −0.246423 0.969162i \(-0.579255\pi\)
−0.246423 + 0.969162i \(0.579255\pi\)
\(140\) −133.949 −0.0808626
\(141\) −70.9490 −0.0423758
\(142\) 692.449 0.409219
\(143\) −194.441 −0.113706
\(144\) 955.384 0.552884
\(145\) 1861.47 1.06612
\(146\) −3857.57 −2.18668
\(147\) −962.063 −0.539794
\(148\) −2846.11 −1.58074
\(149\) −531.811 −0.292400 −0.146200 0.989255i \(-0.546704\pi\)
−0.146200 + 0.989255i \(0.546704\pi\)
\(150\) −739.635 −0.402606
\(151\) −3241.51 −1.74696 −0.873478 0.486864i \(-0.838141\pi\)
−0.873478 + 0.486864i \(0.838141\pi\)
\(152\) 936.904 0.499954
\(153\) −1049.40 −0.554504
\(154\) 168.754 0.0883026
\(155\) 0 0
\(156\) −132.417 −0.0679605
\(157\) 462.678 0.235196 0.117598 0.993061i \(-0.462481\pi\)
0.117598 + 0.993061i \(0.462481\pi\)
\(158\) −2150.17 −1.08265
\(159\) −585.234 −0.291900
\(160\) 3542.84 1.75054
\(161\) 33.9892 0.0166380
\(162\) −628.871 −0.304992
\(163\) 1.15761 0.000556266 0 0.000278133 1.00000i \(-0.499911\pi\)
0.000278133 1.00000i \(0.499911\pi\)
\(164\) −3547.55 −1.68913
\(165\) 1509.16 0.712049
\(166\) 1704.75 0.797073
\(167\) 344.058 0.159425 0.0797127 0.996818i \(-0.474600\pi\)
0.0797127 + 0.996818i \(0.474600\pi\)
\(168\) 17.8547 0.00819953
\(169\) −2172.31 −0.988762
\(170\) −3150.63 −1.42142
\(171\) 2906.92 1.29999
\(172\) −4422.82 −1.96068
\(173\) 2795.90 1.22872 0.614359 0.789027i \(-0.289415\pi\)
0.614359 + 0.789027i \(0.289415\pi\)
\(174\) −1597.08 −0.695830
\(175\) −64.8873 −0.0280287
\(176\) −1959.01 −0.839011
\(177\) 1385.00 0.588151
\(178\) −4420.93 −1.86159
\(179\) −2889.65 −1.20661 −0.603303 0.797512i \(-0.706149\pi\)
−0.603303 + 0.797512i \(0.706149\pi\)
\(180\) −2477.63 −1.02595
\(181\) 1855.95 0.762165 0.381083 0.924541i \(-0.375551\pi\)
0.381083 + 0.924541i \(0.375551\pi\)
\(182\) −21.4288 −0.00872750
\(183\) −2004.43 −0.809682
\(184\) 202.628 0.0811845
\(185\) −4118.95 −1.63693
\(186\) 0 0
\(187\) 2151.79 0.841469
\(188\) −238.839 −0.0926551
\(189\) 133.775 0.0514851
\(190\) 8727.46 3.33240
\(191\) 1165.48 0.441523 0.220762 0.975328i \(-0.429146\pi\)
0.220762 + 0.975328i \(0.429146\pi\)
\(192\) −1912.80 −0.718980
\(193\) −4130.81 −1.54063 −0.770317 0.637661i \(-0.779902\pi\)
−0.770317 + 0.637661i \(0.779902\pi\)
\(194\) 1388.69 0.513927
\(195\) −191.636 −0.0703762
\(196\) −3238.64 −1.18026
\(197\) 1526.77 0.552171 0.276086 0.961133i \(-0.410963\pi\)
0.276086 + 0.961133i \(0.410963\pi\)
\(198\) 3121.42 1.12035
\(199\) 1186.24 0.422564 0.211282 0.977425i \(-0.432236\pi\)
0.211282 + 0.977425i \(0.432236\pi\)
\(200\) −386.829 −0.136765
\(201\) −1366.68 −0.479591
\(202\) −6265.19 −2.18226
\(203\) −140.110 −0.0484424
\(204\) 1465.40 0.502934
\(205\) −5134.08 −1.74917
\(206\) −2553.55 −0.863662
\(207\) 628.691 0.211097
\(208\) 248.759 0.0829247
\(209\) −5960.62 −1.97275
\(210\) 166.320 0.0546533
\(211\) −904.825 −0.295217 −0.147608 0.989046i \(-0.547157\pi\)
−0.147608 + 0.989046i \(0.547157\pi\)
\(212\) −1970.10 −0.638242
\(213\) −466.103 −0.149938
\(214\) 29.2458 0.00934207
\(215\) −6400.80 −2.03038
\(216\) 797.505 0.251219
\(217\) 0 0
\(218\) −6735.07 −2.09246
\(219\) 2596.62 0.801203
\(220\) 5080.37 1.55690
\(221\) −273.239 −0.0831676
\(222\) 3533.93 1.06839
\(223\) 3344.13 1.00421 0.502106 0.864806i \(-0.332559\pi\)
0.502106 + 0.864806i \(0.332559\pi\)
\(224\) −266.664 −0.0795412
\(225\) −1200.21 −0.355617
\(226\) 1184.07 0.348511
\(227\) 3574.25 1.04507 0.522535 0.852618i \(-0.324986\pi\)
0.522535 + 0.852618i \(0.324986\pi\)
\(228\) −4059.27 −1.17909
\(229\) −2367.75 −0.683253 −0.341627 0.939836i \(-0.610978\pi\)
−0.341627 + 0.939836i \(0.610978\pi\)
\(230\) 1887.52 0.541129
\(231\) −113.592 −0.0323542
\(232\) −835.273 −0.236372
\(233\) −2573.00 −0.723445 −0.361723 0.932286i \(-0.617811\pi\)
−0.361723 + 0.932286i \(0.617811\pi\)
\(234\) −396.364 −0.110731
\(235\) −345.653 −0.0959487
\(236\) 4662.39 1.28600
\(237\) 1447.33 0.396684
\(238\) 237.143 0.0645869
\(239\) 1090.12 0.295038 0.147519 0.989059i \(-0.452871\pi\)
0.147519 + 0.989059i \(0.452871\pi\)
\(240\) −1930.75 −0.519290
\(241\) −323.974 −0.0865933 −0.0432967 0.999062i \(-0.513786\pi\)
−0.0432967 + 0.999062i \(0.513786\pi\)
\(242\) −837.013 −0.222336
\(243\) 3924.14 1.03594
\(244\) −6747.62 −1.77038
\(245\) −4687.03 −1.22222
\(246\) 4404.88 1.14165
\(247\) 756.892 0.194979
\(248\) 0 0
\(249\) −1147.51 −0.292049
\(250\) 3558.52 0.900242
\(251\) −3967.47 −0.997707 −0.498854 0.866686i \(-0.666245\pi\)
−0.498854 + 0.866686i \(0.666245\pi\)
\(252\) 186.488 0.0466175
\(253\) −1289.13 −0.320343
\(254\) 7480.15 1.84782
\(255\) 2120.76 0.520812
\(256\) 2203.62 0.537993
\(257\) 2978.15 0.722848 0.361424 0.932402i \(-0.382291\pi\)
0.361424 + 0.932402i \(0.382291\pi\)
\(258\) 5491.68 1.32518
\(259\) 310.027 0.0743790
\(260\) −645.115 −0.153878
\(261\) −2591.59 −0.614618
\(262\) −3246.72 −0.765584
\(263\) −8403.18 −1.97020 −0.985099 0.171987i \(-0.944981\pi\)
−0.985099 + 0.171987i \(0.944981\pi\)
\(264\) −677.187 −0.157871
\(265\) −2851.17 −0.660929
\(266\) −656.903 −0.151418
\(267\) 2975.83 0.682089
\(268\) −4600.71 −1.04863
\(269\) −3998.90 −0.906383 −0.453191 0.891413i \(-0.649715\pi\)
−0.453191 + 0.891413i \(0.649715\pi\)
\(270\) 7428.93 1.67448
\(271\) −2702.78 −0.605837 −0.302919 0.953016i \(-0.597961\pi\)
−0.302919 + 0.953016i \(0.597961\pi\)
\(272\) −2752.91 −0.613675
\(273\) 14.4242 0.00319777
\(274\) 5026.14 1.10818
\(275\) 2461.02 0.539655
\(276\) −877.914 −0.191465
\(277\) −6577.86 −1.42681 −0.713403 0.700754i \(-0.752847\pi\)
−0.713403 + 0.700754i \(0.752847\pi\)
\(278\) 3375.97 0.728336
\(279\) 0 0
\(280\) 86.9855 0.0185656
\(281\) −4296.28 −0.912081 −0.456040 0.889959i \(-0.650733\pi\)
−0.456040 + 0.889959i \(0.650733\pi\)
\(282\) 296.559 0.0626236
\(283\) −3697.74 −0.776705 −0.388353 0.921511i \(-0.626956\pi\)
−0.388353 + 0.921511i \(0.626956\pi\)
\(284\) −1569.07 −0.327842
\(285\) −5874.65 −1.22100
\(286\) 812.742 0.168037
\(287\) 386.435 0.0794792
\(288\) −4932.43 −1.00919
\(289\) −1889.18 −0.384527
\(290\) −7780.75 −1.57552
\(291\) −934.757 −0.188304
\(292\) 8741.14 1.75184
\(293\) 6614.12 1.31877 0.659387 0.751804i \(-0.270816\pi\)
0.659387 + 0.751804i \(0.270816\pi\)
\(294\) 4021.32 0.797715
\(295\) 6747.50 1.33171
\(296\) 1848.24 0.362929
\(297\) −5073.76 −0.991278
\(298\) 2222.91 0.432113
\(299\) 163.696 0.0316615
\(300\) 1675.99 0.322544
\(301\) 481.779 0.0922567
\(302\) 13549.2 2.58168
\(303\) 4217.24 0.799585
\(304\) 7625.76 1.43871
\(305\) −9765.30 −1.83331
\(306\) 4386.39 0.819455
\(307\) −4504.47 −0.837406 −0.418703 0.908123i \(-0.637515\pi\)
−0.418703 + 0.908123i \(0.637515\pi\)
\(308\) −382.392 −0.0707428
\(309\) 1718.85 0.316447
\(310\) 0 0
\(311\) 5329.53 0.971736 0.485868 0.874032i \(-0.338504\pi\)
0.485868 + 0.874032i \(0.338504\pi\)
\(312\) 85.9905 0.0156034
\(313\) 354.510 0.0640195 0.0320098 0.999488i \(-0.489809\pi\)
0.0320098 + 0.999488i \(0.489809\pi\)
\(314\) −1933.95 −0.347576
\(315\) 269.889 0.0482746
\(316\) 4872.21 0.867353
\(317\) −8910.53 −1.57875 −0.789377 0.613908i \(-0.789596\pi\)
−0.789377 + 0.613908i \(0.789596\pi\)
\(318\) 2446.22 0.431374
\(319\) 5314.04 0.932694
\(320\) −9318.86 −1.62794
\(321\) −19.6860 −0.00342295
\(322\) −142.071 −0.0245879
\(323\) −8376.20 −1.44292
\(324\) 1425.00 0.244342
\(325\) −312.505 −0.0533375
\(326\) −4.83870 −0.000822058 0
\(327\) 4533.53 0.766682
\(328\) 2303.75 0.387815
\(329\) 26.0168 0.00435973
\(330\) −6308.14 −1.05228
\(331\) 5829.33 0.968003 0.484002 0.875067i \(-0.339183\pi\)
0.484002 + 0.875067i \(0.339183\pi\)
\(332\) −3862.91 −0.638568
\(333\) 5734.52 0.943693
\(334\) −1438.13 −0.235601
\(335\) −6658.24 −1.08591
\(336\) 145.325 0.0235956
\(337\) 7302.30 1.18036 0.590181 0.807271i \(-0.299056\pi\)
0.590181 + 0.807271i \(0.299056\pi\)
\(338\) 9080.02 1.46121
\(339\) −797.028 −0.127695
\(340\) 7139.22 1.13876
\(341\) 0 0
\(342\) −12150.6 −1.92114
\(343\) 706.670 0.111244
\(344\) 2872.15 0.450163
\(345\) −1270.54 −0.198270
\(346\) −11686.6 −1.81582
\(347\) −11308.5 −1.74948 −0.874741 0.484590i \(-0.838969\pi\)
−0.874741 + 0.484590i \(0.838969\pi\)
\(348\) 3618.94 0.557458
\(349\) 1271.42 0.195007 0.0975037 0.995235i \(-0.468914\pi\)
0.0975037 + 0.995235i \(0.468914\pi\)
\(350\) 271.222 0.0414212
\(351\) 644.276 0.0979742
\(352\) 10113.9 1.53146
\(353\) 5861.55 0.883793 0.441896 0.897066i \(-0.354306\pi\)
0.441896 + 0.897066i \(0.354306\pi\)
\(354\) −5789.14 −0.869179
\(355\) −2270.79 −0.339495
\(356\) 10017.7 1.49139
\(357\) −159.626 −0.0236648
\(358\) 12078.4 1.78314
\(359\) 4787.38 0.703811 0.351906 0.936036i \(-0.385534\pi\)
0.351906 + 0.936036i \(0.385534\pi\)
\(360\) 1608.95 0.235554
\(361\) 16343.7 2.38281
\(362\) −7757.69 −1.12634
\(363\) 563.412 0.0814642
\(364\) 48.5569 0.00699195
\(365\) 12650.4 1.81411
\(366\) 8378.31 1.19656
\(367\) 6130.37 0.871942 0.435971 0.899961i \(-0.356405\pi\)
0.435971 + 0.899961i \(0.356405\pi\)
\(368\) 1649.25 0.233623
\(369\) 7147.81 1.00840
\(370\) 17216.8 2.41908
\(371\) 214.604 0.0300314
\(372\) 0 0
\(373\) 9693.08 1.34555 0.672773 0.739849i \(-0.265103\pi\)
0.672773 + 0.739849i \(0.265103\pi\)
\(374\) −8994.27 −1.24354
\(375\) −2395.32 −0.329850
\(376\) 155.101 0.0212731
\(377\) −674.788 −0.0921839
\(378\) −559.164 −0.0760855
\(379\) −3488.78 −0.472841 −0.236421 0.971651i \(-0.575974\pi\)
−0.236421 + 0.971651i \(0.575974\pi\)
\(380\) −19776.1 −2.66972
\(381\) −5035.06 −0.677044
\(382\) −4871.57 −0.652490
\(383\) 299.171 0.0399136 0.0199568 0.999801i \(-0.493647\pi\)
0.0199568 + 0.999801i \(0.493647\pi\)
\(384\) 2177.64 0.289394
\(385\) −553.405 −0.0732575
\(386\) 17266.4 2.27677
\(387\) 8911.37 1.17052
\(388\) −3146.72 −0.411728
\(389\) 12742.7 1.66087 0.830435 0.557116i \(-0.188092\pi\)
0.830435 + 0.557116i \(0.188092\pi\)
\(390\) 801.020 0.104003
\(391\) −1811.55 −0.234308
\(392\) 2103.15 0.270983
\(393\) 2185.44 0.280511
\(394\) −6381.73 −0.816007
\(395\) 7051.17 0.898185
\(396\) −7073.03 −0.897558
\(397\) 10342.2 1.30745 0.653725 0.756732i \(-0.273205\pi\)
0.653725 + 0.756732i \(0.273205\pi\)
\(398\) −4958.35 −0.624471
\(399\) 442.176 0.0554800
\(400\) −3148.52 −0.393565
\(401\) −13150.1 −1.63762 −0.818811 0.574063i \(-0.805367\pi\)
−0.818811 + 0.574063i \(0.805367\pi\)
\(402\) 5712.56 0.708747
\(403\) 0 0
\(404\) 14196.7 1.74830
\(405\) 2062.29 0.253027
\(406\) 585.645 0.0715889
\(407\) −11758.6 −1.43207
\(408\) −951.620 −0.115471
\(409\) −6567.88 −0.794036 −0.397018 0.917811i \(-0.629955\pi\)
−0.397018 + 0.917811i \(0.629955\pi\)
\(410\) 21459.9 2.58495
\(411\) −3383.21 −0.406038
\(412\) 5786.26 0.691914
\(413\) −507.874 −0.0605106
\(414\) −2627.86 −0.311962
\(415\) −5590.48 −0.661267
\(416\) −1284.29 −0.151364
\(417\) −2272.44 −0.266864
\(418\) 24914.8 2.91536
\(419\) 2564.03 0.298952 0.149476 0.988765i \(-0.452241\pi\)
0.149476 + 0.988765i \(0.452241\pi\)
\(420\) −376.876 −0.0437850
\(421\) −11791.8 −1.36508 −0.682538 0.730850i \(-0.739124\pi\)
−0.682538 + 0.730850i \(0.739124\pi\)
\(422\) 3782.07 0.436276
\(423\) 481.228 0.0553147
\(424\) 1279.37 0.146537
\(425\) 3458.36 0.394718
\(426\) 1948.26 0.221581
\(427\) 735.019 0.0833023
\(428\) −66.2701 −0.00748431
\(429\) −547.075 −0.0615689
\(430\) 26754.7 3.00052
\(431\) −2456.06 −0.274487 −0.137244 0.990537i \(-0.543824\pi\)
−0.137244 + 0.990537i \(0.543824\pi\)
\(432\) 6491.14 0.722929
\(433\) −5346.12 −0.593344 −0.296672 0.954979i \(-0.595877\pi\)
−0.296672 + 0.954979i \(0.595877\pi\)
\(434\) 0 0
\(435\) 5237.40 0.577274
\(436\) 15261.5 1.67636
\(437\) 5018.14 0.549314
\(438\) −10853.6 −1.18403
\(439\) −14134.4 −1.53667 −0.768333 0.640050i \(-0.778914\pi\)
−0.768333 + 0.640050i \(0.778914\pi\)
\(440\) −3299.15 −0.357457
\(441\) 6525.42 0.704612
\(442\) 1142.11 0.122906
\(443\) 13281.7 1.42445 0.712225 0.701952i \(-0.247688\pi\)
0.712225 + 0.701952i \(0.247688\pi\)
\(444\) −8007.77 −0.855928
\(445\) 14497.8 1.54441
\(446\) −13978.1 −1.48404
\(447\) −1496.29 −0.158327
\(448\) 701.416 0.0739706
\(449\) 3802.40 0.399657 0.199829 0.979831i \(-0.435961\pi\)
0.199829 + 0.979831i \(0.435961\pi\)
\(450\) 5016.74 0.525537
\(451\) −14656.6 −1.53027
\(452\) −2683.08 −0.279206
\(453\) −9120.25 −0.945931
\(454\) −14940.0 −1.54442
\(455\) 70.2725 0.00724050
\(456\) 2636.06 0.270712
\(457\) −5410.82 −0.553846 −0.276923 0.960892i \(-0.589315\pi\)
−0.276923 + 0.960892i \(0.589315\pi\)
\(458\) 9896.92 1.00972
\(459\) −7129.93 −0.725047
\(460\) −4277.07 −0.433520
\(461\) −10791.6 −1.09028 −0.545138 0.838346i \(-0.683523\pi\)
−0.545138 + 0.838346i \(0.683523\pi\)
\(462\) 474.804 0.0478136
\(463\) 8371.89 0.840334 0.420167 0.907447i \(-0.361971\pi\)
0.420167 + 0.907447i \(0.361971\pi\)
\(464\) −6798.55 −0.680204
\(465\) 0 0
\(466\) 10754.9 1.06912
\(467\) 8836.86 0.875634 0.437817 0.899064i \(-0.355752\pi\)
0.437817 + 0.899064i \(0.355752\pi\)
\(468\) 898.148 0.0887113
\(469\) 501.156 0.0493416
\(470\) 1444.79 0.141794
\(471\) 1301.78 0.127352
\(472\) −3027.72 −0.295259
\(473\) −18272.7 −1.77628
\(474\) −6049.68 −0.586225
\(475\) −9579.92 −0.925383
\(476\) −537.358 −0.0517432
\(477\) 3969.48 0.381028
\(478\) −4556.58 −0.436011
\(479\) 5837.52 0.556834 0.278417 0.960460i \(-0.410190\pi\)
0.278417 + 0.960460i \(0.410190\pi\)
\(480\) 9968.05 0.947870
\(481\) 1493.13 0.141540
\(482\) 1354.18 0.127969
\(483\) 95.6313 0.00900905
\(484\) 1896.64 0.178122
\(485\) −4554.00 −0.426364
\(486\) −16402.5 −1.53093
\(487\) −5509.65 −0.512661 −0.256330 0.966589i \(-0.582514\pi\)
−0.256330 + 0.966589i \(0.582514\pi\)
\(488\) 4381.85 0.406470
\(489\) 3.25704 0.000301203 0
\(490\) 19591.3 1.80621
\(491\) −1940.93 −0.178397 −0.0891986 0.996014i \(-0.528431\pi\)
−0.0891986 + 0.996014i \(0.528431\pi\)
\(492\) −9981.31 −0.914618
\(493\) 7467.59 0.682197
\(494\) −3163.73 −0.288143
\(495\) −10236.2 −0.929464
\(496\) 0 0
\(497\) 170.919 0.0154261
\(498\) 4796.45 0.431594
\(499\) −949.318 −0.0851649 −0.0425825 0.999093i \(-0.513559\pi\)
−0.0425825 + 0.999093i \(0.513559\pi\)
\(500\) −8063.49 −0.721220
\(501\) 968.036 0.0863247
\(502\) 16583.6 1.47443
\(503\) 744.884 0.0660293 0.0330146 0.999455i \(-0.489489\pi\)
0.0330146 + 0.999455i \(0.489489\pi\)
\(504\) −121.104 −0.0107031
\(505\) 20545.8 1.81045
\(506\) 5388.42 0.473408
\(507\) −6111.97 −0.535389
\(508\) −16949.8 −1.48036
\(509\) 10250.0 0.892582 0.446291 0.894888i \(-0.352745\pi\)
0.446291 + 0.894888i \(0.352745\pi\)
\(510\) −8864.54 −0.769664
\(511\) −952.173 −0.0824299
\(512\) −15402.7 −1.32951
\(513\) 19750.4 1.69981
\(514\) −12448.3 −1.06824
\(515\) 8374.00 0.716510
\(516\) −12444.0 −1.06166
\(517\) −986.756 −0.0839409
\(518\) −1295.88 −0.109918
\(519\) 7866.49 0.665319
\(520\) 418.933 0.0353297
\(521\) −957.662 −0.0805296 −0.0402648 0.999189i \(-0.512820\pi\)
−0.0402648 + 0.999189i \(0.512820\pi\)
\(522\) 10832.6 0.908293
\(523\) −22265.8 −1.86160 −0.930799 0.365531i \(-0.880887\pi\)
−0.930799 + 0.365531i \(0.880887\pi\)
\(524\) 7356.96 0.613341
\(525\) −182.566 −0.0151768
\(526\) 35124.4 2.91159
\(527\) 0 0
\(528\) −5511.83 −0.454303
\(529\) −11081.7 −0.910800
\(530\) 11917.6 0.976731
\(531\) −9394.06 −0.767735
\(532\) 1488.52 0.121307
\(533\) 1861.12 0.151246
\(534\) −12438.6 −1.00800
\(535\) −95.9075 −0.00775036
\(536\) 2987.67 0.240760
\(537\) −8130.26 −0.653345
\(538\) 16715.0 1.33947
\(539\) −13380.3 −1.06926
\(540\) −16833.7 −1.34150
\(541\) −19972.3 −1.58720 −0.793600 0.608439i \(-0.791796\pi\)
−0.793600 + 0.608439i \(0.791796\pi\)
\(542\) 11297.3 0.895316
\(543\) 5221.88 0.412693
\(544\) 14212.7 1.12015
\(545\) 22086.7 1.73595
\(546\) −60.2915 −0.00472571
\(547\) 9842.47 0.769349 0.384674 0.923052i \(-0.374314\pi\)
0.384674 + 0.923052i \(0.374314\pi\)
\(548\) −11389.1 −0.887806
\(549\) 13595.5 1.05691
\(550\) −10286.8 −0.797511
\(551\) −20685.8 −1.59935
\(552\) 570.111 0.0439593
\(553\) −530.731 −0.0408119
\(554\) 27494.8 2.10856
\(555\) −11589.0 −0.886353
\(556\) −7649.85 −0.583500
\(557\) −15379.9 −1.16996 −0.584979 0.811048i \(-0.698897\pi\)
−0.584979 + 0.811048i \(0.698897\pi\)
\(558\) 0 0
\(559\) 2320.31 0.175561
\(560\) 708.002 0.0534260
\(561\) 6054.25 0.455634
\(562\) 17958.0 1.34789
\(563\) 10742.2 0.804140 0.402070 0.915609i \(-0.368291\pi\)
0.402070 + 0.915609i \(0.368291\pi\)
\(564\) −671.994 −0.0501703
\(565\) −3883.00 −0.289131
\(566\) 15456.1 1.14783
\(567\) −155.226 −0.0114971
\(568\) 1018.94 0.0752708
\(569\) −8152.66 −0.600663 −0.300332 0.953835i \(-0.597097\pi\)
−0.300332 + 0.953835i \(0.597097\pi\)
\(570\) 24555.4 1.80441
\(571\) 19226.1 1.40908 0.704542 0.709662i \(-0.251153\pi\)
0.704542 + 0.709662i \(0.251153\pi\)
\(572\) −1841.65 −0.134621
\(573\) 3279.16 0.239073
\(574\) −1615.26 −0.117456
\(575\) −2071.89 −0.150267
\(576\) 12974.0 0.938511
\(577\) 18679.6 1.34774 0.673868 0.738852i \(-0.264632\pi\)
0.673868 + 0.738852i \(0.264632\pi\)
\(578\) 7896.57 0.568260
\(579\) −11622.4 −0.834213
\(580\) 17630.9 1.26221
\(581\) 420.787 0.0300468
\(582\) 3907.18 0.278278
\(583\) −8139.41 −0.578216
\(584\) −5676.43 −0.402213
\(585\) 1299.82 0.0918647
\(586\) −27646.3 −1.94890
\(587\) −22350.7 −1.57157 −0.785785 0.618500i \(-0.787741\pi\)
−0.785785 + 0.618500i \(0.787741\pi\)
\(588\) −9112.19 −0.639082
\(589\) 0 0
\(590\) −28203.8 −1.96802
\(591\) 4295.69 0.298986
\(592\) 15043.4 1.04439
\(593\) 11559.4 0.800483 0.400242 0.916410i \(-0.368926\pi\)
0.400242 + 0.916410i \(0.368926\pi\)
\(594\) 21207.8 1.46493
\(595\) −777.676 −0.0535825
\(596\) −5037.05 −0.346184
\(597\) 3337.58 0.228807
\(598\) −684.232 −0.0467899
\(599\) 11849.3 0.808265 0.404132 0.914701i \(-0.367574\pi\)
0.404132 + 0.914701i \(0.367574\pi\)
\(600\) −1088.37 −0.0740545
\(601\) −2838.83 −0.192676 −0.0963381 0.995349i \(-0.530713\pi\)
−0.0963381 + 0.995349i \(0.530713\pi\)
\(602\) −2013.78 −0.136338
\(603\) 9269.79 0.626028
\(604\) −30702.0 −2.06829
\(605\) 2744.86 0.184454
\(606\) −17627.6 −1.18164
\(607\) 11696.4 0.782111 0.391056 0.920367i \(-0.372110\pi\)
0.391056 + 0.920367i \(0.372110\pi\)
\(608\) −39370.1 −2.62610
\(609\) −394.211 −0.0262303
\(610\) 40817.9 2.70929
\(611\) 125.300 0.00829641
\(612\) −9939.41 −0.656498
\(613\) 7742.09 0.510114 0.255057 0.966926i \(-0.417906\pi\)
0.255057 + 0.966926i \(0.417906\pi\)
\(614\) 18828.2 1.23753
\(615\) −14445.2 −0.947130
\(616\) 248.322 0.0162422
\(617\) 1176.45 0.0767621 0.0383811 0.999263i \(-0.487780\pi\)
0.0383811 + 0.999263i \(0.487780\pi\)
\(618\) −7184.62 −0.467650
\(619\) 23345.0 1.51585 0.757927 0.652339i \(-0.226212\pi\)
0.757927 + 0.652339i \(0.226212\pi\)
\(620\) 0 0
\(621\) 4271.50 0.276022
\(622\) −22276.9 −1.43605
\(623\) −1091.23 −0.0701751
\(624\) 699.904 0.0449016
\(625\) −19531.1 −1.24999
\(626\) −1481.82 −0.0946090
\(627\) −16770.7 −1.06819
\(628\) 4382.26 0.278457
\(629\) −16523.8 −1.04745
\(630\) −1128.11 −0.0713409
\(631\) −23389.9 −1.47565 −0.737826 0.674991i \(-0.764147\pi\)
−0.737826 + 0.674991i \(0.764147\pi\)
\(632\) −3163.98 −0.199140
\(633\) −2545.80 −0.159852
\(634\) 37245.1 2.33311
\(635\) −24530.1 −1.53299
\(636\) −5543.05 −0.345591
\(637\) 1699.06 0.105682
\(638\) −22212.1 −1.37835
\(639\) 3161.45 0.195720
\(640\) 10609.1 0.655255
\(641\) −6362.78 −0.392066 −0.196033 0.980597i \(-0.562806\pi\)
−0.196033 + 0.980597i \(0.562806\pi\)
\(642\) 82.2855 0.00505849
\(643\) 9875.29 0.605666 0.302833 0.953044i \(-0.402068\pi\)
0.302833 + 0.953044i \(0.402068\pi\)
\(644\) 321.928 0.0196984
\(645\) −18009.2 −1.09940
\(646\) 35011.6 2.13237
\(647\) −6584.71 −0.400111 −0.200055 0.979785i \(-0.564112\pi\)
−0.200055 + 0.979785i \(0.564112\pi\)
\(648\) −925.385 −0.0560996
\(649\) 19262.5 1.16505
\(650\) 1306.24 0.0788229
\(651\) 0 0
\(652\) 10.9643 0.000658584 0
\(653\) 15302.1 0.917024 0.458512 0.888688i \(-0.348383\pi\)
0.458512 + 0.888688i \(0.348383\pi\)
\(654\) −18949.7 −1.13301
\(655\) 10647.2 0.635143
\(656\) 18750.9 1.11601
\(657\) −17612.2 −1.04584
\(658\) −108.747 −0.00644288
\(659\) 9681.76 0.572303 0.286151 0.958184i \(-0.407624\pi\)
0.286151 + 0.958184i \(0.407624\pi\)
\(660\) 14294.0 0.843022
\(661\) 9605.49 0.565220 0.282610 0.959235i \(-0.408800\pi\)
0.282610 + 0.959235i \(0.408800\pi\)
\(662\) −24366.0 −1.43053
\(663\) −768.780 −0.0450331
\(664\) 2508.54 0.146612
\(665\) 2154.22 0.125620
\(666\) −23969.7 −1.39460
\(667\) −4473.79 −0.259709
\(668\) 3258.75 0.188750
\(669\) 9408.98 0.543755
\(670\) 27830.7 1.60477
\(671\) −27877.5 −1.60388
\(672\) −750.280 −0.0430695
\(673\) 3028.51 0.173463 0.0867314 0.996232i \(-0.472358\pi\)
0.0867314 + 0.996232i \(0.472358\pi\)
\(674\) −30522.8 −1.74436
\(675\) −8154.55 −0.464991
\(676\) −20575.0 −1.17063
\(677\) 3451.12 0.195919 0.0979597 0.995190i \(-0.468768\pi\)
0.0979597 + 0.995190i \(0.468768\pi\)
\(678\) 3331.49 0.188710
\(679\) 342.773 0.0193732
\(680\) −4636.15 −0.261454
\(681\) 10056.4 0.565879
\(682\) 0 0
\(683\) −23599.0 −1.32209 −0.661047 0.750345i \(-0.729887\pi\)
−0.661047 + 0.750345i \(0.729887\pi\)
\(684\) 27532.9 1.53910
\(685\) −16482.5 −0.919364
\(686\) −2953.80 −0.164398
\(687\) −6661.84 −0.369964
\(688\) 23377.3 1.29542
\(689\) 1033.56 0.0571487
\(690\) 5310.70 0.293007
\(691\) −8777.48 −0.483229 −0.241614 0.970372i \(-0.577677\pi\)
−0.241614 + 0.970372i \(0.577677\pi\)
\(692\) 26481.4 1.45473
\(693\) 770.466 0.0422332
\(694\) 47268.2 2.58541
\(695\) −11071.0 −0.604241
\(696\) −2350.11 −0.127989
\(697\) −20596.2 −1.11928
\(698\) −5314.40 −0.288185
\(699\) −7239.34 −0.391727
\(700\) −614.580 −0.0331842
\(701\) 24750.1 1.33352 0.666761 0.745271i \(-0.267680\pi\)
0.666761 + 0.745271i \(0.267680\pi\)
\(702\) −2693.01 −0.144788
\(703\) 45772.2 2.45567
\(704\) −26603.1 −1.42421
\(705\) −972.524 −0.0519537
\(706\) −24500.7 −1.30608
\(707\) −1546.45 −0.0822634
\(708\) 13118.0 0.696334
\(709\) −7792.13 −0.412750 −0.206375 0.978473i \(-0.566167\pi\)
−0.206375 + 0.978473i \(0.566167\pi\)
\(710\) 9491.64 0.501711
\(711\) −9816.83 −0.517806
\(712\) −6505.41 −0.342417
\(713\) 0 0
\(714\) 667.221 0.0349721
\(715\) −2665.27 −0.139406
\(716\) −27369.3 −1.42855
\(717\) 3067.14 0.159755
\(718\) −20010.7 −1.04010
\(719\) −438.879 −0.0227642 −0.0113821 0.999935i \(-0.503623\pi\)
−0.0113821 + 0.999935i \(0.503623\pi\)
\(720\) 13095.8 0.677849
\(721\) −630.298 −0.0325569
\(722\) −68314.8 −3.52135
\(723\) −911.527 −0.0468880
\(724\) 17578.7 0.902357
\(725\) 8540.73 0.437510
\(726\) −2355.00 −0.120389
\(727\) −7683.27 −0.391962 −0.195981 0.980608i \(-0.562789\pi\)
−0.195981 + 0.980608i \(0.562789\pi\)
\(728\) −31.5325 −0.00160532
\(729\) 6978.69 0.354554
\(730\) −52877.1 −2.68092
\(731\) −25677.9 −1.29922
\(732\) −18985.0 −0.958613
\(733\) −552.093 −0.0278200 −0.0139100 0.999903i \(-0.504428\pi\)
−0.0139100 + 0.999903i \(0.504428\pi\)
\(734\) −25624.3 −1.28857
\(735\) −13187.3 −0.661799
\(736\) −8514.73 −0.426436
\(737\) −19007.7 −0.950008
\(738\) −29877.1 −1.49023
\(739\) −22066.4 −1.09841 −0.549204 0.835688i \(-0.685069\pi\)
−0.549204 + 0.835688i \(0.685069\pi\)
\(740\) −39012.7 −1.93802
\(741\) 2129.58 0.105576
\(742\) −897.020 −0.0443809
\(743\) 18848.0 0.930642 0.465321 0.885142i \(-0.345939\pi\)
0.465321 + 0.885142i \(0.345939\pi\)
\(744\) 0 0
\(745\) −7289.72 −0.358489
\(746\) −40516.0 −1.98847
\(747\) 7783.22 0.381222
\(748\) 20380.7 0.996247
\(749\) 7.21881 0.000352162 0
\(750\) 10012.2 0.487457
\(751\) −20632.8 −1.00253 −0.501266 0.865293i \(-0.667132\pi\)
−0.501266 + 0.865293i \(0.667132\pi\)
\(752\) 1262.41 0.0612173
\(753\) −11162.8 −0.540233
\(754\) 2820.54 0.136231
\(755\) −44432.5 −2.14181
\(756\) 1267.05 0.0609552
\(757\) 8112.61 0.389509 0.194754 0.980852i \(-0.437609\pi\)
0.194754 + 0.980852i \(0.437609\pi\)
\(758\) 14582.7 0.698772
\(759\) −3627.07 −0.173457
\(760\) 12842.5 0.612955
\(761\) −29962.2 −1.42724 −0.713620 0.700533i \(-0.752946\pi\)
−0.713620 + 0.700533i \(0.752946\pi\)
\(762\) 21046.0 1.00055
\(763\) −1662.43 −0.0788783
\(764\) 11038.8 0.522736
\(765\) −14384.5 −0.679835
\(766\) −1250.50 −0.0589849
\(767\) −2445.99 −0.115149
\(768\) 6200.06 0.291309
\(769\) −10538.1 −0.494165 −0.247083 0.968994i \(-0.579472\pi\)
−0.247083 + 0.968994i \(0.579472\pi\)
\(770\) 2313.17 0.108261
\(771\) 8379.27 0.391403
\(772\) −39125.0 −1.82402
\(773\) 11471.5 0.533764 0.266882 0.963729i \(-0.414007\pi\)
0.266882 + 0.963729i \(0.414007\pi\)
\(774\) −37248.6 −1.72981
\(775\) 0 0
\(776\) 2043.46 0.0945307
\(777\) 872.287 0.0402743
\(778\) −53262.9 −2.45446
\(779\) 57053.0 2.62405
\(780\) −1815.08 −0.0833211
\(781\) −6482.54 −0.297008
\(782\) 7572.10 0.346263
\(783\) −17608.0 −0.803650
\(784\) 17118.2 0.779801
\(785\) 6342.10 0.288356
\(786\) −9134.91 −0.414544
\(787\) −8700.03 −0.394057 −0.197028 0.980398i \(-0.563129\pi\)
−0.197028 + 0.980398i \(0.563129\pi\)
\(788\) 14460.8 0.653736
\(789\) −23643.0 −1.06681
\(790\) −29473.1 −1.32735
\(791\) 292.268 0.0131376
\(792\) 4593.17 0.206075
\(793\) 3539.95 0.158521
\(794\) −43229.1 −1.93217
\(795\) −8022.01 −0.357876
\(796\) 11235.5 0.500289
\(797\) 25254.0 1.12239 0.561193 0.827685i \(-0.310342\pi\)
0.561193 + 0.827685i \(0.310342\pi\)
\(798\) −1848.25 −0.0819891
\(799\) −1386.64 −0.0613967
\(800\) 16255.1 0.718381
\(801\) −20184.2 −0.890356
\(802\) 54966.2 2.42010
\(803\) 36113.7 1.58708
\(804\) −12944.5 −0.567806
\(805\) 465.902 0.0203986
\(806\) 0 0
\(807\) −11251.2 −0.490783
\(808\) −9219.24 −0.401401
\(809\) 29051.6 1.26255 0.631273 0.775561i \(-0.282533\pi\)
0.631273 + 0.775561i \(0.282533\pi\)
\(810\) −8620.15 −0.373928
\(811\) 1812.58 0.0784813 0.0392406 0.999230i \(-0.487506\pi\)
0.0392406 + 0.999230i \(0.487506\pi\)
\(812\) −1327.05 −0.0573527
\(813\) −7604.48 −0.328045
\(814\) 49149.7 2.11634
\(815\) 15.8678 0.000681995 0
\(816\) −7745.53 −0.332289
\(817\) 71129.5 3.04591
\(818\) 27453.0 1.17344
\(819\) −97.8353 −0.00417417
\(820\) −48627.5 −2.07091
\(821\) 27995.4 1.19007 0.595033 0.803701i \(-0.297139\pi\)
0.595033 + 0.803701i \(0.297139\pi\)
\(822\) 14141.5 0.600049
\(823\) 17948.0 0.760178 0.380089 0.924950i \(-0.375893\pi\)
0.380089 + 0.924950i \(0.375893\pi\)
\(824\) −3757.56 −0.158860
\(825\) 6924.28 0.292209
\(826\) 2122.86 0.0894234
\(827\) 2951.55 0.124106 0.0620529 0.998073i \(-0.480235\pi\)
0.0620529 + 0.998073i \(0.480235\pi\)
\(828\) 5954.65 0.249926
\(829\) 7229.86 0.302899 0.151450 0.988465i \(-0.451606\pi\)
0.151450 + 0.988465i \(0.451606\pi\)
\(830\) 23367.6 0.977230
\(831\) −18507.4 −0.772579
\(832\) 3378.11 0.140763
\(833\) −18802.8 −0.782086
\(834\) 9498.57 0.394375
\(835\) 4716.13 0.195459
\(836\) −56456.1 −2.33561
\(837\) 0 0
\(838\) −10717.4 −0.441796
\(839\) 25166.6 1.03558 0.517788 0.855509i \(-0.326755\pi\)
0.517788 + 0.855509i \(0.326755\pi\)
\(840\) 244.741 0.0100528
\(841\) −5947.13 −0.243845
\(842\) 49288.5 2.01733
\(843\) −12087.9 −0.493868
\(844\) −8570.05 −0.349518
\(845\) −29776.6 −1.21224
\(846\) −2011.48 −0.0817449
\(847\) −206.602 −0.00838125
\(848\) 10413.2 0.421687
\(849\) −10403.9 −0.420566
\(850\) −14455.6 −0.583321
\(851\) 9899.35 0.398761
\(852\) −4414.70 −0.177518
\(853\) −31284.7 −1.25577 −0.627883 0.778308i \(-0.716078\pi\)
−0.627883 + 0.778308i \(0.716078\pi\)
\(854\) −3072.30 −0.123105
\(855\) 39846.2 1.59381
\(856\) 43.0353 0.00171836
\(857\) 32739.2 1.30496 0.652479 0.757806i \(-0.273729\pi\)
0.652479 + 0.757806i \(0.273729\pi\)
\(858\) 2286.72 0.0909874
\(859\) 268.860 0.0106792 0.00533958 0.999986i \(-0.498300\pi\)
0.00533958 + 0.999986i \(0.498300\pi\)
\(860\) −60625.2 −2.40384
\(861\) 1087.27 0.0430359
\(862\) 10266.1 0.405642
\(863\) 96.8292 0.00381936 0.00190968 0.999998i \(-0.499392\pi\)
0.00190968 + 0.999998i \(0.499392\pi\)
\(864\) −33512.3 −1.31957
\(865\) 38324.4 1.50644
\(866\) 22346.2 0.876854
\(867\) −5315.36 −0.208211
\(868\) 0 0
\(869\) 20129.4 0.785779
\(870\) −21891.8 −0.853104
\(871\) 2413.63 0.0938952
\(872\) −9910.68 −0.384883
\(873\) 6340.20 0.245800
\(874\) −20975.3 −0.811784
\(875\) 878.357 0.0339359
\(876\) 24593.9 0.948574
\(877\) −3816.87 −0.146963 −0.0734816 0.997297i \(-0.523411\pi\)
−0.0734816 + 0.997297i \(0.523411\pi\)
\(878\) 59080.1 2.27091
\(879\) 18609.4 0.714082
\(880\) −26852.8 −1.02865
\(881\) 18239.7 0.697514 0.348757 0.937213i \(-0.386604\pi\)
0.348757 + 0.937213i \(0.386604\pi\)
\(882\) −27275.5 −1.04129
\(883\) −45903.8 −1.74948 −0.874738 0.484597i \(-0.838966\pi\)
−0.874738 + 0.484597i \(0.838966\pi\)
\(884\) −2587.98 −0.0984653
\(885\) 18984.6 0.721087
\(886\) −55515.9 −2.10507
\(887\) −28143.5 −1.06535 −0.532676 0.846319i \(-0.678813\pi\)
−0.532676 + 0.846319i \(0.678813\pi\)
\(888\) 5200.19 0.196517
\(889\) 1846.34 0.0696561
\(890\) −60599.3 −2.28235
\(891\) 5887.34 0.221362
\(892\) 31673.9 1.18893
\(893\) 3841.10 0.143939
\(894\) 6254.34 0.233978
\(895\) −39609.4 −1.47933
\(896\) −798.534 −0.0297736
\(897\) 460.572 0.0171439
\(898\) −15893.6 −0.590620
\(899\) 0 0
\(900\) −11367.8 −0.421029
\(901\) −11437.9 −0.422923
\(902\) 61262.8 2.26145
\(903\) 1355.52 0.0499546
\(904\) 1742.37 0.0641044
\(905\) 25440.2 0.934432
\(906\) 38121.7 1.39791
\(907\) 40055.0 1.46638 0.733189 0.680025i \(-0.238031\pi\)
0.733189 + 0.680025i \(0.238031\pi\)
\(908\) 33853.5 1.23730
\(909\) −28604.4 −1.04373
\(910\) −293.732 −0.0107001
\(911\) −21656.5 −0.787610 −0.393805 0.919194i \(-0.628841\pi\)
−0.393805 + 0.919194i \(0.628841\pi\)
\(912\) 21455.7 0.779023
\(913\) −15959.5 −0.578511
\(914\) 22616.7 0.818482
\(915\) −27475.5 −0.992689
\(916\) −22426.1 −0.808930
\(917\) −801.395 −0.0288598
\(918\) 29802.3 1.07149
\(919\) 25426.5 0.912669 0.456335 0.889808i \(-0.349162\pi\)
0.456335 + 0.889808i \(0.349162\pi\)
\(920\) 2777.50 0.0995341
\(921\) −12673.7 −0.453433
\(922\) 45107.9 1.61123
\(923\) 823.166 0.0293552
\(924\) −1075.89 −0.0383054
\(925\) −18898.4 −0.671759
\(926\) −34993.6 −1.24186
\(927\) −11658.5 −0.413070
\(928\) 35099.4 1.24159
\(929\) −3215.31 −0.113553 −0.0567766 0.998387i \(-0.518082\pi\)
−0.0567766 + 0.998387i \(0.518082\pi\)
\(930\) 0 0
\(931\) 52085.1 1.83353
\(932\) −24370.2 −0.856514
\(933\) 14995.1 0.526170
\(934\) −36937.1 −1.29403
\(935\) 29495.4 1.03166
\(936\) −583.250 −0.0203677
\(937\) 27286.7 0.951351 0.475676 0.879621i \(-0.342204\pi\)
0.475676 + 0.879621i \(0.342204\pi\)
\(938\) −2094.78 −0.0729178
\(939\) 997.444 0.0346649
\(940\) −3273.86 −0.113597
\(941\) −50586.8 −1.75248 −0.876239 0.481877i \(-0.839955\pi\)
−0.876239 + 0.481877i \(0.839955\pi\)
\(942\) −5441.31 −0.188203
\(943\) 12339.1 0.426104
\(944\) −24643.6 −0.849660
\(945\) 1833.70 0.0631219
\(946\) 76378.1 2.62502
\(947\) −16427.6 −0.563702 −0.281851 0.959458i \(-0.590948\pi\)
−0.281851 + 0.959458i \(0.590948\pi\)
\(948\) 13708.4 0.469649
\(949\) −4585.79 −0.156861
\(950\) 40043.0 1.36754
\(951\) −25070.5 −0.854854
\(952\) 348.956 0.0118800
\(953\) 45754.4 1.55523 0.777613 0.628743i \(-0.216430\pi\)
0.777613 + 0.628743i \(0.216430\pi\)
\(954\) −16592.0 −0.563088
\(955\) 15975.6 0.541318
\(956\) 10325.1 0.349306
\(957\) 14951.5 0.505029
\(958\) −24400.2 −0.822897
\(959\) 1240.61 0.0417743
\(960\) −26219.4 −0.881486
\(961\) 0 0
\(962\) −6241.13 −0.209171
\(963\) 133.525 0.00446810
\(964\) −3068.52 −0.102521
\(965\) −56622.5 −1.88885
\(966\) −399.728 −0.0133137
\(967\) 28369.5 0.943436 0.471718 0.881749i \(-0.343634\pi\)
0.471718 + 0.881749i \(0.343634\pi\)
\(968\) −1231.67 −0.0408959
\(969\) −23567.1 −0.781305
\(970\) 19035.2 0.630087
\(971\) −51876.9 −1.71453 −0.857264 0.514876i \(-0.827838\pi\)
−0.857264 + 0.514876i \(0.827838\pi\)
\(972\) 37167.5 1.22649
\(973\) 833.299 0.0274556
\(974\) 23029.7 0.757618
\(975\) −879.259 −0.0288809
\(976\) 35665.3 1.16969
\(977\) 10637.4 0.348331 0.174165 0.984716i \(-0.444277\pi\)
0.174165 + 0.984716i \(0.444277\pi\)
\(978\) −13.6141 −0.000445123 0
\(979\) 41387.7 1.35113
\(980\) −44393.2 −1.44703
\(981\) −30749.7 −1.00078
\(982\) 8112.89 0.263638
\(983\) 10510.1 0.341018 0.170509 0.985356i \(-0.445459\pi\)
0.170509 + 0.985356i \(0.445459\pi\)
\(984\) 6481.79 0.209992
\(985\) 20927.9 0.676975
\(986\) −31213.7 −1.00816
\(987\) 73.2004 0.00236068
\(988\) 7168.90 0.230843
\(989\) 15383.5 0.494607
\(990\) 42786.4 1.37358
\(991\) 9017.54 0.289053 0.144527 0.989501i \(-0.453834\pi\)
0.144527 + 0.989501i \(0.453834\pi\)
\(992\) 0 0
\(993\) 16401.3 0.524149
\(994\) −714.422 −0.0227969
\(995\) 16260.2 0.518073
\(996\) −10868.6 −0.345768
\(997\) −5402.14 −0.171602 −0.0858012 0.996312i \(-0.527345\pi\)
−0.0858012 + 0.996312i \(0.527345\pi\)
\(998\) 3968.05 0.125858
\(999\) 38961.9 1.23394
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.4.a.l.1.5 28
31.11 odd 30 31.4.g.a.28.6 yes 56
31.17 odd 30 31.4.g.a.10.6 56
31.30 odd 2 961.4.a.m.1.5 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.4.g.a.10.6 56 31.17 odd 30
31.4.g.a.28.6 yes 56 31.11 odd 30
961.4.a.l.1.5 28 1.1 even 1 trivial
961.4.a.m.1.5 28 31.30 odd 2