Properties

Label 961.4.a.l.1.20
Level $961$
Weight $4$
Character 961.1
Self dual yes
Analytic conductor $56.701$
Analytic rank $1$
Dimension $28$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,4,Mod(1,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,2,-19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.7008355155\)
Analytic rank: \(1\)
Dimension: \(28\)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.20
Character \(\chi\) \(=\) 961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.83254 q^{2} +0.917938 q^{3} +0.0233066 q^{4} +12.0918 q^{5} +2.60010 q^{6} +32.1562 q^{7} -22.5943 q^{8} -26.1574 q^{9} +34.2506 q^{10} -57.7046 q^{11} +0.0213941 q^{12} +6.32320 q^{13} +91.0838 q^{14} +11.0995 q^{15} -64.1859 q^{16} -74.8834 q^{17} -74.0920 q^{18} -89.0388 q^{19} +0.281820 q^{20} +29.5174 q^{21} -163.451 q^{22} -149.160 q^{23} -20.7402 q^{24} +21.2123 q^{25} +17.9108 q^{26} -48.7952 q^{27} +0.749452 q^{28} -96.2547 q^{29} +31.4400 q^{30} -1.05474 q^{32} -52.9693 q^{33} -212.111 q^{34} +388.827 q^{35} -0.609641 q^{36} -30.4410 q^{37} -252.206 q^{38} +5.80431 q^{39} -273.207 q^{40} -17.5281 q^{41} +83.6093 q^{42} +249.347 q^{43} -1.34490 q^{44} -316.291 q^{45} -422.503 q^{46} +108.275 q^{47} -58.9187 q^{48} +691.019 q^{49} +60.0847 q^{50} -68.7383 q^{51} +0.147373 q^{52} +539.707 q^{53} -138.215 q^{54} -697.754 q^{55} -726.547 q^{56} -81.7322 q^{57} -272.646 q^{58} -206.651 q^{59} +0.258693 q^{60} -388.072 q^{61} -841.121 q^{63} +510.500 q^{64} +76.4591 q^{65} -150.038 q^{66} +217.749 q^{67} -1.74528 q^{68} -136.920 q^{69} +1101.37 q^{70} +172.613 q^{71} +591.009 q^{72} -439.389 q^{73} -86.2256 q^{74} +19.4716 q^{75} -2.07520 q^{76} -1855.56 q^{77} +16.4410 q^{78} -850.800 q^{79} -776.125 q^{80} +661.459 q^{81} -49.6491 q^{82} +766.850 q^{83} +0.687951 q^{84} -905.477 q^{85} +706.286 q^{86} -88.3559 q^{87} +1303.80 q^{88} -650.146 q^{89} -895.907 q^{90} +203.330 q^{91} -3.47643 q^{92} +306.693 q^{94} -1076.64 q^{95} -0.968182 q^{96} +910.041 q^{97} +1957.34 q^{98} +1509.40 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 2 q^{2} - 19 q^{3} + 104 q^{4} - 53 q^{6} + 31 q^{7} + 99 q^{8} + 211 q^{9} - 3 q^{10} - 185 q^{11} - 266 q^{12} - 145 q^{13} - 225 q^{14} - 261 q^{15} + 284 q^{16} - 259 q^{17} + 305 q^{18} + 73 q^{19}+ \cdots - 6383 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.83254 1.00146 0.500728 0.865605i \(-0.333066\pi\)
0.500728 + 0.865605i \(0.333066\pi\)
\(3\) 0.917938 0.176657 0.0883286 0.996091i \(-0.471847\pi\)
0.0883286 + 0.996091i \(0.471847\pi\)
\(4\) 0.0233066 0.00291333
\(5\) 12.0918 1.08153 0.540763 0.841175i \(-0.318136\pi\)
0.540763 + 0.841175i \(0.318136\pi\)
\(6\) 2.60010 0.176914
\(7\) 32.1562 1.73627 0.868135 0.496328i \(-0.165319\pi\)
0.868135 + 0.496328i \(0.165319\pi\)
\(8\) −22.5943 −0.998538
\(9\) −26.1574 −0.968792
\(10\) 34.2506 1.08310
\(11\) −57.7046 −1.58169 −0.790845 0.612016i \(-0.790359\pi\)
−0.790845 + 0.612016i \(0.790359\pi\)
\(12\) 0.0213941 0.000514661 0
\(13\) 6.32320 0.134903 0.0674516 0.997723i \(-0.478513\pi\)
0.0674516 + 0.997723i \(0.478513\pi\)
\(14\) 91.0838 1.73880
\(15\) 11.0995 0.191059
\(16\) −64.1859 −1.00290
\(17\) −74.8834 −1.06835 −0.534173 0.845375i \(-0.679377\pi\)
−0.534173 + 0.845375i \(0.679377\pi\)
\(18\) −74.0920 −0.970202
\(19\) −89.0388 −1.07510 −0.537550 0.843232i \(-0.680650\pi\)
−0.537550 + 0.843232i \(0.680650\pi\)
\(20\) 0.281820 0.00315084
\(21\) 29.5174 0.306725
\(22\) −163.451 −1.58399
\(23\) −149.160 −1.35226 −0.676132 0.736780i \(-0.736345\pi\)
−0.676132 + 0.736780i \(0.736345\pi\)
\(24\) −20.7402 −0.176399
\(25\) 21.2123 0.169698
\(26\) 17.9108 0.135100
\(27\) −48.7952 −0.347802
\(28\) 0.749452 0.00505833
\(29\) −96.2547 −0.616347 −0.308173 0.951330i \(-0.599718\pi\)
−0.308173 + 0.951330i \(0.599718\pi\)
\(30\) 31.4400 0.191338
\(31\) 0 0
\(32\) −1.05474 −0.00582664
\(33\) −52.9693 −0.279417
\(34\) −212.111 −1.06990
\(35\) 388.827 1.87782
\(36\) −0.609641 −0.00282241
\(37\) −30.4410 −0.135256 −0.0676280 0.997711i \(-0.521543\pi\)
−0.0676280 + 0.997711i \(0.521543\pi\)
\(38\) −252.206 −1.07667
\(39\) 5.80431 0.0238316
\(40\) −273.207 −1.07994
\(41\) −17.5281 −0.0667665 −0.0333833 0.999443i \(-0.510628\pi\)
−0.0333833 + 0.999443i \(0.510628\pi\)
\(42\) 83.6093 0.307171
\(43\) 249.347 0.884303 0.442152 0.896940i \(-0.354215\pi\)
0.442152 + 0.896940i \(0.354215\pi\)
\(44\) −1.34490 −0.00460799
\(45\) −316.291 −1.04777
\(46\) −422.503 −1.35423
\(47\) 108.275 0.336031 0.168016 0.985784i \(-0.446264\pi\)
0.168016 + 0.985784i \(0.446264\pi\)
\(48\) −58.9187 −0.177170
\(49\) 691.019 2.01463
\(50\) 60.0847 0.169945
\(51\) −68.7383 −0.188731
\(52\) 0.147373 0.000393018 0
\(53\) 539.707 1.39876 0.699381 0.714749i \(-0.253459\pi\)
0.699381 + 0.714749i \(0.253459\pi\)
\(54\) −138.215 −0.348308
\(55\) −697.754 −1.71064
\(56\) −726.547 −1.73373
\(57\) −81.7322 −0.189924
\(58\) −272.646 −0.617244
\(59\) −206.651 −0.455995 −0.227997 0.973662i \(-0.573218\pi\)
−0.227997 + 0.973662i \(0.573218\pi\)
\(60\) 0.258693 0.000556619 0
\(61\) −388.072 −0.814550 −0.407275 0.913306i \(-0.633521\pi\)
−0.407275 + 0.913306i \(0.633521\pi\)
\(62\) 0 0
\(63\) −841.121 −1.68208
\(64\) 510.500 0.997070
\(65\) 76.4591 0.145901
\(66\) −150.038 −0.279824
\(67\) 217.749 0.397049 0.198525 0.980096i \(-0.436385\pi\)
0.198525 + 0.980096i \(0.436385\pi\)
\(68\) −1.74528 −0.00311245
\(69\) −136.920 −0.238887
\(70\) 1101.37 1.88055
\(71\) 172.613 0.288526 0.144263 0.989539i \(-0.453919\pi\)
0.144263 + 0.989539i \(0.453919\pi\)
\(72\) 591.009 0.967376
\(73\) −439.389 −0.704474 −0.352237 0.935911i \(-0.614579\pi\)
−0.352237 + 0.935911i \(0.614579\pi\)
\(74\) −86.2256 −0.135453
\(75\) 19.4716 0.0299784
\(76\) −2.07520 −0.00313212
\(77\) −1855.56 −2.74624
\(78\) 16.4410 0.0238663
\(79\) −850.800 −1.21168 −0.605838 0.795588i \(-0.707162\pi\)
−0.605838 + 0.795588i \(0.707162\pi\)
\(80\) −776.125 −1.08467
\(81\) 661.459 0.907351
\(82\) −49.6491 −0.0668637
\(83\) 766.850 1.01413 0.507065 0.861908i \(-0.330730\pi\)
0.507065 + 0.861908i \(0.330730\pi\)
\(84\) 0.687951 0.000893591 0
\(85\) −905.477 −1.15544
\(86\) 706.286 0.885591
\(87\) −88.3559 −0.108882
\(88\) 1303.80 1.57938
\(89\) −650.146 −0.774329 −0.387165 0.922011i \(-0.626546\pi\)
−0.387165 + 0.922011i \(0.626546\pi\)
\(90\) −895.907 −1.04930
\(91\) 203.330 0.234228
\(92\) −3.47643 −0.00393959
\(93\) 0 0
\(94\) 306.693 0.336521
\(95\) −1076.64 −1.16275
\(96\) −0.968182 −0.00102932
\(97\) 910.041 0.952584 0.476292 0.879287i \(-0.341981\pi\)
0.476292 + 0.879287i \(0.341981\pi\)
\(98\) 1957.34 2.01757
\(99\) 1509.40 1.53233
\(100\) 0.494387 0.000494387 0
\(101\) 505.181 0.497697 0.248848 0.968542i \(-0.419948\pi\)
0.248848 + 0.968542i \(0.419948\pi\)
\(102\) −194.704 −0.189006
\(103\) 1302.74 1.24624 0.623118 0.782128i \(-0.285866\pi\)
0.623118 + 0.782128i \(0.285866\pi\)
\(104\) −142.869 −0.134706
\(105\) 356.919 0.331731
\(106\) 1528.74 1.40080
\(107\) −1230.58 −1.11182 −0.555908 0.831244i \(-0.687629\pi\)
−0.555908 + 0.831244i \(0.687629\pi\)
\(108\) −1.13725 −0.00101326
\(109\) −289.977 −0.254815 −0.127407 0.991850i \(-0.540666\pi\)
−0.127407 + 0.991850i \(0.540666\pi\)
\(110\) −1976.42 −1.71313
\(111\) −27.9430 −0.0238940
\(112\) −2063.97 −1.74131
\(113\) 286.620 0.238610 0.119305 0.992858i \(-0.461933\pi\)
0.119305 + 0.992858i \(0.461933\pi\)
\(114\) −231.510 −0.190201
\(115\) −1803.62 −1.46251
\(116\) −2.24337 −0.00179562
\(117\) −165.398 −0.130693
\(118\) −585.349 −0.456659
\(119\) −2407.96 −1.85494
\(120\) −250.787 −0.190780
\(121\) 1998.82 1.50174
\(122\) −1099.23 −0.815736
\(123\) −16.0897 −0.0117948
\(124\) 0 0
\(125\) −1254.98 −0.897993
\(126\) −2382.51 −1.68453
\(127\) −46.9907 −0.0328327 −0.0164163 0.999865i \(-0.505226\pi\)
−0.0164163 + 0.999865i \(0.505226\pi\)
\(128\) 1454.45 1.00435
\(129\) 228.885 0.156219
\(130\) 216.574 0.146114
\(131\) −986.355 −0.657849 −0.328925 0.944356i \(-0.606686\pi\)
−0.328925 + 0.944356i \(0.606686\pi\)
\(132\) −1.23454 −0.000814035 0
\(133\) −2863.15 −1.86666
\(134\) 616.784 0.397627
\(135\) −590.023 −0.376156
\(136\) 1691.94 1.06678
\(137\) −870.402 −0.542799 −0.271400 0.962467i \(-0.587486\pi\)
−0.271400 + 0.962467i \(0.587486\pi\)
\(138\) −387.832 −0.239235
\(139\) −209.043 −0.127560 −0.0637798 0.997964i \(-0.520316\pi\)
−0.0637798 + 0.997964i \(0.520316\pi\)
\(140\) 9.06225 0.00547071
\(141\) 99.3894 0.0593624
\(142\) 488.933 0.288946
\(143\) −364.878 −0.213375
\(144\) 1678.94 0.971606
\(145\) −1163.90 −0.666595
\(146\) −1244.59 −0.705499
\(147\) 634.313 0.355900
\(148\) −0.709478 −0.000394046 0
\(149\) −1159.38 −0.637453 −0.318726 0.947847i \(-0.603255\pi\)
−0.318726 + 0.947847i \(0.603255\pi\)
\(150\) 55.1540 0.0300221
\(151\) −2186.85 −1.17856 −0.589282 0.807928i \(-0.700589\pi\)
−0.589282 + 0.807928i \(0.700589\pi\)
\(152\) 2011.77 1.07353
\(153\) 1958.75 1.03501
\(154\) −5255.95 −2.75024
\(155\) 0 0
\(156\) 0.135279 6.94294e−5 0
\(157\) 1083.53 0.550796 0.275398 0.961330i \(-0.411190\pi\)
0.275398 + 0.961330i \(0.411190\pi\)
\(158\) −2409.93 −1.21344
\(159\) 495.417 0.247102
\(160\) −12.7537 −0.00630167
\(161\) −4796.42 −2.34790
\(162\) 1873.61 0.908671
\(163\) 438.367 0.210648 0.105324 0.994438i \(-0.466412\pi\)
0.105324 + 0.994438i \(0.466412\pi\)
\(164\) −0.408521 −0.000194513 0
\(165\) −640.495 −0.302197
\(166\) 2172.14 1.01561
\(167\) −3162.93 −1.46560 −0.732799 0.680445i \(-0.761787\pi\)
−0.732799 + 0.680445i \(0.761787\pi\)
\(168\) −666.925 −0.306276
\(169\) −2157.02 −0.981801
\(170\) −2564.80 −1.15713
\(171\) 2329.02 1.04155
\(172\) 5.81144 0.00257627
\(173\) −904.578 −0.397536 −0.198768 0.980047i \(-0.563694\pi\)
−0.198768 + 0.980047i \(0.563694\pi\)
\(174\) −250.272 −0.109041
\(175\) 682.105 0.294642
\(176\) 3703.82 1.58628
\(177\) −189.693 −0.0805548
\(178\) −1841.57 −0.775457
\(179\) 372.717 0.155632 0.0778161 0.996968i \(-0.475205\pi\)
0.0778161 + 0.996968i \(0.475205\pi\)
\(180\) −7.37167 −0.00305251
\(181\) −25.4496 −0.0104511 −0.00522556 0.999986i \(-0.501663\pi\)
−0.00522556 + 0.999986i \(0.501663\pi\)
\(182\) 575.941 0.234569
\(183\) −356.226 −0.143896
\(184\) 3370.18 1.35029
\(185\) −368.088 −0.146283
\(186\) 0 0
\(187\) 4321.12 1.68979
\(188\) 2.52352 0.000978971 0
\(189\) −1569.07 −0.603877
\(190\) −3049.64 −1.16444
\(191\) −4202.31 −1.59198 −0.795991 0.605309i \(-0.793050\pi\)
−0.795991 + 0.605309i \(0.793050\pi\)
\(192\) 468.607 0.176140
\(193\) 4414.12 1.64630 0.823148 0.567826i \(-0.192215\pi\)
0.823148 + 0.567826i \(0.192215\pi\)
\(194\) 2577.73 0.953970
\(195\) 70.1847 0.0257745
\(196\) 16.1053 0.00586929
\(197\) 2878.07 1.04088 0.520441 0.853898i \(-0.325768\pi\)
0.520441 + 0.853898i \(0.325768\pi\)
\(198\) 4275.45 1.53456
\(199\) 5191.67 1.84939 0.924693 0.380714i \(-0.124322\pi\)
0.924693 + 0.380714i \(0.124322\pi\)
\(200\) −479.277 −0.169450
\(201\) 199.880 0.0701416
\(202\) 1430.95 0.498421
\(203\) −3095.18 −1.07014
\(204\) −1.60206 −0.000549837 0
\(205\) −211.947 −0.0722097
\(206\) 3690.05 1.24805
\(207\) 3901.65 1.31006
\(208\) −405.861 −0.135295
\(209\) 5137.95 1.70048
\(210\) 1010.99 0.332214
\(211\) −4380.78 −1.42931 −0.714657 0.699475i \(-0.753417\pi\)
−0.714657 + 0.699475i \(0.753417\pi\)
\(212\) 12.5788 0.00407506
\(213\) 158.448 0.0509702
\(214\) −3485.66 −1.11343
\(215\) 3015.06 0.956397
\(216\) 1102.50 0.347293
\(217\) 0 0
\(218\) −821.373 −0.255185
\(219\) −403.332 −0.124450
\(220\) −16.2623 −0.00498366
\(221\) −473.503 −0.144123
\(222\) −79.1497 −0.0239287
\(223\) 3281.56 0.985424 0.492712 0.870193i \(-0.336006\pi\)
0.492712 + 0.870193i \(0.336006\pi\)
\(224\) −33.9162 −0.0101166
\(225\) −554.858 −0.164402
\(226\) 811.863 0.238957
\(227\) −3460.45 −1.01180 −0.505899 0.862593i \(-0.668839\pi\)
−0.505899 + 0.862593i \(0.668839\pi\)
\(228\) −1.90490 −0.000553313 0
\(229\) −557.799 −0.160962 −0.0804812 0.996756i \(-0.525646\pi\)
−0.0804812 + 0.996756i \(0.525646\pi\)
\(230\) −5108.84 −1.46464
\(231\) −1703.29 −0.485144
\(232\) 2174.81 0.615445
\(233\) −2873.39 −0.807905 −0.403953 0.914780i \(-0.632364\pi\)
−0.403953 + 0.914780i \(0.632364\pi\)
\(234\) −468.499 −0.130883
\(235\) 1309.24 0.363427
\(236\) −4.81635 −0.00132846
\(237\) −780.982 −0.214052
\(238\) −6820.66 −1.85764
\(239\) −2797.92 −0.757247 −0.378624 0.925551i \(-0.623603\pi\)
−0.378624 + 0.925551i \(0.623603\pi\)
\(240\) −712.435 −0.191614
\(241\) 3540.95 0.946444 0.473222 0.880943i \(-0.343091\pi\)
0.473222 + 0.880943i \(0.343091\pi\)
\(242\) 5661.75 1.50393
\(243\) 1924.65 0.508092
\(244\) −9.04466 −0.00237305
\(245\) 8355.68 2.17888
\(246\) −45.5748 −0.0118120
\(247\) −563.011 −0.145034
\(248\) 0 0
\(249\) 703.921 0.179153
\(250\) −3554.80 −0.899300
\(251\) 2570.79 0.646481 0.323241 0.946317i \(-0.395228\pi\)
0.323241 + 0.946317i \(0.395228\pi\)
\(252\) −19.6037 −0.00490047
\(253\) 8607.24 2.13886
\(254\) −133.103 −0.0328805
\(255\) −831.172 −0.204118
\(256\) 35.7987 0.00873992
\(257\) −1696.12 −0.411678 −0.205839 0.978586i \(-0.565992\pi\)
−0.205839 + 0.978586i \(0.565992\pi\)
\(258\) 648.327 0.156446
\(259\) −978.867 −0.234841
\(260\) 1.78200 0.000425059 0
\(261\) 2517.77 0.597112
\(262\) −2793.90 −0.658807
\(263\) 1700.73 0.398750 0.199375 0.979923i \(-0.436109\pi\)
0.199375 + 0.979923i \(0.436109\pi\)
\(264\) 1196.81 0.279009
\(265\) 6526.04 1.51280
\(266\) −8109.99 −1.86938
\(267\) −596.794 −0.136791
\(268\) 5.07500 0.00115674
\(269\) −3895.08 −0.882851 −0.441426 0.897298i \(-0.645527\pi\)
−0.441426 + 0.897298i \(0.645527\pi\)
\(270\) −1671.27 −0.376704
\(271\) 6696.19 1.50098 0.750488 0.660884i \(-0.229818\pi\)
0.750488 + 0.660884i \(0.229818\pi\)
\(272\) 4806.46 1.07145
\(273\) 186.644 0.0413781
\(274\) −2465.45 −0.543589
\(275\) −1224.05 −0.268410
\(276\) −3.19115 −0.000695958 0
\(277\) −7786.20 −1.68891 −0.844454 0.535629i \(-0.820075\pi\)
−0.844454 + 0.535629i \(0.820075\pi\)
\(278\) −592.123 −0.127745
\(279\) 0 0
\(280\) −8785.28 −1.87508
\(281\) −5619.74 −1.19305 −0.596523 0.802596i \(-0.703451\pi\)
−0.596523 + 0.802596i \(0.703451\pi\)
\(282\) 281.525 0.0594488
\(283\) −1929.10 −0.405205 −0.202603 0.979261i \(-0.564940\pi\)
−0.202603 + 0.979261i \(0.564940\pi\)
\(284\) 4.02302 0.000840572 0
\(285\) −988.291 −0.205408
\(286\) −1033.53 −0.213686
\(287\) −563.636 −0.115925
\(288\) 27.5891 0.00564481
\(289\) 694.524 0.141365
\(290\) −3296.78 −0.667565
\(291\) 835.361 0.168281
\(292\) −10.2407 −0.00205237
\(293\) 5326.18 1.06198 0.530988 0.847380i \(-0.321821\pi\)
0.530988 + 0.847380i \(0.321821\pi\)
\(294\) 1796.72 0.356418
\(295\) −2498.79 −0.493170
\(296\) 687.795 0.135058
\(297\) 2815.71 0.550114
\(298\) −3284.01 −0.638381
\(299\) −943.171 −0.182425
\(300\) 0.453817 8.73370e−5 0
\(301\) 8018.04 1.53539
\(302\) −6194.34 −1.18028
\(303\) 463.725 0.0879217
\(304\) 5715.04 1.07822
\(305\) −4692.50 −0.880957
\(306\) 5548.26 1.03651
\(307\) −3469.17 −0.644938 −0.322469 0.946580i \(-0.604513\pi\)
−0.322469 + 0.946580i \(0.604513\pi\)
\(308\) −43.2469 −0.00800071
\(309\) 1195.83 0.220157
\(310\) 0 0
\(311\) 6714.74 1.22430 0.612151 0.790741i \(-0.290304\pi\)
0.612151 + 0.790741i \(0.290304\pi\)
\(312\) −131.145 −0.0237968
\(313\) 8460.93 1.52792 0.763962 0.645262i \(-0.223252\pi\)
0.763962 + 0.645262i \(0.223252\pi\)
\(314\) 3069.14 0.551597
\(315\) −10170.7 −1.81922
\(316\) −19.8293 −0.00353002
\(317\) −2562.60 −0.454037 −0.227019 0.973890i \(-0.572898\pi\)
−0.227019 + 0.973890i \(0.572898\pi\)
\(318\) 1403.29 0.247461
\(319\) 5554.34 0.974869
\(320\) 6172.87 1.07836
\(321\) −1129.59 −0.196410
\(322\) −13586.1 −2.35131
\(323\) 6667.53 1.14858
\(324\) 15.4164 0.00264341
\(325\) 134.129 0.0228928
\(326\) 1241.69 0.210954
\(327\) −266.181 −0.0450148
\(328\) 396.035 0.0666689
\(329\) 3481.70 0.583441
\(330\) −1814.23 −0.302637
\(331\) 6927.34 1.15034 0.575168 0.818035i \(-0.304937\pi\)
0.575168 + 0.818035i \(0.304937\pi\)
\(332\) 17.8727 0.00295450
\(333\) 796.258 0.131035
\(334\) −8959.14 −1.46773
\(335\) 2632.98 0.429419
\(336\) −1894.60 −0.307616
\(337\) −7962.76 −1.28712 −0.643559 0.765396i \(-0.722543\pi\)
−0.643559 + 0.765396i \(0.722543\pi\)
\(338\) −6109.85 −0.983230
\(339\) 263.099 0.0421522
\(340\) −21.1036 −0.00336619
\(341\) 0 0
\(342\) 6597.06 1.04307
\(343\) 11191.0 1.76168
\(344\) −5633.83 −0.883011
\(345\) −1655.61 −0.258363
\(346\) −2562.26 −0.398115
\(347\) 5009.82 0.775047 0.387524 0.921860i \(-0.373331\pi\)
0.387524 + 0.921860i \(0.373331\pi\)
\(348\) −2.05928 −0.000317210 0
\(349\) −11251.9 −1.72579 −0.862893 0.505387i \(-0.831350\pi\)
−0.862893 + 0.505387i \(0.831350\pi\)
\(350\) 1932.09 0.295071
\(351\) −308.542 −0.0469195
\(352\) 60.8631 0.00921595
\(353\) 4725.56 0.712510 0.356255 0.934389i \(-0.384053\pi\)
0.356255 + 0.934389i \(0.384053\pi\)
\(354\) −537.314 −0.0806721
\(355\) 2087.20 0.312048
\(356\) −15.1527 −0.00225588
\(357\) −2210.36 −0.327688
\(358\) 1055.74 0.155859
\(359\) 4407.51 0.647965 0.323983 0.946063i \(-0.394978\pi\)
0.323983 + 0.946063i \(0.394978\pi\)
\(360\) 7146.38 1.04624
\(361\) 1068.92 0.155841
\(362\) −72.0871 −0.0104663
\(363\) 1834.79 0.265294
\(364\) 4.73894 0.000682385 0
\(365\) −5313.02 −0.761907
\(366\) −1009.03 −0.144106
\(367\) 6824.22 0.970631 0.485316 0.874339i \(-0.338705\pi\)
0.485316 + 0.874339i \(0.338705\pi\)
\(368\) 9573.99 1.35619
\(369\) 458.489 0.0646829
\(370\) −1042.62 −0.146496
\(371\) 17354.9 2.42863
\(372\) 0 0
\(373\) −6106.42 −0.847663 −0.423831 0.905741i \(-0.639315\pi\)
−0.423831 + 0.905741i \(0.639315\pi\)
\(374\) 12239.8 1.69225
\(375\) −1152.00 −0.158637
\(376\) −2446.39 −0.335540
\(377\) −608.638 −0.0831471
\(378\) −4444.45 −0.604756
\(379\) −139.667 −0.0189293 −0.00946467 0.999955i \(-0.503013\pi\)
−0.00946467 + 0.999955i \(0.503013\pi\)
\(380\) −25.0929 −0.00338747
\(381\) −43.1345 −0.00580013
\(382\) −11903.2 −1.59430
\(383\) −4348.93 −0.580209 −0.290105 0.956995i \(-0.593690\pi\)
−0.290105 + 0.956995i \(0.593690\pi\)
\(384\) 1335.10 0.177425
\(385\) −22437.1 −2.97013
\(386\) 12503.2 1.64869
\(387\) −6522.26 −0.856706
\(388\) 21.2100 0.00277519
\(389\) 4382.60 0.571226 0.285613 0.958345i \(-0.407803\pi\)
0.285613 + 0.958345i \(0.407803\pi\)
\(390\) 198.801 0.0258120
\(391\) 11169.6 1.44469
\(392\) −15613.1 −2.01169
\(393\) −905.413 −0.116214
\(394\) 8152.25 1.04240
\(395\) −10287.7 −1.31046
\(396\) 35.1791 0.00446418
\(397\) −14744.3 −1.86397 −0.931985 0.362497i \(-0.881924\pi\)
−0.931985 + 0.362497i \(0.881924\pi\)
\(398\) 14705.6 1.85208
\(399\) −2628.19 −0.329760
\(400\) −1361.53 −0.170191
\(401\) −5972.56 −0.743779 −0.371889 0.928277i \(-0.621290\pi\)
−0.371889 + 0.928277i \(0.621290\pi\)
\(402\) 566.170 0.0702437
\(403\) 0 0
\(404\) 11.7741 0.00144996
\(405\) 7998.24 0.981323
\(406\) −8767.24 −1.07170
\(407\) 1756.59 0.213933
\(408\) 1553.10 0.188455
\(409\) −13396.1 −1.61955 −0.809773 0.586743i \(-0.800410\pi\)
−0.809773 + 0.586743i \(0.800410\pi\)
\(410\) −600.348 −0.0723148
\(411\) −798.975 −0.0958894
\(412\) 30.3624 0.00363070
\(413\) −6645.11 −0.791730
\(414\) 11051.6 1.31197
\(415\) 9272.62 1.09681
\(416\) −6.66931 −0.000786033 0
\(417\) −191.888 −0.0225343
\(418\) 14553.5 1.70295
\(419\) 446.144 0.0520180 0.0260090 0.999662i \(-0.491720\pi\)
0.0260090 + 0.999662i \(0.491720\pi\)
\(420\) 8.31859 0.000966441 0
\(421\) 15218.5 1.76177 0.880885 0.473331i \(-0.156949\pi\)
0.880885 + 0.473331i \(0.156949\pi\)
\(422\) −12408.7 −1.43139
\(423\) −2832.18 −0.325545
\(424\) −12194.3 −1.39672
\(425\) −1588.45 −0.181296
\(426\) 448.810 0.0510444
\(427\) −12478.9 −1.41428
\(428\) −28.6806 −0.00323909
\(429\) −334.935 −0.0376943
\(430\) 8540.29 0.957789
\(431\) −12855.2 −1.43669 −0.718347 0.695685i \(-0.755101\pi\)
−0.718347 + 0.695685i \(0.755101\pi\)
\(432\) 3131.96 0.348812
\(433\) −4458.66 −0.494849 −0.247425 0.968907i \(-0.579584\pi\)
−0.247425 + 0.968907i \(0.579584\pi\)
\(434\) 0 0
\(435\) −1068.38 −0.117759
\(436\) −6.75840 −0.000742359 0
\(437\) 13281.1 1.45382
\(438\) −1142.46 −0.124632
\(439\) 1586.80 0.172515 0.0862574 0.996273i \(-0.472509\pi\)
0.0862574 + 0.996273i \(0.472509\pi\)
\(440\) 15765.3 1.70814
\(441\) −18075.3 −1.95176
\(442\) −1341.22 −0.144333
\(443\) 5725.56 0.614063 0.307031 0.951699i \(-0.400664\pi\)
0.307031 + 0.951699i \(0.400664\pi\)
\(444\) −0.651257 −6.96110e−5 0
\(445\) −7861.45 −0.837457
\(446\) 9295.16 0.986858
\(447\) −1064.24 −0.112611
\(448\) 16415.7 1.73118
\(449\) 10883.1 1.14389 0.571945 0.820292i \(-0.306189\pi\)
0.571945 + 0.820292i \(0.306189\pi\)
\(450\) −1571.66 −0.164642
\(451\) 1011.45 0.105604
\(452\) 6.68015 0.000695150 0
\(453\) −2007.39 −0.208202
\(454\) −9801.87 −1.01327
\(455\) 2458.63 0.253324
\(456\) 1846.68 0.189647
\(457\) −11910.6 −1.21916 −0.609580 0.792725i \(-0.708662\pi\)
−0.609580 + 0.792725i \(0.708662\pi\)
\(458\) −1579.99 −0.161197
\(459\) 3653.95 0.371573
\(460\) −42.0364 −0.00426077
\(461\) 15426.3 1.55852 0.779258 0.626703i \(-0.215596\pi\)
0.779258 + 0.626703i \(0.215596\pi\)
\(462\) −4824.64 −0.485850
\(463\) −8913.03 −0.894651 −0.447326 0.894371i \(-0.647624\pi\)
−0.447326 + 0.894371i \(0.647624\pi\)
\(464\) 6178.20 0.618137
\(465\) 0 0
\(466\) −8139.00 −0.809081
\(467\) −3902.15 −0.386660 −0.193330 0.981134i \(-0.561929\pi\)
−0.193330 + 0.981134i \(0.561929\pi\)
\(468\) −3.85488 −0.000380752 0
\(469\) 7001.98 0.689384
\(470\) 3708.48 0.363956
\(471\) 994.611 0.0973020
\(472\) 4669.15 0.455328
\(473\) −14388.5 −1.39869
\(474\) −2212.17 −0.214363
\(475\) −1888.72 −0.182443
\(476\) −56.1216 −0.00540405
\(477\) −14117.3 −1.35511
\(478\) −7925.22 −0.758350
\(479\) −3224.40 −0.307571 −0.153786 0.988104i \(-0.549147\pi\)
−0.153786 + 0.988104i \(0.549147\pi\)
\(480\) −11.7071 −0.00111324
\(481\) −192.485 −0.0182465
\(482\) 10029.9 0.947821
\(483\) −4402.82 −0.414773
\(484\) 46.5858 0.00437508
\(485\) 11004.1 1.03024
\(486\) 5451.65 0.508831
\(487\) 4071.20 0.378817 0.189408 0.981898i \(-0.439343\pi\)
0.189408 + 0.981898i \(0.439343\pi\)
\(488\) 8768.24 0.813359
\(489\) 402.394 0.0372124
\(490\) 23667.8 2.18205
\(491\) −7428.97 −0.682821 −0.341410 0.939914i \(-0.610905\pi\)
−0.341410 + 0.939914i \(0.610905\pi\)
\(492\) −0.374997 −3.43621e−5 0
\(493\) 7207.88 0.658472
\(494\) −1594.75 −0.145246
\(495\) 18251.4 1.65725
\(496\) 0 0
\(497\) 5550.56 0.500959
\(498\) 1993.89 0.179414
\(499\) 283.026 0.0253907 0.0126954 0.999919i \(-0.495959\pi\)
0.0126954 + 0.999919i \(0.495959\pi\)
\(500\) −29.2495 −0.00261615
\(501\) −2903.38 −0.258909
\(502\) 7281.88 0.647422
\(503\) −1244.68 −0.110333 −0.0551663 0.998477i \(-0.517569\pi\)
−0.0551663 + 0.998477i \(0.517569\pi\)
\(504\) 19004.6 1.67963
\(505\) 6108.56 0.538272
\(506\) 24380.4 2.14198
\(507\) −1980.01 −0.173442
\(508\) −1.09520 −9.56524e−5 0
\(509\) 20183.1 1.75757 0.878783 0.477221i \(-0.158356\pi\)
0.878783 + 0.477221i \(0.158356\pi\)
\(510\) −2354.33 −0.204415
\(511\) −14129.1 −1.22316
\(512\) −11534.2 −0.995595
\(513\) 4344.67 0.373922
\(514\) −4804.34 −0.412277
\(515\) 15752.4 1.34784
\(516\) 5.33454 0.000455117 0
\(517\) −6247.95 −0.531498
\(518\) −2772.68 −0.235183
\(519\) −830.347 −0.0702277
\(520\) −1727.54 −0.145688
\(521\) 16693.2 1.40373 0.701866 0.712309i \(-0.252351\pi\)
0.701866 + 0.712309i \(0.252351\pi\)
\(522\) 7131.70 0.597981
\(523\) −6206.27 −0.518893 −0.259447 0.965757i \(-0.583540\pi\)
−0.259447 + 0.965757i \(0.583540\pi\)
\(524\) −22.9886 −0.00191653
\(525\) 626.130 0.0520506
\(526\) 4817.38 0.399330
\(527\) 0 0
\(528\) 3399.88 0.280229
\(529\) 10081.8 0.828619
\(530\) 18485.3 1.51500
\(531\) 5405.46 0.441764
\(532\) −66.7304 −0.00543821
\(533\) −110.834 −0.00900701
\(534\) −1690.44 −0.136990
\(535\) −14879.9 −1.20246
\(536\) −4919.90 −0.396469
\(537\) 342.131 0.0274936
\(538\) −11033.0 −0.884136
\(539\) −39875.0 −3.18653
\(540\) −13.7515 −0.00109587
\(541\) 8048.93 0.639650 0.319825 0.947477i \(-0.396376\pi\)
0.319825 + 0.947477i \(0.396376\pi\)
\(542\) 18967.3 1.50316
\(543\) −23.3612 −0.00184627
\(544\) 78.9822 0.00622488
\(545\) −3506.35 −0.275588
\(546\) 528.678 0.0414384
\(547\) −14153.7 −1.10634 −0.553169 0.833069i \(-0.686581\pi\)
−0.553169 + 0.833069i \(0.686581\pi\)
\(548\) −20.2862 −0.00158135
\(549\) 10151.0 0.789130
\(550\) −3467.16 −0.268801
\(551\) 8570.41 0.662635
\(552\) 3093.62 0.238538
\(553\) −27358.5 −2.10380
\(554\) −22054.8 −1.69137
\(555\) −337.882 −0.0258419
\(556\) −4.87209 −0.000371623 0
\(557\) −11544.6 −0.878209 −0.439105 0.898436i \(-0.644704\pi\)
−0.439105 + 0.898436i \(0.644704\pi\)
\(558\) 0 0
\(559\) 1576.67 0.119295
\(560\) −24957.2 −1.88328
\(561\) 3966.52 0.298514
\(562\) −15918.2 −1.19478
\(563\) −4061.79 −0.304057 −0.152029 0.988376i \(-0.548581\pi\)
−0.152029 + 0.988376i \(0.548581\pi\)
\(564\) 2.31643 0.000172942 0
\(565\) 3465.76 0.258063
\(566\) −5464.26 −0.405795
\(567\) 21270.0 1.57541
\(568\) −3900.07 −0.288104
\(569\) −7909.78 −0.582768 −0.291384 0.956606i \(-0.594116\pi\)
−0.291384 + 0.956606i \(0.594116\pi\)
\(570\) −2799.38 −0.205707
\(571\) −15751.8 −1.15445 −0.577226 0.816584i \(-0.695865\pi\)
−0.577226 + 0.816584i \(0.695865\pi\)
\(572\) −8.50408 −0.000621632 0
\(573\) −3857.46 −0.281235
\(574\) −1596.52 −0.116093
\(575\) −3164.03 −0.229477
\(576\) −13353.3 −0.965953
\(577\) −2440.52 −0.176084 −0.0880418 0.996117i \(-0.528061\pi\)
−0.0880418 + 0.996117i \(0.528061\pi\)
\(578\) 1967.27 0.141570
\(579\) 4051.89 0.290830
\(580\) −27.1265 −0.00194201
\(581\) 24659.0 1.76080
\(582\) 2366.20 0.168526
\(583\) −31143.6 −2.21241
\(584\) 9927.70 0.703444
\(585\) −1999.97 −0.141348
\(586\) 15086.6 1.06352
\(587\) −20001.4 −1.40638 −0.703189 0.711003i \(-0.748241\pi\)
−0.703189 + 0.711003i \(0.748241\pi\)
\(588\) 14.7837 0.00103685
\(589\) 0 0
\(590\) −7077.93 −0.493888
\(591\) 2641.89 0.183879
\(592\) 1953.88 0.135649
\(593\) −19246.4 −1.33281 −0.666403 0.745592i \(-0.732167\pi\)
−0.666403 + 0.745592i \(0.732167\pi\)
\(594\) 7975.62 0.550915
\(595\) −29116.7 −2.00616
\(596\) −27.0214 −0.00185711
\(597\) 4765.63 0.326708
\(598\) −2671.57 −0.182690
\(599\) −797.368 −0.0543900 −0.0271950 0.999630i \(-0.508657\pi\)
−0.0271950 + 0.999630i \(0.508657\pi\)
\(600\) −439.947 −0.0299346
\(601\) 27003.7 1.83278 0.916391 0.400284i \(-0.131088\pi\)
0.916391 + 0.400284i \(0.131088\pi\)
\(602\) 22711.5 1.53762
\(603\) −5695.75 −0.384658
\(604\) −50.9681 −0.00343355
\(605\) 24169.4 1.62418
\(606\) 1313.52 0.0880497
\(607\) 44.8936 0.00300194 0.00150097 0.999999i \(-0.499522\pi\)
0.00150097 + 0.999999i \(0.499522\pi\)
\(608\) 93.9124 0.00626423
\(609\) −2841.19 −0.189049
\(610\) −13291.7 −0.882239
\(611\) 684.643 0.0453317
\(612\) 45.6520 0.00301531
\(613\) 20881.5 1.37585 0.687924 0.725783i \(-0.258522\pi\)
0.687924 + 0.725783i \(0.258522\pi\)
\(614\) −9826.58 −0.645877
\(615\) −194.554 −0.0127564
\(616\) 41925.1 2.74223
\(617\) −9980.66 −0.651226 −0.325613 0.945503i \(-0.605571\pi\)
−0.325613 + 0.945503i \(0.605571\pi\)
\(618\) 3387.24 0.220477
\(619\) −16993.1 −1.10341 −0.551704 0.834040i \(-0.686022\pi\)
−0.551704 + 0.834040i \(0.686022\pi\)
\(620\) 0 0
\(621\) 7278.31 0.470320
\(622\) 19019.8 1.22608
\(623\) −20906.2 −1.34444
\(624\) −372.555 −0.0239009
\(625\) −17826.6 −1.14090
\(626\) 23966.0 1.53015
\(627\) 4716.32 0.300402
\(628\) 25.2534 0.00160465
\(629\) 2279.53 0.144500
\(630\) −28808.9 −1.82187
\(631\) 8269.88 0.521741 0.260870 0.965374i \(-0.415990\pi\)
0.260870 + 0.965374i \(0.415990\pi\)
\(632\) 19223.3 1.20991
\(633\) −4021.28 −0.252499
\(634\) −7258.67 −0.454698
\(635\) −568.203 −0.0355094
\(636\) 11.5465 0.000719889 0
\(637\) 4369.45 0.271780
\(638\) 15732.9 0.976288
\(639\) −4515.09 −0.279522
\(640\) 17587.0 1.08623
\(641\) 1873.25 0.115427 0.0577135 0.998333i \(-0.481619\pi\)
0.0577135 + 0.998333i \(0.481619\pi\)
\(642\) −3199.62 −0.196696
\(643\) 23753.4 1.45683 0.728416 0.685135i \(-0.240257\pi\)
0.728416 + 0.685135i \(0.240257\pi\)
\(644\) −111.789 −0.00684020
\(645\) 2767.64 0.168955
\(646\) 18886.1 1.15025
\(647\) −30839.5 −1.87392 −0.936961 0.349434i \(-0.886374\pi\)
−0.936961 + 0.349434i \(0.886374\pi\)
\(648\) −14945.2 −0.906024
\(649\) 11924.7 0.721243
\(650\) 379.928 0.0229261
\(651\) 0 0
\(652\) 10.2169 0.000613686 0
\(653\) −15713.2 −0.941664 −0.470832 0.882223i \(-0.656046\pi\)
−0.470832 + 0.882223i \(0.656046\pi\)
\(654\) −753.970 −0.0450804
\(655\) −11926.8 −0.711481
\(656\) 1125.06 0.0669605
\(657\) 11493.3 0.682489
\(658\) 9862.06 0.584291
\(659\) 931.559 0.0550659 0.0275329 0.999621i \(-0.491235\pi\)
0.0275329 + 0.999621i \(0.491235\pi\)
\(660\) −14.9278 −0.000880400 0
\(661\) −8162.57 −0.480314 −0.240157 0.970734i \(-0.577199\pi\)
−0.240157 + 0.970734i \(0.577199\pi\)
\(662\) 19622.0 1.15201
\(663\) −434.647 −0.0254604
\(664\) −17326.5 −1.01265
\(665\) −34620.7 −2.01885
\(666\) 2255.44 0.131226
\(667\) 14357.4 0.833463
\(668\) −73.7173 −0.00426977
\(669\) 3012.27 0.174082
\(670\) 7458.05 0.430044
\(671\) 22393.6 1.28837
\(672\) −31.1330 −0.00178718
\(673\) −1267.42 −0.0725935 −0.0362967 0.999341i \(-0.511556\pi\)
−0.0362967 + 0.999341i \(0.511556\pi\)
\(674\) −22554.9 −1.28899
\(675\) −1035.06 −0.0590213
\(676\) −50.2728 −0.00286031
\(677\) −112.092 −0.00636341 −0.00318171 0.999995i \(-0.501013\pi\)
−0.00318171 + 0.999995i \(0.501013\pi\)
\(678\) 745.240 0.0422135
\(679\) 29263.4 1.65394
\(680\) 20458.7 1.15376
\(681\) −3176.48 −0.178741
\(682\) 0 0
\(683\) 31714.0 1.77672 0.888361 0.459145i \(-0.151844\pi\)
0.888361 + 0.459145i \(0.151844\pi\)
\(684\) 54.2817 0.00303438
\(685\) −10524.8 −0.587051
\(686\) 31698.9 1.76424
\(687\) −512.025 −0.0284352
\(688\) −16004.6 −0.886872
\(689\) 3412.68 0.188698
\(690\) −4689.60 −0.258739
\(691\) −33805.8 −1.86112 −0.930559 0.366141i \(-0.880679\pi\)
−0.930559 + 0.366141i \(0.880679\pi\)
\(692\) −21.0827 −0.00115815
\(693\) 48536.6 2.66054
\(694\) 14190.5 0.776176
\(695\) −2527.71 −0.137959
\(696\) 1996.34 0.108723
\(697\) 1312.56 0.0713298
\(698\) −31871.4 −1.72830
\(699\) −2637.59 −0.142722
\(700\) 15.8976 0.000858389 0
\(701\) −17004.6 −0.916200 −0.458100 0.888901i \(-0.651470\pi\)
−0.458100 + 0.888901i \(0.651470\pi\)
\(702\) −873.959 −0.0469878
\(703\) 2710.43 0.145414
\(704\) −29458.2 −1.57706
\(705\) 1201.80 0.0642020
\(706\) 13385.4 0.713547
\(707\) 16244.7 0.864136
\(708\) −4.42111 −0.000234683 0
\(709\) 13570.8 0.718847 0.359424 0.933175i \(-0.382973\pi\)
0.359424 + 0.933175i \(0.382973\pi\)
\(710\) 5912.09 0.312503
\(711\) 22254.7 1.17386
\(712\) 14689.6 0.773197
\(713\) 0 0
\(714\) −6260.95 −0.328165
\(715\) −4412.04 −0.230771
\(716\) 8.68678 0.000453408 0
\(717\) −2568.31 −0.133773
\(718\) 12484.5 0.648909
\(719\) −15697.7 −0.814221 −0.407110 0.913379i \(-0.633464\pi\)
−0.407110 + 0.913379i \(0.633464\pi\)
\(720\) 20301.4 1.05082
\(721\) 41891.0 2.16380
\(722\) 3027.75 0.156068
\(723\) 3250.38 0.167196
\(724\) −0.593145 −3.04476e−5 0
\(725\) −2041.78 −0.104593
\(726\) 5197.14 0.265680
\(727\) 10091.7 0.514827 0.257413 0.966301i \(-0.417130\pi\)
0.257413 + 0.966301i \(0.417130\pi\)
\(728\) −4594.11 −0.233886
\(729\) −16092.7 −0.817592
\(730\) −15049.4 −0.763016
\(731\) −18671.9 −0.944743
\(732\) −8.30244 −0.000419217 0
\(733\) 16373.5 0.825058 0.412529 0.910944i \(-0.364646\pi\)
0.412529 + 0.910944i \(0.364646\pi\)
\(734\) 19329.9 0.972044
\(735\) 7670.00 0.384915
\(736\) 157.325 0.00787916
\(737\) −12565.1 −0.628009
\(738\) 1298.69 0.0647770
\(739\) 6101.71 0.303728 0.151864 0.988401i \(-0.451472\pi\)
0.151864 + 0.988401i \(0.451472\pi\)
\(740\) −8.57889 −0.000426171 0
\(741\) −516.809 −0.0256214
\(742\) 49158.5 2.43216
\(743\) −20279.0 −1.00130 −0.500648 0.865651i \(-0.666905\pi\)
−0.500648 + 0.865651i \(0.666905\pi\)
\(744\) 0 0
\(745\) −14019.1 −0.689422
\(746\) −17296.7 −0.848897
\(747\) −20058.8 −0.982481
\(748\) 100.711 0.00492293
\(749\) −39570.6 −1.93041
\(750\) −3263.08 −0.158868
\(751\) −5328.18 −0.258892 −0.129446 0.991586i \(-0.541320\pi\)
−0.129446 + 0.991586i \(0.541320\pi\)
\(752\) −6949.71 −0.337008
\(753\) 2359.83 0.114206
\(754\) −1723.99 −0.0832681
\(755\) −26443.0 −1.27465
\(756\) −36.5697 −0.00175929
\(757\) 39467.0 1.89492 0.947459 0.319877i \(-0.103642\pi\)
0.947459 + 0.319877i \(0.103642\pi\)
\(758\) −395.613 −0.0189569
\(759\) 7900.91 0.377846
\(760\) 24326.0 1.16105
\(761\) 12216.4 0.581924 0.290962 0.956735i \(-0.406025\pi\)
0.290962 + 0.956735i \(0.406025\pi\)
\(762\) −122.180 −0.00580857
\(763\) −9324.56 −0.442427
\(764\) −97.9417 −0.00463797
\(765\) 23684.9 1.11939
\(766\) −12318.5 −0.581054
\(767\) −1306.70 −0.0615151
\(768\) 32.8610 0.00154397
\(769\) −3740.66 −0.175412 −0.0877058 0.996146i \(-0.527954\pi\)
−0.0877058 + 0.996146i \(0.527954\pi\)
\(770\) −63554.1 −2.97445
\(771\) −1556.94 −0.0727259
\(772\) 102.878 0.00479621
\(773\) −23313.3 −1.08476 −0.542381 0.840132i \(-0.682477\pi\)
−0.542381 + 0.840132i \(0.682477\pi\)
\(774\) −18474.6 −0.857953
\(775\) 0 0
\(776\) −20561.8 −0.951191
\(777\) −898.539 −0.0414864
\(778\) 12413.9 0.572057
\(779\) 1560.68 0.0717807
\(780\) 1.63577 7.50897e−5 0
\(781\) −9960.54 −0.456359
\(782\) 31638.5 1.44679
\(783\) 4696.77 0.214366
\(784\) −44353.7 −2.02048
\(785\) 13101.8 0.595700
\(786\) −2564.62 −0.116383
\(787\) −5454.52 −0.247056 −0.123528 0.992341i \(-0.539421\pi\)
−0.123528 + 0.992341i \(0.539421\pi\)
\(788\) 67.0781 0.00303243
\(789\) 1561.16 0.0704421
\(790\) −29140.4 −1.31237
\(791\) 9216.59 0.414291
\(792\) −34103.9 −1.53009
\(793\) −2453.86 −0.109885
\(794\) −41763.9 −1.86668
\(795\) 5990.50 0.267247
\(796\) 121.000 0.00538787
\(797\) −30234.8 −1.34376 −0.671878 0.740662i \(-0.734512\pi\)
−0.671878 + 0.740662i \(0.734512\pi\)
\(798\) −7444.47 −0.330240
\(799\) −8107.97 −0.358998
\(800\) −22.3733 −0.000988771 0
\(801\) 17006.1 0.750164
\(802\) −16917.5 −0.744861
\(803\) 25354.8 1.11426
\(804\) 4.65854 0.000204346 0
\(805\) −57997.5 −2.53931
\(806\) 0 0
\(807\) −3575.44 −0.155962
\(808\) −11414.2 −0.496969
\(809\) −15570.9 −0.676692 −0.338346 0.941022i \(-0.609867\pi\)
−0.338346 + 0.941022i \(0.609867\pi\)
\(810\) 22655.4 0.982751
\(811\) 39997.3 1.73181 0.865903 0.500212i \(-0.166745\pi\)
0.865903 + 0.500212i \(0.166745\pi\)
\(812\) −72.1383 −0.00311768
\(813\) 6146.69 0.265159
\(814\) 4975.61 0.214245
\(815\) 5300.66 0.227821
\(816\) 4412.03 0.189279
\(817\) −22201.6 −0.950715
\(818\) −37945.1 −1.62190
\(819\) −5318.58 −0.226919
\(820\) −4.93976 −0.000210371 0
\(821\) 3888.67 0.165305 0.0826526 0.996578i \(-0.473661\pi\)
0.0826526 + 0.996578i \(0.473661\pi\)
\(822\) −2263.13 −0.0960290
\(823\) 8674.69 0.367413 0.183706 0.982981i \(-0.441190\pi\)
0.183706 + 0.982981i \(0.441190\pi\)
\(824\) −29434.4 −1.24441
\(825\) −1123.60 −0.0474166
\(826\) −18822.6 −0.792883
\(827\) −34076.8 −1.43285 −0.716425 0.697664i \(-0.754223\pi\)
−0.716425 + 0.697664i \(0.754223\pi\)
\(828\) 90.9343 0.00381665
\(829\) 26358.7 1.10431 0.552157 0.833740i \(-0.313805\pi\)
0.552157 + 0.833740i \(0.313805\pi\)
\(830\) 26265.1 1.09840
\(831\) −7147.25 −0.298358
\(832\) 3227.99 0.134508
\(833\) −51745.9 −2.15233
\(834\) −543.533 −0.0225671
\(835\) −38245.6 −1.58508
\(836\) 119.748 0.00495405
\(837\) 0 0
\(838\) 1263.72 0.0520937
\(839\) −10563.3 −0.434667 −0.217333 0.976097i \(-0.569736\pi\)
−0.217333 + 0.976097i \(0.569736\pi\)
\(840\) −8064.35 −0.331246
\(841\) −15124.0 −0.620117
\(842\) 43107.1 1.76433
\(843\) −5158.58 −0.210760
\(844\) −102.101 −0.00416406
\(845\) −26082.3 −1.06184
\(846\) −8022.28 −0.326019
\(847\) 64274.4 2.60743
\(848\) −34641.6 −1.40283
\(849\) −1770.79 −0.0715825
\(850\) −4499.35 −0.181560
\(851\) 4540.59 0.182902
\(852\) 3.69288 0.000148493 0
\(853\) 26356.4 1.05794 0.528972 0.848639i \(-0.322578\pi\)
0.528972 + 0.848639i \(0.322578\pi\)
\(854\) −35347.1 −1.41634
\(855\) 28162.2 1.12646
\(856\) 27804.0 1.11019
\(857\) 40642.9 1.61999 0.809997 0.586434i \(-0.199469\pi\)
0.809997 + 0.586434i \(0.199469\pi\)
\(858\) −948.719 −0.0377491
\(859\) −670.594 −0.0266360 −0.0133180 0.999911i \(-0.504239\pi\)
−0.0133180 + 0.999911i \(0.504239\pi\)
\(860\) 70.2709 0.00278630
\(861\) −517.383 −0.0204789
\(862\) −36413.0 −1.43878
\(863\) 4084.35 0.161104 0.0805521 0.996750i \(-0.474332\pi\)
0.0805521 + 0.996750i \(0.474332\pi\)
\(864\) 51.4660 0.00202652
\(865\) −10938.0 −0.429946
\(866\) −12629.4 −0.495569
\(867\) 637.530 0.0249731
\(868\) 0 0
\(869\) 49095.1 1.91650
\(870\) −3026.24 −0.117930
\(871\) 1376.87 0.0535632
\(872\) 6551.84 0.254442
\(873\) −23804.3 −0.922856
\(874\) 37619.2 1.45594
\(875\) −40355.5 −1.55916
\(876\) −9.40032 −0.000362565 0
\(877\) 11904.9 0.458381 0.229190 0.973382i \(-0.426392\pi\)
0.229190 + 0.973382i \(0.426392\pi\)
\(878\) 4494.69 0.172766
\(879\) 4889.10 0.187606
\(880\) 44786.0 1.71561
\(881\) 6410.77 0.245158 0.122579 0.992459i \(-0.460884\pi\)
0.122579 + 0.992459i \(0.460884\pi\)
\(882\) −51199.0 −1.95460
\(883\) −45946.4 −1.75110 −0.875548 0.483131i \(-0.839499\pi\)
−0.875548 + 0.483131i \(0.839499\pi\)
\(884\) −11.0358 −0.000419879 0
\(885\) −2293.74 −0.0871221
\(886\) 16217.9 0.614957
\(887\) −4682.77 −0.177263 −0.0886314 0.996064i \(-0.528249\pi\)
−0.0886314 + 0.996064i \(0.528249\pi\)
\(888\) 631.353 0.0238590
\(889\) −1511.04 −0.0570064
\(890\) −22267.9 −0.838676
\(891\) −38169.2 −1.43515
\(892\) 76.4821 0.00287087
\(893\) −9640.65 −0.361268
\(894\) −3014.52 −0.112775
\(895\) 4506.83 0.168320
\(896\) 46769.6 1.74382
\(897\) −865.773 −0.0322267
\(898\) 30826.9 1.14555
\(899\) 0 0
\(900\) −12.9319 −0.000478958 0
\(901\) −40415.1 −1.49436
\(902\) 2864.98 0.105758
\(903\) 7360.07 0.271238
\(904\) −6475.98 −0.238261
\(905\) −307.732 −0.0113032
\(906\) −5686.02 −0.208505
\(907\) 37758.0 1.38229 0.691143 0.722718i \(-0.257107\pi\)
0.691143 + 0.722718i \(0.257107\pi\)
\(908\) −80.6515 −0.00294770
\(909\) −13214.2 −0.482165
\(910\) 6964.18 0.253693
\(911\) 9397.12 0.341757 0.170878 0.985292i \(-0.445339\pi\)
0.170878 + 0.985292i \(0.445339\pi\)
\(912\) 5246.05 0.190476
\(913\) −44250.8 −1.60404
\(914\) −33737.4 −1.22093
\(915\) −4307.43 −0.155628
\(916\) −13.0004 −0.000468937 0
\(917\) −31717.4 −1.14220
\(918\) 10350.0 0.372113
\(919\) −22677.7 −0.814003 −0.407001 0.913428i \(-0.633426\pi\)
−0.407001 + 0.913428i \(0.633426\pi\)
\(920\) 40751.6 1.46037
\(921\) −3184.48 −0.113933
\(922\) 43695.8 1.56078
\(923\) 1091.46 0.0389231
\(924\) −39.6979 −0.00141338
\(925\) −645.723 −0.0229527
\(926\) −25246.5 −0.895954
\(927\) −34076.2 −1.20734
\(928\) 101.523 0.00359123
\(929\) 44923.6 1.58654 0.793270 0.608870i \(-0.208377\pi\)
0.793270 + 0.608870i \(0.208377\pi\)
\(930\) 0 0
\(931\) −61527.5 −2.16593
\(932\) −66.9690 −0.00235370
\(933\) 6163.72 0.216282
\(934\) −11053.0 −0.387223
\(935\) 52250.2 1.82756
\(936\) 3737.07 0.130502
\(937\) −26478.7 −0.923181 −0.461591 0.887093i \(-0.652721\pi\)
−0.461591 + 0.887093i \(0.652721\pi\)
\(938\) 19833.4 0.690388
\(939\) 7766.61 0.269919
\(940\) 30.5140 0.00105878
\(941\) 40910.2 1.41725 0.708627 0.705584i \(-0.249315\pi\)
0.708627 + 0.705584i \(0.249315\pi\)
\(942\) 2817.28 0.0974437
\(943\) 2614.50 0.0902860
\(944\) 13264.1 0.457319
\(945\) −18972.9 −0.653109
\(946\) −40756.0 −1.40073
\(947\) −50738.5 −1.74106 −0.870528 0.492118i \(-0.836223\pi\)
−0.870528 + 0.492118i \(0.836223\pi\)
\(948\) −18.2021 −0.000623603 0
\(949\) −2778.35 −0.0950358
\(950\) −5349.87 −0.182708
\(951\) −2352.31 −0.0802090
\(952\) 54406.3 1.85223
\(953\) −54925.2 −1.86695 −0.933474 0.358646i \(-0.883239\pi\)
−0.933474 + 0.358646i \(0.883239\pi\)
\(954\) −39987.9 −1.35708
\(955\) −50813.6 −1.72177
\(956\) −65.2100 −0.00220611
\(957\) 5098.54 0.172218
\(958\) −9133.25 −0.308019
\(959\) −27988.8 −0.942446
\(960\) 5666.32 0.190500
\(961\) 0 0
\(962\) −545.222 −0.0182730
\(963\) 32188.7 1.07712
\(964\) 82.5278 0.00275730
\(965\) 53374.8 1.78051
\(966\) −12471.2 −0.415377
\(967\) 25491.0 0.847710 0.423855 0.905730i \(-0.360677\pi\)
0.423855 + 0.905730i \(0.360677\pi\)
\(968\) −45162.1 −1.49955
\(969\) 6120.38 0.202905
\(970\) 31169.5 1.03174
\(971\) −18137.7 −0.599451 −0.299726 0.954025i \(-0.596895\pi\)
−0.299726 + 0.954025i \(0.596895\pi\)
\(972\) 44.8571 0.00148024
\(973\) −6722.02 −0.221478
\(974\) 11531.9 0.379368
\(975\) 123.123 0.00404418
\(976\) 24908.8 0.816916
\(977\) −16079.0 −0.526522 −0.263261 0.964725i \(-0.584798\pi\)
−0.263261 + 0.964725i \(0.584798\pi\)
\(978\) 1139.80 0.0372666
\(979\) 37516.4 1.22475
\(980\) 194.743 0.00634779
\(981\) 7585.05 0.246862
\(982\) −21042.9 −0.683815
\(983\) 5217.22 0.169281 0.0846405 0.996412i \(-0.473026\pi\)
0.0846405 + 0.996412i \(0.473026\pi\)
\(984\) 363.536 0.0117775
\(985\) 34801.1 1.12574
\(986\) 20416.6 0.659430
\(987\) 3195.98 0.103069
\(988\) −13.1219 −0.000422533 0
\(989\) −37192.7 −1.19581
\(990\) 51698.0 1.65967
\(991\) −59048.3 −1.89277 −0.946384 0.323045i \(-0.895293\pi\)
−0.946384 + 0.323045i \(0.895293\pi\)
\(992\) 0 0
\(993\) 6358.87 0.203215
\(994\) 15722.2 0.501688
\(995\) 62776.8 2.00016
\(996\) 16.4060 0.000521933 0
\(997\) 22280.5 0.707753 0.353876 0.935292i \(-0.384863\pi\)
0.353876 + 0.935292i \(0.384863\pi\)
\(998\) 801.683 0.0254277
\(999\) 1485.38 0.0470423
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.4.a.l.1.20 28
31.11 odd 30 31.4.g.a.28.3 yes 56
31.17 odd 30 31.4.g.a.10.3 56
31.30 odd 2 961.4.a.m.1.20 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.4.g.a.10.3 56 31.17 odd 30
31.4.g.a.28.3 yes 56 31.11 odd 30
961.4.a.l.1.20 28 1.1 even 1 trivial
961.4.a.m.1.20 28 31.30 odd 2