Properties

Label 961.4.a.d.1.3
Level $961$
Weight $4$
Character 961.1
Self dual yes
Analytic conductor $56.701$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,4,Mod(1,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.7008355155\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.27702880.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 134x^{2} + 4120 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-9.28490\) of defining polynomial
Character \(\chi\) \(=\) 961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.70156 q^{2} -9.28490 q^{3} +5.70156 q^{4} -16.1047 q^{5} -34.3686 q^{6} -1.29844 q^{7} -8.50781 q^{8} +59.2094 q^{9} -59.6125 q^{10} +34.3686 q^{11} -52.9384 q^{12} +78.0222 q^{13} -4.80625 q^{14} +149.530 q^{15} -77.1047 q^{16} -38.1116 q^{17} +219.167 q^{18} -24.2828 q^{19} -91.8219 q^{20} +12.0559 q^{21} +127.218 q^{22} +69.7093 q^{23} +78.9942 q^{24} +134.361 q^{25} +288.804 q^{26} -299.061 q^{27} -7.40312 q^{28} +94.6480 q^{29} +553.496 q^{30} -217.345 q^{32} -319.109 q^{33} -141.072 q^{34} +20.9109 q^{35} +337.586 q^{36} +201.497 q^{37} -89.8844 q^{38} -724.428 q^{39} +137.016 q^{40} +93.4141 q^{41} +44.6255 q^{42} -449.418 q^{43} +195.955 q^{44} -953.548 q^{45} +258.033 q^{46} +271.822 q^{47} +715.909 q^{48} -341.314 q^{49} +497.345 q^{50} +353.862 q^{51} +444.848 q^{52} +305.430 q^{53} -1106.99 q^{54} -553.496 q^{55} +11.0469 q^{56} +225.464 q^{57} +350.345 q^{58} -577.455 q^{59} +852.557 q^{60} -637.350 q^{61} -76.8797 q^{63} -187.680 q^{64} -1256.52 q^{65} -1181.20 q^{66} +693.025 q^{67} -217.296 q^{68} -647.244 q^{69} +77.4031 q^{70} -274.711 q^{71} -503.742 q^{72} -652.177 q^{73} +745.853 q^{74} -1247.53 q^{75} -138.450 q^{76} -44.6255 q^{77} -2681.52 q^{78} +788.680 q^{79} +1241.75 q^{80} +1178.10 q^{81} +345.778 q^{82} -710.657 q^{83} +68.7373 q^{84} +613.775 q^{85} -1663.55 q^{86} -878.797 q^{87} -292.402 q^{88} +387.050 q^{89} -3529.62 q^{90} -101.307 q^{91} +397.452 q^{92} +1006.17 q^{94} +391.067 q^{95} +2018.03 q^{96} -510.795 q^{97} -1263.40 q^{98} +2034.95 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 10 q^{4} - 26 q^{5} - 18 q^{7} + 30 q^{8} + 160 q^{9} - 136 q^{10} + 32 q^{14} - 270 q^{16} + 326 q^{18} - 238 q^{19} - 188 q^{20} + 38 q^{25} - 4 q^{28} - 498 q^{32} - 380 q^{33} - 6 q^{35}+ \cdots - 994 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.70156 1.30870 0.654350 0.756192i \(-0.272942\pi\)
0.654350 + 0.756192i \(0.272942\pi\)
\(3\) −9.28490 −1.78688 −0.893440 0.449183i \(-0.851715\pi\)
−0.893440 + 0.449183i \(0.851715\pi\)
\(4\) 5.70156 0.712695
\(5\) −16.1047 −1.44045 −0.720223 0.693742i \(-0.755961\pi\)
−0.720223 + 0.693742i \(0.755961\pi\)
\(6\) −34.3686 −2.33849
\(7\) −1.29844 −0.0701091 −0.0350545 0.999385i \(-0.511160\pi\)
−0.0350545 + 0.999385i \(0.511160\pi\)
\(8\) −8.50781 −0.375996
\(9\) 59.2094 2.19294
\(10\) −59.6125 −1.88511
\(11\) 34.3686 0.942048 0.471024 0.882120i \(-0.343884\pi\)
0.471024 + 0.882120i \(0.343884\pi\)
\(12\) −52.9384 −1.27350
\(13\) 78.0222 1.66457 0.832287 0.554345i \(-0.187031\pi\)
0.832287 + 0.554345i \(0.187031\pi\)
\(14\) −4.80625 −0.0917517
\(15\) 149.530 2.57391
\(16\) −77.1047 −1.20476
\(17\) −38.1116 −0.543731 −0.271865 0.962335i \(-0.587641\pi\)
−0.271865 + 0.962335i \(0.587641\pi\)
\(18\) 219.167 2.86990
\(19\) −24.2828 −0.293203 −0.146602 0.989196i \(-0.546834\pi\)
−0.146602 + 0.989196i \(0.546834\pi\)
\(20\) −91.8219 −1.02660
\(21\) 12.0559 0.125276
\(22\) 127.218 1.23286
\(23\) 69.7093 0.631973 0.315987 0.948764i \(-0.397664\pi\)
0.315987 + 0.948764i \(0.397664\pi\)
\(24\) 78.9942 0.671859
\(25\) 134.361 1.07489
\(26\) 288.804 2.17843
\(27\) −299.061 −2.13164
\(28\) −7.40312 −0.0499664
\(29\) 94.6480 0.606058 0.303029 0.952981i \(-0.402002\pi\)
0.303029 + 0.952981i \(0.402002\pi\)
\(30\) 553.496 3.36847
\(31\) 0 0
\(32\) −217.345 −1.20067
\(33\) −319.109 −1.68333
\(34\) −141.072 −0.711580
\(35\) 20.9109 0.100988
\(36\) 337.586 1.56290
\(37\) 201.497 0.895294 0.447647 0.894210i \(-0.352262\pi\)
0.447647 + 0.894210i \(0.352262\pi\)
\(38\) −89.8844 −0.383715
\(39\) −724.428 −2.97439
\(40\) 137.016 0.541602
\(41\) 93.4141 0.355825 0.177913 0.984046i \(-0.443066\pi\)
0.177913 + 0.984046i \(0.443066\pi\)
\(42\) 44.6255 0.163949
\(43\) −449.418 −1.59385 −0.796926 0.604077i \(-0.793542\pi\)
−0.796926 + 0.604077i \(0.793542\pi\)
\(44\) 195.955 0.671393
\(45\) −953.548 −3.15881
\(46\) 258.033 0.827063
\(47\) 271.822 0.843602 0.421801 0.906688i \(-0.361398\pi\)
0.421801 + 0.906688i \(0.361398\pi\)
\(48\) 715.909 2.15276
\(49\) −341.314 −0.995085
\(50\) 497.345 1.40670
\(51\) 353.862 0.971581
\(52\) 444.848 1.18633
\(53\) 305.430 0.791585 0.395792 0.918340i \(-0.370470\pi\)
0.395792 + 0.918340i \(0.370470\pi\)
\(54\) −1106.99 −2.78968
\(55\) −553.496 −1.35697
\(56\) 11.0469 0.0263607
\(57\) 225.464 0.523919
\(58\) 350.345 0.793148
\(59\) −577.455 −1.27421 −0.637103 0.770778i \(-0.719868\pi\)
−0.637103 + 0.770778i \(0.719868\pi\)
\(60\) 852.557 1.83441
\(61\) −637.350 −1.33778 −0.668888 0.743363i \(-0.733229\pi\)
−0.668888 + 0.743363i \(0.733229\pi\)
\(62\) 0 0
\(63\) −76.8797 −0.153745
\(64\) −187.680 −0.366562
\(65\) −1256.52 −2.39773
\(66\) −1181.20 −2.20297
\(67\) 693.025 1.26368 0.631839 0.775099i \(-0.282300\pi\)
0.631839 + 0.775099i \(0.282300\pi\)
\(68\) −217.296 −0.387514
\(69\) −647.244 −1.12926
\(70\) 77.4031 0.132163
\(71\) −274.711 −0.459186 −0.229593 0.973287i \(-0.573739\pi\)
−0.229593 + 0.973287i \(0.573739\pi\)
\(72\) −503.742 −0.824536
\(73\) −652.177 −1.04564 −0.522819 0.852444i \(-0.675120\pi\)
−0.522819 + 0.852444i \(0.675120\pi\)
\(74\) 745.853 1.17167
\(75\) −1247.53 −1.92069
\(76\) −138.450 −0.208965
\(77\) −44.6255 −0.0660461
\(78\) −2681.52 −3.89259
\(79\) 788.680 1.12321 0.561604 0.827406i \(-0.310185\pi\)
0.561604 + 0.827406i \(0.310185\pi\)
\(80\) 1241.75 1.73539
\(81\) 1178.10 1.61604
\(82\) 345.778 0.465668
\(83\) −710.657 −0.939817 −0.469908 0.882715i \(-0.655713\pi\)
−0.469908 + 0.882715i \(0.655713\pi\)
\(84\) 68.7373 0.0892839
\(85\) 613.775 0.783215
\(86\) −1663.55 −2.08587
\(87\) −878.797 −1.08295
\(88\) −292.402 −0.354206
\(89\) 387.050 0.460980 0.230490 0.973075i \(-0.425967\pi\)
0.230490 + 0.973075i \(0.425967\pi\)
\(90\) −3529.62 −4.13394
\(91\) −101.307 −0.116702
\(92\) 397.452 0.450404
\(93\) 0 0
\(94\) 1006.17 1.10402
\(95\) 391.067 0.422344
\(96\) 2018.03 2.14546
\(97\) −510.795 −0.534674 −0.267337 0.963603i \(-0.586144\pi\)
−0.267337 + 0.963603i \(0.586144\pi\)
\(98\) −1263.40 −1.30227
\(99\) 2034.95 2.06586
\(100\) 766.067 0.766067
\(101\) 197.383 0.194459 0.0972293 0.995262i \(-0.469002\pi\)
0.0972293 + 0.995262i \(0.469002\pi\)
\(102\) 1309.84 1.27151
\(103\) −1392.70 −1.33230 −0.666149 0.745819i \(-0.732058\pi\)
−0.666149 + 0.745819i \(0.732058\pi\)
\(104\) −663.798 −0.625872
\(105\) −194.156 −0.180454
\(106\) 1130.57 1.03595
\(107\) −1706.69 −1.54198 −0.770990 0.636847i \(-0.780238\pi\)
−0.770990 + 0.636847i \(0.780238\pi\)
\(108\) −1705.11 −1.51921
\(109\) −202.264 −0.177738 −0.0888688 0.996043i \(-0.528325\pi\)
−0.0888688 + 0.996043i \(0.528325\pi\)
\(110\) −2048.80 −1.77587
\(111\) −1870.88 −1.59978
\(112\) 100.116 0.0844646
\(113\) −477.770 −0.397742 −0.198871 0.980026i \(-0.563727\pi\)
−0.198871 + 0.980026i \(0.563727\pi\)
\(114\) 834.567 0.685653
\(115\) −1122.65 −0.910324
\(116\) 539.641 0.431935
\(117\) 4619.64 3.65031
\(118\) −2137.48 −1.66755
\(119\) 49.4855 0.0381204
\(120\) −1272.18 −0.967777
\(121\) −149.797 −0.112545
\(122\) −2359.19 −1.75075
\(123\) −867.340 −0.635817
\(124\) 0 0
\(125\) −150.755 −0.107871
\(126\) −284.575 −0.201206
\(127\) 12.7378 0.00889997 0.00444998 0.999990i \(-0.498584\pi\)
0.00444998 + 0.999990i \(0.498584\pi\)
\(128\) 1044.05 0.720955
\(129\) 4172.80 2.84802
\(130\) −4651.10 −3.13791
\(131\) 1225.97 0.817659 0.408830 0.912611i \(-0.365937\pi\)
0.408830 + 0.912611i \(0.365937\pi\)
\(132\) −1819.42 −1.19970
\(133\) 31.5297 0.0205562
\(134\) 2565.27 1.65378
\(135\) 4816.28 3.07051
\(136\) 324.246 0.204440
\(137\) 1030.38 0.642562 0.321281 0.946984i \(-0.395887\pi\)
0.321281 + 0.946984i \(0.395887\pi\)
\(138\) −2395.81 −1.47786
\(139\) 923.281 0.563394 0.281697 0.959503i \(-0.409103\pi\)
0.281697 + 0.959503i \(0.409103\pi\)
\(140\) 119.225 0.0719739
\(141\) −2523.84 −1.50742
\(142\) −1016.86 −0.600936
\(143\) 2681.52 1.56811
\(144\) −4565.32 −2.64197
\(145\) −1524.28 −0.872995
\(146\) −2414.07 −1.36843
\(147\) 3169.07 1.77810
\(148\) 1148.85 0.638072
\(149\) 1884.01 1.03586 0.517932 0.855422i \(-0.326702\pi\)
0.517932 + 0.855422i \(0.326702\pi\)
\(150\) −4617.80 −2.51361
\(151\) 1680.81 0.905846 0.452923 0.891550i \(-0.350381\pi\)
0.452923 + 0.891550i \(0.350381\pi\)
\(152\) 206.594 0.110243
\(153\) −2256.56 −1.19237
\(154\) −165.184 −0.0864346
\(155\) 0 0
\(156\) −4130.37 −2.11984
\(157\) −879.014 −0.446834 −0.223417 0.974723i \(-0.571721\pi\)
−0.223417 + 0.974723i \(0.571721\pi\)
\(158\) 2919.35 1.46994
\(159\) −2835.88 −1.41447
\(160\) 3500.28 1.72951
\(161\) −90.5132 −0.0443071
\(162\) 4360.80 2.11492
\(163\) 755.879 0.363221 0.181611 0.983371i \(-0.441869\pi\)
0.181611 + 0.983371i \(0.441869\pi\)
\(164\) 532.606 0.253595
\(165\) 5139.16 2.42474
\(166\) −2630.54 −1.22994
\(167\) −1116.13 −0.517179 −0.258589 0.965987i \(-0.583258\pi\)
−0.258589 + 0.965987i \(0.583258\pi\)
\(168\) −102.569 −0.0471034
\(169\) 3890.46 1.77081
\(170\) 2271.93 1.02499
\(171\) −1437.77 −0.642977
\(172\) −2562.39 −1.13593
\(173\) 433.019 0.190300 0.0951498 0.995463i \(-0.469667\pi\)
0.0951498 + 0.995463i \(0.469667\pi\)
\(174\) −3252.92 −1.41726
\(175\) −174.459 −0.0753593
\(176\) −2649.98 −1.13494
\(177\) 5361.61 2.27685
\(178\) 1432.69 0.603284
\(179\) −2424.52 −1.01239 −0.506193 0.862420i \(-0.668948\pi\)
−0.506193 + 0.862420i \(0.668948\pi\)
\(180\) −5436.72 −2.25127
\(181\) 2583.58 1.06097 0.530486 0.847693i \(-0.322009\pi\)
0.530486 + 0.847693i \(0.322009\pi\)
\(182\) −374.994 −0.152727
\(183\) 5917.73 2.39045
\(184\) −593.073 −0.237619
\(185\) −3245.04 −1.28962
\(186\) 0 0
\(187\) −1309.84 −0.512221
\(188\) 1549.81 0.601231
\(189\) 388.312 0.149447
\(190\) 1447.56 0.552721
\(191\) −4629.12 −1.75367 −0.876837 0.480788i \(-0.840351\pi\)
−0.876837 + 0.480788i \(0.840351\pi\)
\(192\) 1742.59 0.655002
\(193\) 2407.24 0.897807 0.448904 0.893580i \(-0.351815\pi\)
0.448904 + 0.893580i \(0.351815\pi\)
\(194\) −1890.74 −0.699728
\(195\) 11666.7 4.28446
\(196\) −1946.02 −0.709192
\(197\) −3159.72 −1.14275 −0.571373 0.820690i \(-0.693589\pi\)
−0.571373 + 0.820690i \(0.693589\pi\)
\(198\) 7532.48 2.70358
\(199\) −1922.12 −0.684701 −0.342350 0.939572i \(-0.611223\pi\)
−0.342350 + 0.939572i \(0.611223\pi\)
\(200\) −1143.12 −0.404153
\(201\) −6434.67 −2.25804
\(202\) 730.625 0.254488
\(203\) −122.895 −0.0424902
\(204\) 2017.57 0.692441
\(205\) −1504.40 −0.512547
\(206\) −5155.16 −1.74358
\(207\) 4127.44 1.38588
\(208\) −6015.87 −2.00541
\(209\) −834.567 −0.276212
\(210\) −718.680 −0.236160
\(211\) −346.024 −0.112897 −0.0564484 0.998406i \(-0.517978\pi\)
−0.0564484 + 0.998406i \(0.517978\pi\)
\(212\) 1741.43 0.564159
\(213\) 2550.66 0.820510
\(214\) −6317.42 −2.01799
\(215\) 7237.74 2.29586
\(216\) 2544.35 0.801487
\(217\) 0 0
\(218\) −748.693 −0.232605
\(219\) 6055.40 1.86843
\(220\) −3155.79 −0.967107
\(221\) −2973.55 −0.905080
\(222\) −6925.17 −2.09364
\(223\) 4651.88 1.39692 0.698459 0.715650i \(-0.253869\pi\)
0.698459 + 0.715650i \(0.253869\pi\)
\(224\) 282.209 0.0841782
\(225\) 7955.43 2.35716
\(226\) −1768.50 −0.520525
\(227\) −2010.54 −0.587859 −0.293930 0.955827i \(-0.594963\pi\)
−0.293930 + 0.955827i \(0.594963\pi\)
\(228\) 1285.49 0.373394
\(229\) −5708.95 −1.64742 −0.823708 0.567015i \(-0.808098\pi\)
−0.823708 + 0.567015i \(0.808098\pi\)
\(230\) −4155.54 −1.19134
\(231\) 414.344 0.118017
\(232\) −805.247 −0.227875
\(233\) −5766.15 −1.62126 −0.810628 0.585561i \(-0.800874\pi\)
−0.810628 + 0.585561i \(0.800874\pi\)
\(234\) 17099.9 4.77716
\(235\) −4377.61 −1.21516
\(236\) −3292.39 −0.908121
\(237\) −7322.81 −2.00704
\(238\) 183.174 0.0498882
\(239\) −4524.60 −1.22457 −0.612285 0.790637i \(-0.709750\pi\)
−0.612285 + 0.790637i \(0.709750\pi\)
\(240\) −11529.5 −3.10094
\(241\) −5866.78 −1.56810 −0.784051 0.620697i \(-0.786850\pi\)
−0.784051 + 0.620697i \(0.786850\pi\)
\(242\) −554.483 −0.147287
\(243\) −2863.87 −0.756038
\(244\) −3633.89 −0.953427
\(245\) 5496.76 1.43337
\(246\) −3210.51 −0.832093
\(247\) −1894.60 −0.488058
\(248\) 0 0
\(249\) 6598.38 1.67934
\(250\) −558.028 −0.141171
\(251\) −3074.09 −0.773046 −0.386523 0.922280i \(-0.626324\pi\)
−0.386523 + 0.922280i \(0.626324\pi\)
\(252\) −438.334 −0.109573
\(253\) 2395.81 0.595350
\(254\) 47.1497 0.0116474
\(255\) −5698.84 −1.39951
\(256\) 5366.07 1.31008
\(257\) −3915.95 −0.950469 −0.475234 0.879859i \(-0.657637\pi\)
−0.475234 + 0.879859i \(0.657637\pi\)
\(258\) 15445.9 3.72721
\(259\) −261.631 −0.0627682
\(260\) −7164.14 −1.70885
\(261\) 5604.05 1.32905
\(262\) 4538.00 1.07007
\(263\) 1638.42 0.384142 0.192071 0.981381i \(-0.438480\pi\)
0.192071 + 0.981381i \(0.438480\pi\)
\(264\) 2714.92 0.632924
\(265\) −4918.85 −1.14024
\(266\) 116.709 0.0269019
\(267\) −3593.72 −0.823715
\(268\) 3951.32 0.900618
\(269\) 4721.44 1.07015 0.535077 0.844803i \(-0.320283\pi\)
0.535077 + 0.844803i \(0.320283\pi\)
\(270\) 17827.8 4.01838
\(271\) −4324.14 −0.969272 −0.484636 0.874716i \(-0.661048\pi\)
−0.484636 + 0.874716i \(0.661048\pi\)
\(272\) 2938.58 0.655065
\(273\) 940.625 0.208532
\(274\) 3814.00 0.840921
\(275\) 4617.80 1.01260
\(276\) −3690.30 −0.804819
\(277\) 7569.51 1.64191 0.820953 0.570996i \(-0.193443\pi\)
0.820953 + 0.570996i \(0.193443\pi\)
\(278\) 3417.58 0.737313
\(279\) 0 0
\(280\) −177.906 −0.0379712
\(281\) −4570.05 −0.970201 −0.485101 0.874458i \(-0.661217\pi\)
−0.485101 + 0.874458i \(0.661217\pi\)
\(282\) −9342.15 −1.97275
\(283\) 1958.83 0.411450 0.205725 0.978610i \(-0.434045\pi\)
0.205725 + 0.978610i \(0.434045\pi\)
\(284\) −1566.28 −0.327259
\(285\) −3631.02 −0.754677
\(286\) 9925.80 2.05218
\(287\) −121.292 −0.0249466
\(288\) −12868.9 −2.63301
\(289\) −3460.51 −0.704357
\(290\) −5642.20 −1.14249
\(291\) 4742.68 0.955399
\(292\) −3718.43 −0.745221
\(293\) −7389.79 −1.47343 −0.736717 0.676201i \(-0.763625\pi\)
−0.736717 + 0.676201i \(0.763625\pi\)
\(294\) 11730.5 2.32700
\(295\) 9299.73 1.83543
\(296\) −1714.30 −0.336627
\(297\) −10278.3 −2.00811
\(298\) 6973.77 1.35564
\(299\) 5438.87 1.05197
\(300\) −7112.86 −1.36887
\(301\) 583.542 0.111743
\(302\) 6221.64 1.18548
\(303\) −1832.68 −0.347474
\(304\) 1872.32 0.353240
\(305\) 10264.3 1.92700
\(306\) −8352.81 −1.56045
\(307\) −5905.23 −1.09782 −0.548908 0.835883i \(-0.684956\pi\)
−0.548908 + 0.835883i \(0.684956\pi\)
\(308\) −254.435 −0.0470708
\(309\) 12931.1 2.38066
\(310\) 0 0
\(311\) −1671.28 −0.304725 −0.152363 0.988325i \(-0.548688\pi\)
−0.152363 + 0.988325i \(0.548688\pi\)
\(312\) 6163.30 1.11836
\(313\) 5146.05 0.929304 0.464652 0.885493i \(-0.346179\pi\)
0.464652 + 0.885493i \(0.346179\pi\)
\(314\) −3253.72 −0.584772
\(315\) 1238.12 0.221461
\(316\) 4496.71 0.800505
\(317\) −8464.03 −1.49964 −0.749822 0.661639i \(-0.769861\pi\)
−0.749822 + 0.661639i \(0.769861\pi\)
\(318\) −10497.2 −1.85111
\(319\) 3252.92 0.570936
\(320\) 3022.52 0.528013
\(321\) 15846.4 2.75533
\(322\) −335.040 −0.0579846
\(323\) 925.457 0.159424
\(324\) 6716.99 1.15175
\(325\) 10483.1 1.78923
\(326\) 2797.93 0.475347
\(327\) 1878.00 0.317596
\(328\) −794.749 −0.133789
\(329\) −352.944 −0.0591441
\(330\) 19022.9 3.17326
\(331\) 2152.98 0.357518 0.178759 0.983893i \(-0.442792\pi\)
0.178759 + 0.983893i \(0.442792\pi\)
\(332\) −4051.86 −0.669803
\(333\) 11930.5 1.96333
\(334\) −4131.43 −0.676832
\(335\) −11160.9 −1.82026
\(336\) −929.564 −0.150928
\(337\) −3973.05 −0.642213 −0.321107 0.947043i \(-0.604055\pi\)
−0.321107 + 0.947043i \(0.604055\pi\)
\(338\) 14400.8 2.31745
\(339\) 4436.05 0.710717
\(340\) 3499.48 0.558194
\(341\) 0 0
\(342\) −5322.00 −0.841464
\(343\) 888.539 0.139874
\(344\) 3823.56 0.599281
\(345\) 10423.7 1.62664
\(346\) 1602.85 0.249045
\(347\) −9040.79 −1.39866 −0.699330 0.714799i \(-0.746518\pi\)
−0.699330 + 0.714799i \(0.746518\pi\)
\(348\) −5010.52 −0.771816
\(349\) 3333.06 0.511216 0.255608 0.966780i \(-0.417724\pi\)
0.255608 + 0.966780i \(0.417724\pi\)
\(350\) −645.772 −0.0986228
\(351\) −23333.4 −3.54827
\(352\) −7469.86 −1.13109
\(353\) −5968.19 −0.899871 −0.449936 0.893061i \(-0.648553\pi\)
−0.449936 + 0.893061i \(0.648553\pi\)
\(354\) 19846.3 2.97972
\(355\) 4424.13 0.661433
\(356\) 2206.79 0.328538
\(357\) −459.468 −0.0681167
\(358\) −8974.51 −1.32491
\(359\) 1481.94 0.217865 0.108933 0.994049i \(-0.465257\pi\)
0.108933 + 0.994049i \(0.465257\pi\)
\(360\) 8112.61 1.18770
\(361\) −6269.34 −0.914032
\(362\) 9563.29 1.38850
\(363\) 1390.85 0.201104
\(364\) −577.608 −0.0831727
\(365\) 10503.1 1.50619
\(366\) 21904.9 3.12838
\(367\) 5962.73 0.848098 0.424049 0.905639i \(-0.360608\pi\)
0.424049 + 0.905639i \(0.360608\pi\)
\(368\) −5374.91 −0.761377
\(369\) 5530.99 0.780303
\(370\) −12011.7 −1.68773
\(371\) −396.582 −0.0554973
\(372\) 0 0
\(373\) 11549.8 1.60328 0.801640 0.597807i \(-0.203961\pi\)
0.801640 + 0.597807i \(0.203961\pi\)
\(374\) −4848.47 −0.670343
\(375\) 1399.74 0.192753
\(376\) −2312.61 −0.317191
\(377\) 7384.64 1.00883
\(378\) 1437.36 0.195582
\(379\) −1000.65 −0.135620 −0.0678099 0.997698i \(-0.521601\pi\)
−0.0678099 + 0.997698i \(0.521601\pi\)
\(380\) 2229.69 0.301002
\(381\) −118.269 −0.0159032
\(382\) −17135.0 −2.29503
\(383\) −6639.34 −0.885782 −0.442891 0.896575i \(-0.646047\pi\)
−0.442891 + 0.896575i \(0.646047\pi\)
\(384\) −9693.94 −1.28826
\(385\) 718.680 0.0951359
\(386\) 8910.54 1.17496
\(387\) −26609.8 −3.49522
\(388\) −2912.33 −0.381060
\(389\) 1496.59 0.195065 0.0975326 0.995232i \(-0.468905\pi\)
0.0975326 + 0.995232i \(0.468905\pi\)
\(390\) 43185.0 5.60707
\(391\) −2656.73 −0.343623
\(392\) 2903.84 0.374148
\(393\) −11383.0 −1.46106
\(394\) −11695.9 −1.49551
\(395\) −12701.4 −1.61792
\(396\) 11602.4 1.47233
\(397\) 14816.9 1.87314 0.936572 0.350475i \(-0.113980\pi\)
0.936572 + 0.350475i \(0.113980\pi\)
\(398\) −7114.84 −0.896068
\(399\) −292.750 −0.0367315
\(400\) −10359.9 −1.29498
\(401\) −14142.0 −1.76114 −0.880572 0.473912i \(-0.842841\pi\)
−0.880572 + 0.473912i \(0.842841\pi\)
\(402\) −23818.3 −2.95510
\(403\) 0 0
\(404\) 1125.39 0.138590
\(405\) −18972.9 −2.32783
\(406\) −454.902 −0.0556069
\(407\) 6925.17 0.843410
\(408\) −3010.59 −0.365310
\(409\) −1156.80 −0.139853 −0.0699266 0.997552i \(-0.522277\pi\)
−0.0699266 + 0.997552i \(0.522277\pi\)
\(410\) −5568.65 −0.670770
\(411\) −9566.95 −1.14818
\(412\) −7940.56 −0.949522
\(413\) 749.789 0.0893334
\(414\) 15278.0 1.81370
\(415\) 11444.9 1.35376
\(416\) −16957.8 −1.99861
\(417\) −8572.58 −1.00672
\(418\) −3089.20 −0.361478
\(419\) −15791.8 −1.84124 −0.920618 0.390463i \(-0.872315\pi\)
−0.920618 + 0.390463i \(0.872315\pi\)
\(420\) −1106.99 −0.128609
\(421\) −4921.06 −0.569686 −0.284843 0.958574i \(-0.591941\pi\)
−0.284843 + 0.958574i \(0.591941\pi\)
\(422\) −1280.83 −0.147748
\(423\) 16094.4 1.84997
\(424\) −2598.54 −0.297632
\(425\) −5120.71 −0.584449
\(426\) 9441.44 1.07380
\(427\) 827.560 0.0937902
\(428\) −9730.79 −1.09896
\(429\) −24897.6 −2.80202
\(430\) 26790.9 3.00459
\(431\) 4918.80 0.549722 0.274861 0.961484i \(-0.411368\pi\)
0.274861 + 0.961484i \(0.411368\pi\)
\(432\) 23059.0 2.56812
\(433\) 5726.51 0.635562 0.317781 0.948164i \(-0.397062\pi\)
0.317781 + 0.948164i \(0.397062\pi\)
\(434\) 0 0
\(435\) 14152.7 1.55994
\(436\) −1153.22 −0.126673
\(437\) −1692.74 −0.185297
\(438\) 22414.4 2.44521
\(439\) −2184.41 −0.237485 −0.118743 0.992925i \(-0.537886\pi\)
−0.118743 + 0.992925i \(0.537886\pi\)
\(440\) 4709.04 0.510215
\(441\) −20209.0 −2.18216
\(442\) −11006.8 −1.18448
\(443\) 6698.91 0.718453 0.359227 0.933250i \(-0.383040\pi\)
0.359227 + 0.933250i \(0.383040\pi\)
\(444\) −10666.9 −1.14016
\(445\) −6233.32 −0.664017
\(446\) 17219.2 1.82815
\(447\) −17492.8 −1.85097
\(448\) 243.690 0.0256993
\(449\) 13246.5 1.39229 0.696147 0.717899i \(-0.254896\pi\)
0.696147 + 0.717899i \(0.254896\pi\)
\(450\) 29447.5 3.08482
\(451\) 3210.51 0.335204
\(452\) −2724.04 −0.283469
\(453\) −15606.2 −1.61864
\(454\) −7442.13 −0.769331
\(455\) 1631.52 0.168103
\(456\) −1918.20 −0.196991
\(457\) −1004.60 −0.102829 −0.0514147 0.998677i \(-0.516373\pi\)
−0.0514147 + 0.998677i \(0.516373\pi\)
\(458\) −21132.0 −2.15597
\(459\) 11397.7 1.15904
\(460\) −6400.84 −0.648784
\(461\) 6851.60 0.692215 0.346107 0.938195i \(-0.387503\pi\)
0.346107 + 0.938195i \(0.387503\pi\)
\(462\) 1533.72 0.154448
\(463\) −16120.9 −1.61815 −0.809074 0.587707i \(-0.800031\pi\)
−0.809074 + 0.587707i \(0.800031\pi\)
\(464\) −7297.80 −0.730155
\(465\) 0 0
\(466\) −21343.7 −2.12174
\(467\) −15545.3 −1.54037 −0.770184 0.637821i \(-0.779836\pi\)
−0.770184 + 0.637821i \(0.779836\pi\)
\(468\) 26339.2 2.60156
\(469\) −899.850 −0.0885953
\(470\) −16204.0 −1.59028
\(471\) 8161.56 0.798439
\(472\) 4912.87 0.479096
\(473\) −15445.9 −1.50149
\(474\) −27105.8 −2.62661
\(475\) −3262.66 −0.315160
\(476\) 282.145 0.0271683
\(477\) 18084.3 1.73590
\(478\) −16748.1 −1.60259
\(479\) −9950.26 −0.949142 −0.474571 0.880217i \(-0.657397\pi\)
−0.474571 + 0.880217i \(0.657397\pi\)
\(480\) −32499.7 −3.09042
\(481\) 15721.2 1.49028
\(482\) −21716.2 −2.05217
\(483\) 840.406 0.0791714
\(484\) −854.076 −0.0802100
\(485\) 8226.20 0.770170
\(486\) −10600.8 −0.989427
\(487\) 15535.8 1.44557 0.722785 0.691073i \(-0.242862\pi\)
0.722785 + 0.691073i \(0.242862\pi\)
\(488\) 5422.46 0.502998
\(489\) −7018.27 −0.649033
\(490\) 20346.6 1.87585
\(491\) −10686.8 −0.982259 −0.491130 0.871086i \(-0.663416\pi\)
−0.491130 + 0.871086i \(0.663416\pi\)
\(492\) −4945.20 −0.453144
\(493\) −3607.19 −0.329532
\(494\) −7012.97 −0.638722
\(495\) −32772.2 −2.97576
\(496\) 0 0
\(497\) 356.695 0.0321931
\(498\) 24424.3 2.19775
\(499\) −515.153 −0.0462153 −0.0231076 0.999733i \(-0.507356\pi\)
−0.0231076 + 0.999733i \(0.507356\pi\)
\(500\) −859.537 −0.0768794
\(501\) 10363.2 0.924137
\(502\) −11378.9 −1.01169
\(503\) −16316.5 −1.44636 −0.723178 0.690662i \(-0.757319\pi\)
−0.723178 + 0.690662i \(0.757319\pi\)
\(504\) 654.078 0.0578074
\(505\) −3178.79 −0.280107
\(506\) 8868.25 0.779134
\(507\) −36122.5 −3.16422
\(508\) 72.6253 0.00634296
\(509\) 13161.2 1.14609 0.573044 0.819525i \(-0.305762\pi\)
0.573044 + 0.819525i \(0.305762\pi\)
\(510\) −21094.6 −1.83154
\(511\) 846.811 0.0733087
\(512\) 11510.4 0.993541
\(513\) 7262.04 0.625004
\(514\) −14495.1 −1.24388
\(515\) 22429.0 1.91910
\(516\) 23791.5 2.02977
\(517\) 9342.15 0.794714
\(518\) −968.444 −0.0821448
\(519\) −4020.54 −0.340042
\(520\) 10690.3 0.901536
\(521\) −7039.94 −0.591987 −0.295994 0.955190i \(-0.595651\pi\)
−0.295994 + 0.955190i \(0.595651\pi\)
\(522\) 20743.7 1.73933
\(523\) 2313.01 0.193386 0.0966932 0.995314i \(-0.469173\pi\)
0.0966932 + 0.995314i \(0.469173\pi\)
\(524\) 6989.94 0.582742
\(525\) 1619.84 0.134658
\(526\) 6064.72 0.502727
\(527\) 0 0
\(528\) 24604.8 2.02801
\(529\) −7307.62 −0.600610
\(530\) −18207.4 −1.49223
\(531\) −34190.7 −2.79426
\(532\) 179.769 0.0146503
\(533\) 7288.37 0.592297
\(534\) −13302.4 −1.07800
\(535\) 27485.7 2.22114
\(536\) −5896.12 −0.475138
\(537\) 22511.4 1.80901
\(538\) 17476.7 1.40051
\(539\) −11730.5 −0.937418
\(540\) 27460.3 2.18834
\(541\) 21561.2 1.71347 0.856736 0.515755i \(-0.172488\pi\)
0.856736 + 0.515755i \(0.172488\pi\)
\(542\) −16006.1 −1.26849
\(543\) −23988.3 −1.89583
\(544\) 8283.38 0.652844
\(545\) 3257.40 0.256022
\(546\) 3481.78 0.272906
\(547\) 14356.0 1.12216 0.561078 0.827763i \(-0.310387\pi\)
0.561078 + 0.827763i \(0.310387\pi\)
\(548\) 5874.76 0.457951
\(549\) −37737.1 −2.93366
\(550\) 17093.1 1.32518
\(551\) −2298.32 −0.177698
\(552\) 5506.63 0.424597
\(553\) −1024.05 −0.0787470
\(554\) 28019.0 2.14876
\(555\) 30129.9 2.30440
\(556\) 5264.15 0.401528
\(557\) 14741.8 1.12142 0.560708 0.828014i \(-0.310529\pi\)
0.560708 + 0.828014i \(0.310529\pi\)
\(558\) 0 0
\(559\) −35064.6 −2.65308
\(560\) −1612.33 −0.121667
\(561\) 12161.8 0.915277
\(562\) −16916.3 −1.26970
\(563\) 2748.64 0.205758 0.102879 0.994694i \(-0.467195\pi\)
0.102879 + 0.994694i \(0.467195\pi\)
\(564\) −14389.8 −1.07433
\(565\) 7694.34 0.572926
\(566\) 7250.74 0.538465
\(567\) −1529.69 −0.113299
\(568\) 2337.19 0.172652
\(569\) 26634.8 1.96237 0.981185 0.193072i \(-0.0618452\pi\)
0.981185 + 0.193072i \(0.0618452\pi\)
\(570\) −13440.4 −0.987646
\(571\) −31.9766 −0.00234357 −0.00117179 0.999999i \(-0.500373\pi\)
−0.00117179 + 0.999999i \(0.500373\pi\)
\(572\) 15288.8 1.11758
\(573\) 42980.9 3.13360
\(574\) −448.971 −0.0326476
\(575\) 9366.20 0.679300
\(576\) −11112.4 −0.803848
\(577\) −20700.9 −1.49357 −0.746784 0.665067i \(-0.768403\pi\)
−0.746784 + 0.665067i \(0.768403\pi\)
\(578\) −12809.3 −0.921792
\(579\) −22351.0 −1.60427
\(580\) −8690.75 −0.622179
\(581\) 922.745 0.0658897
\(582\) 17555.3 1.25033
\(583\) 10497.2 0.745711
\(584\) 5548.60 0.393155
\(585\) −74397.9 −5.25808
\(586\) −27353.8 −1.92828
\(587\) −21647.9 −1.52215 −0.761077 0.648661i \(-0.775329\pi\)
−0.761077 + 0.648661i \(0.775329\pi\)
\(588\) 18068.6 1.26724
\(589\) 0 0
\(590\) 34423.5 2.40202
\(591\) 29337.7 2.04195
\(592\) −15536.4 −1.07861
\(593\) −2483.54 −0.171984 −0.0859921 0.996296i \(-0.527406\pi\)
−0.0859921 + 0.996296i \(0.527406\pi\)
\(594\) −38045.8 −2.62801
\(595\) −796.949 −0.0549105
\(596\) 10741.8 0.738256
\(597\) 17846.7 1.22348
\(598\) 20132.3 1.37671
\(599\) −9572.52 −0.652959 −0.326480 0.945204i \(-0.605862\pi\)
−0.326480 + 0.945204i \(0.605862\pi\)
\(600\) 10613.7 0.722173
\(601\) −24741.3 −1.67923 −0.839615 0.543183i \(-0.817219\pi\)
−0.839615 + 0.543183i \(0.817219\pi\)
\(602\) 2160.02 0.146239
\(603\) 41033.6 2.77117
\(604\) 9583.26 0.645592
\(605\) 2412.43 0.162115
\(606\) −6783.78 −0.454740
\(607\) 7302.60 0.488309 0.244154 0.969736i \(-0.421490\pi\)
0.244154 + 0.969736i \(0.421490\pi\)
\(608\) 5277.76 0.352042
\(609\) 1141.06 0.0759248
\(610\) 37994.0 2.52186
\(611\) 21208.1 1.40424
\(612\) −12865.9 −0.849795
\(613\) 22393.1 1.47545 0.737724 0.675102i \(-0.235900\pi\)
0.737724 + 0.675102i \(0.235900\pi\)
\(614\) −21858.6 −1.43671
\(615\) 13968.2 0.915860
\(616\) 379.666 0.0248331
\(617\) 4557.77 0.297389 0.148695 0.988883i \(-0.452493\pi\)
0.148695 + 0.988883i \(0.452493\pi\)
\(618\) 47865.1 3.11556
\(619\) 7282.58 0.472878 0.236439 0.971646i \(-0.424020\pi\)
0.236439 + 0.971646i \(0.424020\pi\)
\(620\) 0 0
\(621\) −20847.3 −1.34714
\(622\) −6186.35 −0.398794
\(623\) −502.560 −0.0323189
\(624\) 55856.8 3.58343
\(625\) −14367.3 −0.919504
\(626\) 19048.4 1.21618
\(627\) 7748.87 0.493557
\(628\) −5011.75 −0.318457
\(629\) −7679.37 −0.486799
\(630\) 4582.99 0.289827
\(631\) −19578.5 −1.23520 −0.617598 0.786494i \(-0.711894\pi\)
−0.617598 + 0.786494i \(0.711894\pi\)
\(632\) −6709.94 −0.422321
\(633\) 3212.79 0.201733
\(634\) −31330.1 −1.96258
\(635\) −205.138 −0.0128199
\(636\) −16169.0 −1.00808
\(637\) −26630.1 −1.65639
\(638\) 12040.9 0.747184
\(639\) −16265.5 −1.00697
\(640\) −16814.2 −1.03850
\(641\) −19476.4 −1.20011 −0.600055 0.799959i \(-0.704855\pi\)
−0.600055 + 0.799959i \(0.704855\pi\)
\(642\) 58656.6 3.60590
\(643\) −19003.6 −1.16552 −0.582759 0.812645i \(-0.698027\pi\)
−0.582759 + 0.812645i \(0.698027\pi\)
\(644\) −516.066 −0.0315774
\(645\) −67201.7 −4.10242
\(646\) 3425.64 0.208638
\(647\) 445.008 0.0270403 0.0135202 0.999909i \(-0.495696\pi\)
0.0135202 + 0.999909i \(0.495696\pi\)
\(648\) −10023.0 −0.607626
\(649\) −19846.3 −1.20036
\(650\) 38804.0 2.34156
\(651\) 0 0
\(652\) 4309.69 0.258866
\(653\) 21404.0 1.28270 0.641349 0.767250i \(-0.278375\pi\)
0.641349 + 0.767250i \(0.278375\pi\)
\(654\) 6951.54 0.415637
\(655\) −19743.8 −1.17780
\(656\) −7202.66 −0.428684
\(657\) −38615.0 −2.29302
\(658\) −1306.44 −0.0774019
\(659\) −8508.17 −0.502931 −0.251465 0.967866i \(-0.580912\pi\)
−0.251465 + 0.967866i \(0.580912\pi\)
\(660\) 29301.2 1.72810
\(661\) −18003.2 −1.05937 −0.529686 0.848194i \(-0.677690\pi\)
−0.529686 + 0.848194i \(0.677690\pi\)
\(662\) 7969.39 0.467884
\(663\) 27609.1 1.61727
\(664\) 6046.14 0.353367
\(665\) −507.776 −0.0296101
\(666\) 44161.5 2.56940
\(667\) 6597.84 0.383013
\(668\) −6363.70 −0.368591
\(669\) −43192.2 −2.49613
\(670\) −41312.9 −2.38218
\(671\) −21904.9 −1.26025
\(672\) −2620.29 −0.150416
\(673\) 29209.0 1.67299 0.836497 0.547971i \(-0.184600\pi\)
0.836497 + 0.547971i \(0.184600\pi\)
\(674\) −14706.5 −0.840465
\(675\) −40182.1 −2.29127
\(676\) 22181.7 1.26204
\(677\) 15318.0 0.869598 0.434799 0.900528i \(-0.356819\pi\)
0.434799 + 0.900528i \(0.356819\pi\)
\(678\) 16420.3 0.930116
\(679\) 663.236 0.0374855
\(680\) −5221.89 −0.294486
\(681\) 18667.6 1.05043
\(682\) 0 0
\(683\) 24503.3 1.37276 0.686379 0.727244i \(-0.259199\pi\)
0.686379 + 0.727244i \(0.259199\pi\)
\(684\) −8197.54 −0.458247
\(685\) −16593.9 −0.925577
\(686\) 3288.98 0.183052
\(687\) 53007.0 2.94373
\(688\) 34652.2 1.92021
\(689\) 23830.3 1.31765
\(690\) 38583.8 2.12878
\(691\) 4356.01 0.239812 0.119906 0.992785i \(-0.461741\pi\)
0.119906 + 0.992785i \(0.461741\pi\)
\(692\) 2468.88 0.135626
\(693\) −2642.25 −0.144835
\(694\) −33465.1 −1.83043
\(695\) −14869.2 −0.811539
\(696\) 7476.64 0.407186
\(697\) −3560.16 −0.193473
\(698\) 12337.5 0.669028
\(699\) 53538.1 2.89699
\(700\) −994.691 −0.0537082
\(701\) 11272.1 0.607335 0.303667 0.952778i \(-0.401789\pi\)
0.303667 + 0.952778i \(0.401789\pi\)
\(702\) −86369.9 −4.64362
\(703\) −4892.91 −0.262503
\(704\) −6450.29 −0.345319
\(705\) 40645.6 2.17135
\(706\) −22091.6 −1.17766
\(707\) −256.289 −0.0136333
\(708\) 30569.5 1.62270
\(709\) 10200.0 0.540293 0.270147 0.962819i \(-0.412928\pi\)
0.270147 + 0.962819i \(0.412928\pi\)
\(710\) 16376.2 0.865617
\(711\) 46697.2 2.46313
\(712\) −3292.95 −0.173326
\(713\) 0 0
\(714\) −1700.75 −0.0891443
\(715\) −43185.0 −2.25878
\(716\) −13823.5 −0.721523
\(717\) 42010.5 2.18816
\(718\) 5485.48 0.285120
\(719\) 7893.86 0.409445 0.204723 0.978820i \(-0.434371\pi\)
0.204723 + 0.978820i \(0.434371\pi\)
\(720\) 73523.0 3.80561
\(721\) 1808.33 0.0934061
\(722\) −23206.4 −1.19619
\(723\) 54472.5 2.80201
\(724\) 14730.4 0.756150
\(725\) 12717.0 0.651444
\(726\) 5148.32 0.263184
\(727\) 15170.9 0.773946 0.386973 0.922091i \(-0.373521\pi\)
0.386973 + 0.922091i \(0.373521\pi\)
\(728\) 861.900 0.0438793
\(729\) −5217.88 −0.265096
\(730\) 38877.9 1.97114
\(731\) 17128.0 0.866626
\(732\) 33740.3 1.70366
\(733\) 9028.93 0.454967 0.227484 0.973782i \(-0.426950\pi\)
0.227484 + 0.973782i \(0.426950\pi\)
\(734\) 22071.4 1.10991
\(735\) −51036.8 −2.56125
\(736\) −15151.0 −0.758794
\(737\) 23818.3 1.19045
\(738\) 20473.3 1.02118
\(739\) −35356.1 −1.75994 −0.879970 0.475029i \(-0.842437\pi\)
−0.879970 + 0.475029i \(0.842437\pi\)
\(740\) −18501.8 −0.919109
\(741\) 17591.2 0.872101
\(742\) −1467.97 −0.0726293
\(743\) 3611.87 0.178340 0.0891700 0.996016i \(-0.471579\pi\)
0.0891700 + 0.996016i \(0.471579\pi\)
\(744\) 0 0
\(745\) −30341.3 −1.49211
\(746\) 42752.1 2.09821
\(747\) −42077.6 −2.06096
\(748\) −7468.16 −0.365057
\(749\) 2216.03 0.108107
\(750\) 5181.23 0.252256
\(751\) −1039.20 −0.0504938 −0.0252469 0.999681i \(-0.508037\pi\)
−0.0252469 + 0.999681i \(0.508037\pi\)
\(752\) −20958.7 −1.01634
\(753\) 28542.6 1.38134
\(754\) 27334.7 1.32025
\(755\) −27069.0 −1.30482
\(756\) 2213.98 0.106510
\(757\) 7435.20 0.356984 0.178492 0.983941i \(-0.442878\pi\)
0.178492 + 0.983941i \(0.442878\pi\)
\(758\) −3703.97 −0.177486
\(759\) −22244.9 −1.06382
\(760\) −3327.13 −0.158799
\(761\) 8641.89 0.411653 0.205827 0.978588i \(-0.434012\pi\)
0.205827 + 0.978588i \(0.434012\pi\)
\(762\) −437.780 −0.0208125
\(763\) 262.627 0.0124610
\(764\) −26393.2 −1.24983
\(765\) 36341.3 1.71754
\(766\) −24575.9 −1.15922
\(767\) −45054.3 −2.12101
\(768\) −49823.4 −2.34095
\(769\) −168.328 −0.00789343 −0.00394672 0.999992i \(-0.501256\pi\)
−0.00394672 + 0.999992i \(0.501256\pi\)
\(770\) 2660.24 0.124504
\(771\) 36359.2 1.69837
\(772\) 13725.0 0.639863
\(773\) 7869.07 0.366146 0.183073 0.983099i \(-0.441396\pi\)
0.183073 + 0.983099i \(0.441396\pi\)
\(774\) −98497.7 −4.57420
\(775\) 0 0
\(776\) 4345.75 0.201035
\(777\) 2429.22 0.112159
\(778\) 5539.74 0.255282
\(779\) −2268.36 −0.104329
\(780\) 66518.3 3.05351
\(781\) −9441.44 −0.432575
\(782\) −9834.06 −0.449700
\(783\) −28305.5 −1.29190
\(784\) 26316.9 1.19884
\(785\) 14156.2 0.643641
\(786\) −42134.9 −1.91209
\(787\) 18356.6 0.831440 0.415720 0.909493i \(-0.363530\pi\)
0.415720 + 0.909493i \(0.363530\pi\)
\(788\) −18015.4 −0.814430
\(789\) −15212.6 −0.686416
\(790\) −47015.2 −2.11737
\(791\) 620.355 0.0278853
\(792\) −17312.9 −0.776753
\(793\) −49727.5 −2.22683
\(794\) 54845.6 2.45138
\(795\) 45671.0 2.03746
\(796\) −10959.1 −0.487983
\(797\) 9837.74 0.437228 0.218614 0.975811i \(-0.429846\pi\)
0.218614 + 0.975811i \(0.429846\pi\)
\(798\) −1083.63 −0.0480704
\(799\) −10359.6 −0.458692
\(800\) −29202.7 −1.29059
\(801\) 22917.0 1.01090
\(802\) −52347.6 −2.30481
\(803\) −22414.4 −0.985041
\(804\) −36687.7 −1.60930
\(805\) 1457.69 0.0638220
\(806\) 0 0
\(807\) −43838.1 −1.91224
\(808\) −1679.30 −0.0731156
\(809\) 29925.6 1.30053 0.650264 0.759708i \(-0.274658\pi\)
0.650264 + 0.759708i \(0.274658\pi\)
\(810\) −70229.3 −3.04643
\(811\) −21548.5 −0.933008 −0.466504 0.884519i \(-0.654487\pi\)
−0.466504 + 0.884519i \(0.654487\pi\)
\(812\) −700.691 −0.0302825
\(813\) 40149.2 1.73197
\(814\) 25634.0 1.10377
\(815\) −12173.2 −0.523201
\(816\) −27284.5 −1.17052
\(817\) 10913.1 0.467322
\(818\) −4281.96 −0.183026
\(819\) −5998.32 −0.255920
\(820\) −8577.46 −0.365290
\(821\) −17005.5 −0.722893 −0.361446 0.932393i \(-0.617717\pi\)
−0.361446 + 0.932393i \(0.617717\pi\)
\(822\) −35412.7 −1.50263
\(823\) 14757.6 0.625051 0.312525 0.949909i \(-0.398825\pi\)
0.312525 + 0.949909i \(0.398825\pi\)
\(824\) 11848.8 0.500938
\(825\) −42875.8 −1.80939
\(826\) 2775.39 0.116911
\(827\) 2221.47 0.0934075 0.0467038 0.998909i \(-0.485128\pi\)
0.0467038 + 0.998909i \(0.485128\pi\)
\(828\) 23532.9 0.987710
\(829\) −31879.9 −1.33563 −0.667813 0.744329i \(-0.732769\pi\)
−0.667813 + 0.744329i \(0.732769\pi\)
\(830\) 42364.1 1.77166
\(831\) −70282.2 −2.93389
\(832\) −14643.2 −0.610169
\(833\) 13008.0 0.541058
\(834\) −31731.9 −1.31749
\(835\) 17975.0 0.744969
\(836\) −4758.34 −0.196855
\(837\) 0 0
\(838\) −58454.2 −2.40963
\(839\) 2744.17 0.112919 0.0564595 0.998405i \(-0.482019\pi\)
0.0564595 + 0.998405i \(0.482019\pi\)
\(840\) 1651.84 0.0678500
\(841\) −15430.8 −0.632694
\(842\) −18215.6 −0.745548
\(843\) 42432.5 1.73363
\(844\) −1972.87 −0.0804611
\(845\) −62654.6 −2.55075
\(846\) 59574.4 2.42105
\(847\) 194.502 0.00789040
\(848\) −23550.1 −0.953670
\(849\) −18187.6 −0.735212
\(850\) −18954.6 −0.764869
\(851\) 14046.2 0.565802
\(852\) 14542.8 0.584773
\(853\) 28692.3 1.15170 0.575852 0.817554i \(-0.304670\pi\)
0.575852 + 0.817554i \(0.304670\pi\)
\(854\) 3063.26 0.122743
\(855\) 23154.8 0.926174
\(856\) 14520.2 0.579778
\(857\) −17445.3 −0.695356 −0.347678 0.937614i \(-0.613030\pi\)
−0.347678 + 0.937614i \(0.613030\pi\)
\(858\) −92160.0 −3.66701
\(859\) −31398.6 −1.24715 −0.623577 0.781762i \(-0.714321\pi\)
−0.623577 + 0.781762i \(0.714321\pi\)
\(860\) 41266.4 1.63625
\(861\) 1126.19 0.0445765
\(862\) 18207.2 0.719421
\(863\) −35281.8 −1.39167 −0.695833 0.718204i \(-0.744964\pi\)
−0.695833 + 0.718204i \(0.744964\pi\)
\(864\) 64999.5 2.55941
\(865\) −6973.63 −0.274116
\(866\) 21197.0 0.831760
\(867\) 32130.5 1.25860
\(868\) 0 0
\(869\) 27105.8 1.05812
\(870\) 52387.3 2.04149
\(871\) 54071.3 2.10349
\(872\) 1720.83 0.0668286
\(873\) −30243.9 −1.17251
\(874\) −6265.77 −0.242498
\(875\) 195.746 0.00756275
\(876\) 34525.2 1.33162
\(877\) 16236.2 0.625151 0.312575 0.949893i \(-0.398808\pi\)
0.312575 + 0.949893i \(0.398808\pi\)
\(878\) −8085.72 −0.310797
\(879\) 68613.5 2.63285
\(880\) 42677.1 1.63483
\(881\) −14528.0 −0.555574 −0.277787 0.960643i \(-0.589601\pi\)
−0.277787 + 0.960643i \(0.589601\pi\)
\(882\) −74804.8 −2.85579
\(883\) −3540.90 −0.134950 −0.0674750 0.997721i \(-0.521494\pi\)
−0.0674750 + 0.997721i \(0.521494\pi\)
\(884\) −16953.9 −0.645046
\(885\) −86347.0 −3.27969
\(886\) 24796.4 0.940240
\(887\) −12314.5 −0.466158 −0.233079 0.972458i \(-0.574880\pi\)
−0.233079 + 0.972458i \(0.574880\pi\)
\(888\) 15917.1 0.601511
\(889\) −16.5392 −0.000623968 0
\(890\) −23073.0 −0.868999
\(891\) 40489.6 1.52239
\(892\) 26523.0 0.995578
\(893\) −6600.60 −0.247347
\(894\) −64750.7 −2.42236
\(895\) 39046.1 1.45829
\(896\) −1355.64 −0.0505455
\(897\) −50499.4 −1.87974
\(898\) 49032.7 1.82209
\(899\) 0 0
\(900\) 45358.4 1.67994
\(901\) −11640.4 −0.430409
\(902\) 11883.9 0.438682
\(903\) −5418.13 −0.199672
\(904\) 4064.78 0.149549
\(905\) −41607.8 −1.52828
\(906\) −57767.3 −2.11831
\(907\) 25600.5 0.937210 0.468605 0.883408i \(-0.344757\pi\)
0.468605 + 0.883408i \(0.344757\pi\)
\(908\) −11463.2 −0.418965
\(909\) 11686.9 0.426436
\(910\) 6039.16 0.219996
\(911\) 636.381 0.0231440 0.0115720 0.999933i \(-0.496316\pi\)
0.0115720 + 0.999933i \(0.496316\pi\)
\(912\) −17384.3 −0.631197
\(913\) −24424.3 −0.885353
\(914\) −3718.58 −0.134573
\(915\) −95303.2 −3.44331
\(916\) −32549.9 −1.17411
\(917\) −1591.84 −0.0573253
\(918\) 42189.2 1.51683
\(919\) −16746.4 −0.601100 −0.300550 0.953766i \(-0.597170\pi\)
−0.300550 + 0.953766i \(0.597170\pi\)
\(920\) 9551.26 0.342278
\(921\) 54829.5 1.96166
\(922\) 25361.6 0.905901
\(923\) −21433.5 −0.764348
\(924\) 2362.41 0.0841098
\(925\) 27073.3 0.962340
\(926\) −59672.5 −2.11767
\(927\) −82460.8 −2.92165
\(928\) −20571.3 −0.727679
\(929\) −39807.4 −1.40585 −0.702926 0.711263i \(-0.748124\pi\)
−0.702926 + 0.711263i \(0.748124\pi\)
\(930\) 0 0
\(931\) 8288.07 0.291762
\(932\) −32876.0 −1.15546
\(933\) 15517.7 0.544508
\(934\) −57542.0 −2.01588
\(935\) 21094.6 0.737827
\(936\) −39303.1 −1.37250
\(937\) −50379.6 −1.75649 −0.878244 0.478212i \(-0.841285\pi\)
−0.878244 + 0.478212i \(0.841285\pi\)
\(938\) −3330.85 −0.115945
\(939\) −47780.6 −1.66055
\(940\) −24959.2 −0.866042
\(941\) 14045.5 0.486580 0.243290 0.969954i \(-0.421773\pi\)
0.243290 + 0.969954i \(0.421773\pi\)
\(942\) 30210.5 1.04492
\(943\) 6511.83 0.224872
\(944\) 44524.5 1.53511
\(945\) −6253.64 −0.215271
\(946\) −57173.9 −1.96499
\(947\) −28709.9 −0.985159 −0.492580 0.870267i \(-0.663946\pi\)
−0.492580 + 0.870267i \(0.663946\pi\)
\(948\) −41751.5 −1.43041
\(949\) −50884.3 −1.74054
\(950\) −12076.9 −0.412450
\(951\) 78587.7 2.67968
\(952\) −421.014 −0.0143331
\(953\) 42034.4 1.42878 0.714391 0.699747i \(-0.246704\pi\)
0.714391 + 0.699747i \(0.246704\pi\)
\(954\) 66940.2 2.27177
\(955\) 74550.6 2.52607
\(956\) −25797.3 −0.872745
\(957\) −30203.1 −1.02019
\(958\) −36831.5 −1.24214
\(959\) −1337.88 −0.0450494
\(960\) −28063.8 −0.943496
\(961\) 0 0
\(962\) 58193.1 1.95033
\(963\) −101052. −3.38147
\(964\) −33449.8 −1.11758
\(965\) −38767.8 −1.29324
\(966\) 3110.81 0.103612
\(967\) −4751.37 −0.158008 −0.0790040 0.996874i \(-0.525174\pi\)
−0.0790040 + 0.996874i \(0.525174\pi\)
\(968\) 1274.44 0.0423163
\(969\) −8592.78 −0.284871
\(970\) 30449.8 1.00792
\(971\) 8345.51 0.275819 0.137909 0.990445i \(-0.455962\pi\)
0.137909 + 0.990445i \(0.455962\pi\)
\(972\) −16328.5 −0.538825
\(973\) −1198.82 −0.0394990
\(974\) 57506.6 1.89182
\(975\) −97334.8 −3.19714
\(976\) 49142.7 1.61170
\(977\) 8023.64 0.262742 0.131371 0.991333i \(-0.458062\pi\)
0.131371 + 0.991333i \(0.458062\pi\)
\(978\) −25978.5 −0.849389
\(979\) 13302.4 0.434265
\(980\) 31340.1 1.02155
\(981\) −11975.9 −0.389768
\(982\) −39557.9 −1.28548
\(983\) 15707.9 0.509668 0.254834 0.966985i \(-0.417979\pi\)
0.254834 + 0.966985i \(0.417979\pi\)
\(984\) 7379.17 0.239064
\(985\) 50886.4 1.64607
\(986\) −13352.2 −0.431259
\(987\) 3277.05 0.105683
\(988\) −10802.2 −0.347837
\(989\) −31328.6 −1.00727
\(990\) −121308. −3.89437
\(991\) −55931.3 −1.79285 −0.896426 0.443193i \(-0.853846\pi\)
−0.896426 + 0.443193i \(0.853846\pi\)
\(992\) 0 0
\(993\) −19990.2 −0.638842
\(994\) 1320.33 0.0421311
\(995\) 30955.1 0.986275
\(996\) 37621.1 1.19686
\(997\) 2267.37 0.0720245 0.0360122 0.999351i \(-0.488534\pi\)
0.0360122 + 0.999351i \(0.488534\pi\)
\(998\) −1906.87 −0.0604819
\(999\) −60259.8 −1.90844
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.4.a.d.1.3 4
31.30 odd 2 inner 961.4.a.d.1.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.4.a.d.1.3 4 1.1 even 1 trivial
961.4.a.d.1.4 yes 4 31.30 odd 2 inner