Properties

Label 961.4.a.d
Level $961$
Weight $4$
Character orbit 961.a
Self dual yes
Analytic conductor $56.701$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,4,Mod(1,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.7008355155\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.27702880.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 134x^{2} + 4120 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 1) q^{2} + \beta_1 q^{3} + (\beta_{2} + 3) q^{4} + ( - 3 \beta_{2} - 8) q^{5} + (\beta_{3} + \beta_1) q^{6} + (\beta_{2} - 4) q^{7} + ( - 5 \beta_{2} + 5) q^{8} + (6 \beta_{2} + 43) q^{9}+ \cdots + ( - 43 \beta_{3} - 103 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 10 q^{4} - 26 q^{5} - 18 q^{7} + 30 q^{8} + 160 q^{9} - 136 q^{10} + 32 q^{14} - 270 q^{16} + 326 q^{18} - 238 q^{19} - 188 q^{20} + 38 q^{25} - 4 q^{28} - 498 q^{32} - 380 q^{33} - 6 q^{35}+ \cdots - 994 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 134x^{2} + 4120 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - 70 ) / 6 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 70\nu ) / 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 6\beta_{2} + 70 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 6\beta_{3} + 70\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−6.91308
6.91308
−9.28490
9.28490
−2.70156 −6.91308 −0.701562 3.10469 18.6761 −7.70156 23.5078 20.7906 −8.38750
1.2 −2.70156 6.91308 −0.701562 3.10469 −18.6761 −7.70156 23.5078 20.7906 −8.38750
1.3 3.70156 −9.28490 5.70156 −16.1047 −34.3686 −1.29844 −8.50781 59.2094 −59.6125
1.4 3.70156 9.28490 5.70156 −16.1047 34.3686 −1.29844 −8.50781 59.2094 −59.6125
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(31\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 961.4.a.d 4
31.b odd 2 1 inner 961.4.a.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
961.4.a.d 4 1.a even 1 1 trivial
961.4.a.d 4 31.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(961))\):

\( T_{2}^{2} - T_{2} - 10 \) Copy content Toggle raw display
\( T_{3}^{4} - 134T_{3}^{2} + 4120 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - T - 10)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} - 134T^{2} + 4120 \) Copy content Toggle raw display
$5$ \( (T^{2} + 13 T - 50)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 9 T + 10)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 1530 T^{2} + 412000 \) Copy content Toggle raw display
$13$ \( T^{4} - 7014 T^{2} + 5640280 \) Copy content Toggle raw display
$17$ \( T^{4} - 12356 T^{2} + 15837280 \) Copy content Toggle raw display
$19$ \( (T^{2} + 119 T + 2300)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 33564 T^{2} + 139486720 \) Copy content Toggle raw display
$29$ \( T^{4} - 70230 T^{2} + 548887000 \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - 51786 T^{2} + 454122880 \) Copy content Toggle raw display
$41$ \( (T^{2} - 539 T + 41624)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 12231163480 \) Copy content Toggle raw display
$47$ \( (T^{2} - 454 T + 49520)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 12103719520 \) Copy content Toggle raw display
$59$ \( (T^{2} + 521 T - 32600)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 237658183000 \) Copy content Toggle raw display
$67$ \( (T^{2} - 464 T - 158720)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 315 T - 162000)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 188274112000 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 229899708000 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 168438932320 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 70615152000 \) Copy content Toggle raw display
$97$ \( (T^{2} + 631 T + 61400)^{2} \) Copy content Toggle raw display
show more
show less