Properties

Label 961.2.d.s.628.11
Level $961$
Weight $2$
Character 961.628
Analytic conductor $7.674$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(374,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.374"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,8,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 628.11
Character \(\chi\) \(=\) 961.628
Dual form 961.2.d.s.531.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0383721 - 0.118097i) q^{2} +(-0.457114 - 1.40685i) q^{3} +(1.60556 + 1.16651i) q^{4} -1.22944 q^{5} -0.183686 q^{6} +(-2.15767 - 1.56764i) q^{7} +(0.400289 - 0.290827i) q^{8} +(0.656767 - 0.477169i) q^{9} +(-0.0471763 + 0.145194i) q^{10} +(-4.55632 - 3.31036i) q^{11} +(0.907181 - 2.79201i) q^{12} +(0.00416104 + 0.0128063i) q^{13} +(-0.267928 + 0.194661i) q^{14} +(0.561997 + 1.72965i) q^{15} +(1.20755 + 3.71646i) q^{16} +(2.86784 - 2.08361i) q^{17} +(-0.0311508 - 0.0958723i) q^{18} +(-1.84293 + 5.67196i) q^{19} +(-1.97395 - 1.43416i) q^{20} +(-1.21914 + 3.75212i) q^{21} +(-0.565779 + 0.411063i) q^{22} +(-3.30863 + 2.40386i) q^{23} +(-0.592128 - 0.430206i) q^{24} -3.48847 q^{25} +0.00167206 q^{26} +(-4.56175 - 3.31430i) q^{27} +(-1.63561 - 5.03388i) q^{28} +(0.916226 - 2.81985i) q^{29} +0.225832 q^{30} +1.47481 q^{32} +(-2.57443 + 7.92329i) q^{33} +(-0.136023 - 0.418637i) q^{34} +(2.65274 + 1.92733i) q^{35} +1.61110 q^{36} -10.6352 q^{37} +(0.599125 + 0.435290i) q^{38} +(0.0161146 - 0.0117079i) q^{39} +(-0.492133 + 0.357555i) q^{40} +(-2.20784 + 6.79504i) q^{41} +(0.396333 + 0.287953i) q^{42} +(0.981323 - 3.02020i) q^{43} +(-3.45388 - 10.6300i) q^{44} +(-0.807459 + 0.586654i) q^{45} +(0.156930 + 0.482981i) q^{46} +(-3.03154 - 9.33014i) q^{47} +(4.67653 - 3.39770i) q^{48} +(0.0349290 + 0.107500i) q^{49} +(-0.133860 + 0.411978i) q^{50} +(-4.24227 - 3.08219i) q^{51} +(-0.00825791 + 0.0254152i) q^{52} +(6.39793 - 4.64837i) q^{53} +(-0.566454 + 0.411553i) q^{54} +(5.60174 + 4.06990i) q^{55} -1.31960 q^{56} +8.82205 q^{57} +(-0.297859 - 0.216407i) q^{58} +(-3.21097 - 9.88236i) q^{59} +(-1.11533 + 3.43263i) q^{60} -3.70951 q^{61} -2.16512 q^{63} +(-2.35851 + 7.25876i) q^{64} +(-0.00511576 - 0.0157447i) q^{65} +(0.836931 + 0.608066i) q^{66} +3.56973 q^{67} +7.03504 q^{68} +(4.89430 + 3.55592i) q^{69} +(0.329403 - 0.239325i) q^{70} +(-3.04327 + 2.21107i) q^{71} +(0.124123 - 0.382011i) q^{72} +(-2.87218 - 2.08676i) q^{73} +(-0.408096 + 1.25599i) q^{74} +(1.59463 + 4.90776i) q^{75} +(-9.57532 + 6.95688i) q^{76} +(4.64158 + 14.2853i) q^{77} +(-0.000764323 - 0.00235234i) q^{78} +(-2.63729 + 1.91611i) q^{79} +(-1.48462 - 4.56919i) q^{80} +(-1.82491 + 5.61650i) q^{81} +(0.717755 + 0.521480i) q^{82} +(-0.639738 + 1.96891i) q^{83} +(-6.33427 + 4.60211i) q^{84} +(-3.52586 + 2.56168i) q^{85} +(-0.319022 - 0.231783i) q^{86} -4.38594 q^{87} -2.78658 q^{88} +(7.12284 + 5.17504i) q^{89} +(0.0382982 + 0.117870i) q^{90} +(0.0110976 - 0.0341549i) q^{91} -8.11632 q^{92} -1.21819 q^{94} +(2.26578 - 6.97336i) q^{95} +(-0.674156 - 2.07484i) q^{96} +(-2.74054 - 1.99112i) q^{97} +0.0140358 q^{98} -4.57204 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 8 q^{2} - 8 q^{4} - 64 q^{5} + 16 q^{7} - 8 q^{10} + 8 q^{14} + 8 q^{16} + 24 q^{18} + 32 q^{19} + 24 q^{20} + 8 q^{28} - 32 q^{32} + 32 q^{33} + 16 q^{35} - 160 q^{36} + 24 q^{38} + 32 q^{39} + 32 q^{41}+ \cdots + 64 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0383721 0.118097i 0.0271332 0.0835073i −0.936573 0.350473i \(-0.886021\pi\)
0.963706 + 0.266965i \(0.0860210\pi\)
\(3\) −0.457114 1.40685i −0.263915 0.812247i −0.991941 0.126698i \(-0.959562\pi\)
0.728026 0.685549i \(-0.240438\pi\)
\(4\) 1.60556 + 1.16651i 0.802780 + 0.583254i
\(5\) −1.22944 −0.549824 −0.274912 0.961469i \(-0.588649\pi\)
−0.274912 + 0.961469i \(0.588649\pi\)
\(6\) −0.183686 −0.0749894
\(7\) −2.15767 1.56764i −0.815523 0.592512i 0.0999038 0.994997i \(-0.468146\pi\)
−0.915426 + 0.402485i \(0.868146\pi\)
\(8\) 0.400289 0.290827i 0.141523 0.102823i
\(9\) 0.656767 0.477169i 0.218922 0.159056i
\(10\) −0.0471763 + 0.145194i −0.0149185 + 0.0459143i
\(11\) −4.55632 3.31036i −1.37378 0.998111i −0.997431 0.0716336i \(-0.977179\pi\)
−0.376351 0.926477i \(-0.622821\pi\)
\(12\) 0.907181 2.79201i 0.261880 0.805985i
\(13\) 0.00416104 + 0.0128063i 0.00115406 + 0.00355184i 0.951632 0.307241i \(-0.0994056\pi\)
−0.950478 + 0.310792i \(0.899406\pi\)
\(14\) −0.267928 + 0.194661i −0.0716067 + 0.0520253i
\(15\) 0.561997 + 1.72965i 0.145107 + 0.446593i
\(16\) 1.20755 + 3.71646i 0.301888 + 0.929116i
\(17\) 2.86784 2.08361i 0.695554 0.505350i −0.182927 0.983127i \(-0.558557\pi\)
0.878481 + 0.477777i \(0.158557\pi\)
\(18\) −0.0311508 0.0958723i −0.00734231 0.0225973i
\(19\) −1.84293 + 5.67196i −0.422797 + 1.30124i 0.482290 + 0.876012i \(0.339805\pi\)
−0.905088 + 0.425225i \(0.860195\pi\)
\(20\) −1.97395 1.43416i −0.441388 0.320687i
\(21\) −1.21914 + 3.75212i −0.266037 + 0.818779i
\(22\) −0.565779 + 0.411063i −0.120625 + 0.0876389i
\(23\) −3.30863 + 2.40386i −0.689897 + 0.501239i −0.876626 0.481172i \(-0.840211\pi\)
0.186729 + 0.982411i \(0.440211\pi\)
\(24\) −0.592128 0.430206i −0.120868 0.0878155i
\(25\) −3.48847 −0.697693
\(26\) 0.00167206 0.000327918
\(27\) −4.56175 3.31430i −0.877909 0.637838i
\(28\) −1.63561 5.03388i −0.309100 0.951313i
\(29\) 0.916226 2.81985i 0.170139 0.523633i −0.829239 0.558894i \(-0.811226\pi\)
0.999378 + 0.0352602i \(0.0112260\pi\)
\(30\) 0.225832 0.0412310
\(31\) 0 0
\(32\) 1.47481 0.260712
\(33\) −2.57443 + 7.92329i −0.448151 + 1.37927i
\(34\) −0.136023 0.418637i −0.0233278 0.0717956i
\(35\) 2.65274 + 1.92733i 0.448394 + 0.325778i
\(36\) 1.61110 0.268517
\(37\) −10.6352 −1.74842 −0.874211 0.485546i \(-0.838621\pi\)
−0.874211 + 0.485546i \(0.838621\pi\)
\(38\) 0.599125 + 0.435290i 0.0971909 + 0.0706133i
\(39\) 0.0161146 0.0117079i 0.00258040 0.00187477i
\(40\) −0.492133 + 0.357555i −0.0778130 + 0.0565345i
\(41\) −2.20784 + 6.79504i −0.344807 + 1.06121i 0.616880 + 0.787057i \(0.288396\pi\)
−0.961687 + 0.274150i \(0.911604\pi\)
\(42\) 0.396333 + 0.287953i 0.0611556 + 0.0444321i
\(43\) 0.981323 3.02020i 0.149650 0.460577i −0.847929 0.530109i \(-0.822151\pi\)
0.997580 + 0.0695329i \(0.0221509\pi\)
\(44\) −3.45388 10.6300i −0.520692 1.60253i
\(45\) −0.807459 + 0.586654i −0.120369 + 0.0874531i
\(46\) 0.156930 + 0.482981i 0.0231381 + 0.0712116i
\(47\) −3.03154 9.33014i −0.442196 1.36094i −0.885529 0.464583i \(-0.846204\pi\)
0.443333 0.896357i \(-0.353796\pi\)
\(48\) 4.67653 3.39770i 0.674999 0.490416i
\(49\) 0.0349290 + 0.107500i 0.00498985 + 0.0153572i
\(50\) −0.133860 + 0.411978i −0.0189306 + 0.0582624i
\(51\) −4.24227 3.08219i −0.594036 0.431593i
\(52\) −0.00825791 + 0.0254152i −0.00114517 + 0.00352446i
\(53\) 6.39793 4.64837i 0.878824 0.638503i −0.0541162 0.998535i \(-0.517234\pi\)
0.932940 + 0.360032i \(0.117234\pi\)
\(54\) −0.566454 + 0.411553i −0.0770846 + 0.0560052i
\(55\) 5.60174 + 4.06990i 0.755339 + 0.548786i
\(56\) −1.31960 −0.176339
\(57\) 8.82205 1.16851
\(58\) −0.297859 0.216407i −0.0391108 0.0284157i
\(59\) −3.21097 9.88236i −0.418033 1.28657i −0.909510 0.415683i \(-0.863543\pi\)
0.491476 0.870891i \(-0.336457\pi\)
\(60\) −1.11533 + 3.43263i −0.143988 + 0.443150i
\(61\) −3.70951 −0.474954 −0.237477 0.971393i \(-0.576320\pi\)
−0.237477 + 0.971393i \(0.576320\pi\)
\(62\) 0 0
\(63\) −2.16512 −0.272779
\(64\) −2.35851 + 7.25876i −0.294814 + 0.907345i
\(65\) −0.00511576 0.0157447i −0.000634532 0.00195289i
\(66\) 0.836931 + 0.608066i 0.103019 + 0.0748477i
\(67\) 3.56973 0.436112 0.218056 0.975936i \(-0.430028\pi\)
0.218056 + 0.975936i \(0.430028\pi\)
\(68\) 7.03504 0.853124
\(69\) 4.89430 + 3.55592i 0.589205 + 0.428082i
\(70\) 0.329403 0.239325i 0.0393711 0.0286048i
\(71\) −3.04327 + 2.21107i −0.361170 + 0.262405i −0.753540 0.657402i \(-0.771655\pi\)
0.392370 + 0.919807i \(0.371655\pi\)
\(72\) 0.124123 0.382011i 0.0146280 0.0450204i
\(73\) −2.87218 2.08676i −0.336163 0.244237i 0.406878 0.913482i \(-0.366617\pi\)
−0.743041 + 0.669246i \(0.766617\pi\)
\(74\) −0.408096 + 1.25599i −0.0474402 + 0.146006i
\(75\) 1.59463 + 4.90776i 0.184132 + 0.566699i
\(76\) −9.57532 + 6.95688i −1.09836 + 0.798008i
\(77\) 4.64158 + 14.2853i 0.528958 + 1.62796i
\(78\) −0.000764323 0.00235234i −8.65425e−5 0.000266351i
\(79\) −2.63729 + 1.91611i −0.296719 + 0.215579i −0.726177 0.687508i \(-0.758705\pi\)
0.429458 + 0.903087i \(0.358705\pi\)
\(80\) −1.48462 4.56919i −0.165985 0.510851i
\(81\) −1.82491 + 5.61650i −0.202768 + 0.624056i
\(82\) 0.717755 + 0.521480i 0.0792628 + 0.0575878i
\(83\) −0.639738 + 1.96891i −0.0702204 + 0.216116i −0.980008 0.198958i \(-0.936244\pi\)
0.909788 + 0.415074i \(0.136244\pi\)
\(84\) −6.33427 + 4.60211i −0.691125 + 0.502132i
\(85\) −3.52586 + 2.56168i −0.382433 + 0.277854i
\(86\) −0.319022 0.231783i −0.0344010 0.0249938i
\(87\) −4.38594 −0.470222
\(88\) −2.78658 −0.297051
\(89\) 7.12284 + 5.17504i 0.755019 + 0.548553i 0.897379 0.441262i \(-0.145469\pi\)
−0.142360 + 0.989815i \(0.545469\pi\)
\(90\) 0.0382982 + 0.117870i 0.00403698 + 0.0124246i
\(91\) 0.0110976 0.0341549i 0.00116334 0.00358040i
\(92\) −8.11632 −0.846185
\(93\) 0 0
\(94\) −1.21819 −0.125647
\(95\) 2.26578 6.97336i 0.232464 0.715452i
\(96\) −0.674156 2.07484i −0.0688057 0.211762i
\(97\) −2.74054 1.99112i −0.278260 0.202168i 0.439898 0.898048i \(-0.355014\pi\)
−0.718158 + 0.695880i \(0.755014\pi\)
\(98\) 0.0140358 0.00141783
\(99\) −4.57204 −0.459508
\(100\) −5.60094 4.06932i −0.560094 0.406932i
\(101\) 7.01285 5.09514i 0.697805 0.506985i −0.181412 0.983407i \(-0.558067\pi\)
0.879217 + 0.476422i \(0.158067\pi\)
\(102\) −0.526782 + 0.382730i −0.0521592 + 0.0378959i
\(103\) 0.828462 2.54974i 0.0816308 0.251234i −0.901909 0.431927i \(-0.857834\pi\)
0.983540 + 0.180693i \(0.0578340\pi\)
\(104\) 0.00539004 + 0.00391610i 0.000528537 + 0.000384005i
\(105\) 1.49886 4.61302i 0.146274 0.450185i
\(106\) −0.303457 0.933945i −0.0294744 0.0907128i
\(107\) 6.45248 4.68800i 0.623784 0.453206i −0.230457 0.973083i \(-0.574022\pi\)
0.854241 + 0.519877i \(0.174022\pi\)
\(108\) −3.45800 10.6426i −0.332746 1.02409i
\(109\) 1.94648 + 5.99066i 0.186439 + 0.573801i 0.999970 0.00772042i \(-0.00245751\pi\)
−0.813531 + 0.581522i \(0.802458\pi\)
\(110\) 0.695594 0.505379i 0.0663223 0.0481860i
\(111\) 4.86152 + 14.9622i 0.461435 + 1.42015i
\(112\) 3.22057 9.91191i 0.304316 0.936587i
\(113\) 2.22259 + 1.61481i 0.209084 + 0.151908i 0.687399 0.726280i \(-0.258752\pi\)
−0.478315 + 0.878188i \(0.658752\pi\)
\(114\) 0.338520 1.04186i 0.0317053 0.0975790i
\(115\) 4.06778 2.95541i 0.379322 0.275594i
\(116\) 4.76043 3.45866i 0.441995 0.321128i
\(117\) 0.00884363 + 0.00642527i 0.000817594 + 0.000594017i
\(118\) −1.29029 −0.118781
\(119\) −9.45421 −0.866666
\(120\) 0.727989 + 0.528915i 0.0664560 + 0.0482831i
\(121\) 6.40237 + 19.7045i 0.582034 + 1.79132i
\(122\) −0.142342 + 0.438082i −0.0128870 + 0.0396621i
\(123\) 10.5689 0.952962
\(124\) 0 0
\(125\) 10.4361 0.933433
\(126\) −0.0830800 + 0.255694i −0.00740136 + 0.0227790i
\(127\) −0.536248 1.65040i −0.0475844 0.146450i 0.924441 0.381325i \(-0.124532\pi\)
−0.972026 + 0.234875i \(0.924532\pi\)
\(128\) 3.15303 + 2.29081i 0.278691 + 0.202481i
\(129\) −4.69756 −0.413597
\(130\) −0.00205571 −0.000180297
\(131\) −5.71926 4.15529i −0.499694 0.363049i 0.309206 0.950995i \(-0.399937\pi\)
−0.808900 + 0.587946i \(0.799937\pi\)
\(132\) −13.3760 + 9.71821i −1.16423 + 0.845862i
\(133\) 12.8680 9.34917i 1.11580 0.810676i
\(134\) 0.136978 0.421575i 0.0118331 0.0364185i
\(135\) 5.60842 + 4.07475i 0.482696 + 0.350699i
\(136\) 0.541996 1.66809i 0.0464758 0.143038i
\(137\) 2.94712 + 9.07032i 0.251790 + 0.774930i 0.994445 + 0.105256i \(0.0335661\pi\)
−0.742655 + 0.669674i \(0.766434\pi\)
\(138\) 0.607748 0.441555i 0.0517350 0.0375876i
\(139\) −4.12488 12.6951i −0.349868 1.07678i −0.958926 0.283656i \(-0.908453\pi\)
0.609059 0.793125i \(-0.291547\pi\)
\(140\) 2.01089 + 6.18887i 0.169951 + 0.523055i
\(141\) −11.7404 + 8.52988i −0.988718 + 0.718345i
\(142\) 0.144344 + 0.444245i 0.0121131 + 0.0372802i
\(143\) 0.0234346 0.0721243i 0.00195970 0.00603134i
\(144\) 2.56646 + 1.86465i 0.213872 + 0.155387i
\(145\) −1.12645 + 3.46685i −0.0935465 + 0.287906i
\(146\) −0.356652 + 0.259123i −0.0295167 + 0.0214451i
\(147\) 0.135271 0.0982799i 0.0111569 0.00810599i
\(148\) −17.0755 12.4061i −1.40360 1.01977i
\(149\) 18.1985 1.49088 0.745440 0.666573i \(-0.232239\pi\)
0.745440 + 0.666573i \(0.232239\pi\)
\(150\) 0.640781 0.0523196
\(151\) −5.33596 3.87680i −0.434234 0.315490i 0.349106 0.937083i \(-0.386485\pi\)
−0.783340 + 0.621594i \(0.786485\pi\)
\(152\) 0.911853 + 2.80639i 0.0739610 + 0.227629i
\(153\) 0.889271 2.73690i 0.0718933 0.221265i
\(154\) 1.86516 0.150299
\(155\) 0 0
\(156\) 0.0395303 0.00316496
\(157\) 4.85934 14.9555i 0.387817 1.19358i −0.546598 0.837395i \(-0.684078\pi\)
0.934416 0.356184i \(-0.115922\pi\)
\(158\) 0.125088 + 0.384982i 0.00995148 + 0.0306275i
\(159\) −9.46417 6.87612i −0.750557 0.545312i
\(160\) −1.81319 −0.143346
\(161\) 10.9073 0.859617
\(162\) 0.593267 + 0.431034i 0.0466114 + 0.0338652i
\(163\) 5.82198 4.22992i 0.456013 0.331313i −0.335952 0.941879i \(-0.609058\pi\)
0.791965 + 0.610566i \(0.209058\pi\)
\(164\) −11.4713 + 8.33438i −0.895757 + 0.650806i
\(165\) 3.16512 9.74124i 0.246404 0.758355i
\(166\) 0.207975 + 0.151102i 0.0161420 + 0.0117278i
\(167\) −6.32566 + 19.4684i −0.489494 + 1.50651i 0.335871 + 0.941908i \(0.390969\pi\)
−0.825365 + 0.564599i \(0.809031\pi\)
\(168\) 0.603209 + 1.85649i 0.0465386 + 0.143231i
\(169\) 10.5171 7.64110i 0.809006 0.587777i
\(170\) 0.167233 + 0.514691i 0.0128262 + 0.0394750i
\(171\) 1.49611 + 4.60455i 0.114410 + 0.352119i
\(172\) 5.09866 3.70439i 0.388769 0.282457i
\(173\) −6.51019 20.0363i −0.494960 1.52333i −0.817018 0.576612i \(-0.804375\pi\)
0.322058 0.946720i \(-0.395625\pi\)
\(174\) −0.168298 + 0.517967i −0.0127586 + 0.0392670i
\(175\) 7.52696 + 5.46865i 0.568985 + 0.413391i
\(176\) 6.80084 20.9308i 0.512632 1.57772i
\(177\) −12.4353 + 9.03474i −0.934691 + 0.679093i
\(178\) 0.884475 0.642609i 0.0662942 0.0481656i
\(179\) 8.47762 + 6.15935i 0.633647 + 0.460371i 0.857662 0.514214i \(-0.171916\pi\)
−0.224015 + 0.974586i \(0.571916\pi\)
\(180\) −1.98076 −0.147637
\(181\) −9.53710 −0.708887 −0.354443 0.935077i \(-0.615330\pi\)
−0.354443 + 0.935077i \(0.615330\pi\)
\(182\) −0.00360775 0.00262119i −0.000267425 0.000194295i
\(183\) 1.69567 + 5.21873i 0.125348 + 0.385780i
\(184\) −0.625300 + 1.92448i −0.0460977 + 0.141874i
\(185\) 13.0754 0.961325
\(186\) 0 0
\(187\) −19.9643 −1.45994
\(188\) 6.01635 18.5164i 0.438787 1.35045i
\(189\) 4.64712 + 14.3024i 0.338028 + 1.04034i
\(190\) −0.736591 0.535165i −0.0534379 0.0388249i
\(191\) −10.0046 −0.723905 −0.361952 0.932197i \(-0.617890\pi\)
−0.361952 + 0.932197i \(0.617890\pi\)
\(192\) 11.2901 0.814794
\(193\) 16.7309 + 12.1557i 1.20432 + 0.874988i 0.994703 0.102795i \(-0.0327787\pi\)
0.209616 + 0.977784i \(0.432779\pi\)
\(194\) −0.340306 + 0.247246i −0.0244325 + 0.0177513i
\(195\) −0.0198120 + 0.0143943i −0.00141877 + 0.00103079i
\(196\) −0.0693193 + 0.213343i −0.00495138 + 0.0152388i
\(197\) 0.609421 + 0.442770i 0.0434194 + 0.0315461i 0.609283 0.792953i \(-0.291457\pi\)
−0.565864 + 0.824499i \(0.691457\pi\)
\(198\) −0.175439 + 0.539945i −0.0124679 + 0.0383722i
\(199\) 3.05637 + 9.40655i 0.216660 + 0.666812i 0.999032 + 0.0439998i \(0.0140101\pi\)
−0.782371 + 0.622813i \(0.785990\pi\)
\(200\) −1.39639 + 1.01454i −0.0987399 + 0.0717387i
\(201\) −1.63177 5.02209i −0.115096 0.354231i
\(202\) −0.332623 1.02371i −0.0234033 0.0720279i
\(203\) −6.39742 + 4.64800i −0.449011 + 0.326226i
\(204\) −3.21582 9.89728i −0.225152 0.692948i
\(205\) 2.71442 8.35413i 0.189583 0.583478i
\(206\) −0.269328 0.195678i −0.0187649 0.0136335i
\(207\) −1.02595 + 3.15755i −0.0713086 + 0.219465i
\(208\) −0.0425697 + 0.0309287i −0.00295168 + 0.00214452i
\(209\) 27.1732 19.7425i 1.87961 1.36562i
\(210\) −0.487270 0.354022i −0.0336248 0.0244299i
\(211\) 14.0629 0.968128 0.484064 0.875033i \(-0.339160\pi\)
0.484064 + 0.875033i \(0.339160\pi\)
\(212\) 15.6946 1.07791
\(213\) 4.50177 + 3.27073i 0.308456 + 0.224106i
\(214\) −0.306044 0.941907i −0.0209207 0.0643874i
\(215\) −1.20648 + 3.71317i −0.0822814 + 0.253236i
\(216\) −2.78990 −0.189829
\(217\) 0 0
\(218\) 0.782170 0.0529753
\(219\) −1.62285 + 4.99462i −0.109662 + 0.337505i
\(220\) 4.24636 + 13.0689i 0.286289 + 0.881108i
\(221\) 0.0386167 + 0.0280566i 0.00259764 + 0.00188729i
\(222\) 1.95354 0.131113
\(223\) 9.89557 0.662656 0.331328 0.943516i \(-0.392503\pi\)
0.331328 + 0.943516i \(0.392503\pi\)
\(224\) −3.18215 2.31197i −0.212616 0.154475i
\(225\) −2.29111 + 1.66459i −0.152741 + 0.110973i
\(226\) 0.275990 0.200518i 0.0183586 0.0133383i
\(227\) 2.90617 8.94428i 0.192890 0.593653i −0.807105 0.590408i \(-0.798967\pi\)
0.999995 0.00324524i \(-0.00103299\pi\)
\(228\) 14.1643 + 10.2910i 0.938055 + 0.681537i
\(229\) −4.55942 + 14.0325i −0.301295 + 0.927291i 0.679739 + 0.733454i \(0.262093\pi\)
−0.981034 + 0.193837i \(0.937907\pi\)
\(230\) −0.192937 0.593798i −0.0127219 0.0391539i
\(231\) 17.9756 13.0601i 1.18271 0.859289i
\(232\) −0.453334 1.39522i −0.0297628 0.0916005i
\(233\) −8.83355 27.1869i −0.578705 1.78107i −0.623201 0.782062i \(-0.714168\pi\)
0.0444952 0.999010i \(-0.485832\pi\)
\(234\) 0.00109815 0.000797856i 7.17886e−5 5.21575e-5i
\(235\) 3.72712 + 11.4709i 0.243130 + 0.748278i
\(236\) 6.37244 19.6123i 0.414810 1.27665i
\(237\) 3.90123 + 2.83441i 0.253412 + 0.184114i
\(238\) −0.362778 + 1.11652i −0.0235154 + 0.0723729i
\(239\) 7.28824 5.29522i 0.471437 0.342519i −0.326564 0.945175i \(-0.605891\pi\)
0.798001 + 0.602656i \(0.205891\pi\)
\(240\) −5.74954 + 4.17728i −0.371131 + 0.269642i
\(241\) −0.637637 0.463270i −0.0410738 0.0298419i 0.567059 0.823677i \(-0.308081\pi\)
−0.608133 + 0.793835i \(0.708081\pi\)
\(242\) 2.57271 0.165380
\(243\) −8.18011 −0.524754
\(244\) −5.95584 4.32717i −0.381283 0.277019i
\(245\) −0.0429432 0.132166i −0.00274354 0.00844376i
\(246\) 0.405549 1.24815i 0.0258569 0.0795793i
\(247\) −0.0803056 −0.00510972
\(248\) 0 0
\(249\) 3.06241 0.194072
\(250\) 0.400455 1.23247i 0.0253270 0.0779484i
\(251\) −6.10982 18.8041i −0.385648 1.18690i −0.936009 0.351977i \(-0.885510\pi\)
0.550360 0.834927i \(-0.314490\pi\)
\(252\) −3.47622 2.52562i −0.218982 0.159099i
\(253\) 23.0328 1.44806
\(254\) −0.215485 −0.0135207
\(255\) 5.21564 + 3.78938i 0.326616 + 0.237300i
\(256\) −11.9578 + 8.68786i −0.747363 + 0.542991i
\(257\) 7.30107 5.30454i 0.455428 0.330888i −0.336307 0.941752i \(-0.609178\pi\)
0.791735 + 0.610864i \(0.209178\pi\)
\(258\) −0.180255 + 0.554768i −0.0112222 + 0.0345384i
\(259\) 22.9473 + 16.6722i 1.42588 + 1.03596i
\(260\) 0.0101526 0.0312466i 0.000629640 0.00193783i
\(261\) −0.743800 2.28918i −0.0460401 0.141697i
\(262\) −0.710187 + 0.515981i −0.0438755 + 0.0318774i
\(263\) −0.966605 2.97490i −0.0596034 0.183440i 0.916822 0.399297i \(-0.130746\pi\)
−0.976425 + 0.215856i \(0.930746\pi\)
\(264\) 1.27379 + 3.92031i 0.0783962 + 0.241279i
\(265\) −7.86591 + 5.71492i −0.483199 + 0.351065i
\(266\) −0.610337 1.87842i −0.0374221 0.115174i
\(267\) 4.02458 12.3864i 0.246300 0.758034i
\(268\) 5.73141 + 4.16411i 0.350102 + 0.254364i
\(269\) 4.31932 13.2935i 0.263354 0.810519i −0.728714 0.684818i \(-0.759882\pi\)
0.992068 0.125702i \(-0.0401182\pi\)
\(270\) 0.696423 0.505981i 0.0423830 0.0307930i
\(271\) −11.3738 + 8.26352i −0.690907 + 0.501973i −0.876958 0.480567i \(-0.840431\pi\)
0.186051 + 0.982540i \(0.440431\pi\)
\(272\) 11.2067 + 8.14217i 0.679508 + 0.493692i
\(273\) −0.0531238 −0.00321520
\(274\) 1.18427 0.0715441
\(275\) 15.8946 + 11.5481i 0.958478 + 0.696375i
\(276\) 3.71009 + 11.4185i 0.223321 + 0.687311i
\(277\) 6.80511 20.9440i 0.408880 1.25840i −0.508732 0.860925i \(-0.669886\pi\)
0.917612 0.397477i \(-0.130114\pi\)
\(278\) −1.65753 −0.0994121
\(279\) 0 0
\(280\) 1.62238 0.0969556
\(281\) 0.718851 2.21240i 0.0428830 0.131980i −0.927323 0.374262i \(-0.877896\pi\)
0.970206 + 0.242282i \(0.0778959\pi\)
\(282\) 0.556852 + 1.71381i 0.0331600 + 0.102056i
\(283\) −11.2692 8.18754i −0.669883 0.486699i 0.200103 0.979775i \(-0.435872\pi\)
−0.869986 + 0.493076i \(0.835872\pi\)
\(284\) −7.46537 −0.442988
\(285\) −10.8462 −0.642475
\(286\) −0.00761844 0.00553512i −0.000450488 0.000327299i
\(287\) 15.4160 11.2004i 0.909976 0.661136i
\(288\) 0.968606 0.703733i 0.0570756 0.0414679i
\(289\) −1.37019 + 4.21702i −0.0805995 + 0.248060i
\(290\) 0.366201 + 0.266061i 0.0215041 + 0.0156236i
\(291\) −1.54847 + 4.76571i −0.0907731 + 0.279371i
\(292\) −2.17723 6.70083i −0.127413 0.392136i
\(293\) −20.9215 + 15.2004i −1.22225 + 0.888014i −0.996285 0.0861222i \(-0.972552\pi\)
−0.225962 + 0.974136i \(0.572552\pi\)
\(294\) −0.00641595 0.0197463i −0.000374186 0.00115163i
\(295\) 3.94771 + 12.1498i 0.229845 + 0.707390i
\(296\) −4.25716 + 3.09301i −0.247443 + 0.179778i
\(297\) 9.81324 + 30.2021i 0.569422 + 1.75250i
\(298\) 0.698315 2.14919i 0.0404523 0.124499i
\(299\) −0.0445520 0.0323689i −0.00257651 0.00187194i
\(300\) −3.16467 + 9.73985i −0.182712 + 0.562330i
\(301\) −6.85196 + 4.97824i −0.394940 + 0.286941i
\(302\) −0.662591 + 0.481400i −0.0381278 + 0.0277015i
\(303\) −10.3738 7.53700i −0.595959 0.432989i
\(304\) −23.3051 −1.33664
\(305\) 4.56064 0.261141
\(306\) −0.289096 0.210041i −0.0165265 0.0120072i
\(307\) −0.202611 0.623572i −0.0115636 0.0355891i 0.945108 0.326757i \(-0.105956\pi\)
−0.956672 + 0.291168i \(0.905956\pi\)
\(308\) −9.21160 + 28.3504i −0.524879 + 1.61541i
\(309\) −3.96582 −0.225608
\(310\) 0 0
\(311\) −22.0394 −1.24974 −0.624869 0.780730i \(-0.714848\pi\)
−0.624869 + 0.780730i \(0.714848\pi\)
\(312\) 0.00304551 0.00937311i 0.000172418 0.000530648i
\(313\) 2.93979 + 9.04774i 0.166167 + 0.511409i 0.999120 0.0419342i \(-0.0133520\pi\)
−0.832954 + 0.553343i \(0.813352\pi\)
\(314\) −1.57974 1.14775i −0.0891498 0.0647711i
\(315\) 2.66189 0.149981
\(316\) −6.46948 −0.363937
\(317\) 1.69492 + 1.23143i 0.0951959 + 0.0691639i 0.634365 0.773034i \(-0.281262\pi\)
−0.539169 + 0.842198i \(0.681262\pi\)
\(318\) −1.17521 + 0.853840i −0.0659025 + 0.0478809i
\(319\) −13.5093 + 9.81511i −0.756378 + 0.549541i
\(320\) 2.89966 8.92424i 0.162096 0.498880i
\(321\) −9.54485 6.93474i −0.532741 0.387059i
\(322\) 0.418536 1.28812i 0.0233241 0.0717842i
\(323\) 6.53292 + 20.1063i 0.363501 + 1.11874i
\(324\) −9.48169 + 6.88885i −0.526761 + 0.382714i
\(325\) −0.0145156 0.0446745i −0.000805182 0.00247810i
\(326\) −0.276139 0.849870i −0.0152939 0.0470699i
\(327\) 7.53822 5.47684i 0.416864 0.302870i
\(328\) 1.09240 + 3.36208i 0.0603180 + 0.185640i
\(329\) −8.08521 + 24.8837i −0.445752 + 1.37188i
\(330\) −1.02896 0.747583i −0.0566424 0.0411531i
\(331\) 0.774826 2.38467i 0.0425883 0.131073i −0.927502 0.373819i \(-0.878048\pi\)
0.970090 + 0.242746i \(0.0780481\pi\)
\(332\) −3.32389 + 2.41495i −0.182422 + 0.132537i
\(333\) −6.98488 + 5.07481i −0.382769 + 0.278098i
\(334\) 2.05643 + 1.49408i 0.112523 + 0.0817526i
\(335\) −4.38878 −0.239785
\(336\) −15.4168 −0.841054
\(337\) 22.0163 + 15.9958i 1.19931 + 0.871347i 0.994216 0.107396i \(-0.0342514\pi\)
0.205090 + 0.978743i \(0.434251\pi\)
\(338\) −0.498830 1.53524i −0.0271328 0.0835061i
\(339\) 1.25582 3.86501i 0.0682067 0.209919i
\(340\) −8.64920 −0.469069
\(341\) 0 0
\(342\) 0.601193 0.0325088
\(343\) −5.67594 + 17.4687i −0.306472 + 0.943224i
\(344\) −0.485543 1.49435i −0.0261787 0.0805698i
\(345\) −6.01727 4.37180i −0.323959 0.235370i
\(346\) −2.61604 −0.140639
\(347\) 24.3284 1.30602 0.653010 0.757350i \(-0.273506\pi\)
0.653010 + 0.757350i \(0.273506\pi\)
\(348\) −7.04189 5.11623i −0.377485 0.274259i
\(349\) −9.84219 + 7.15077i −0.526841 + 0.382772i −0.819175 0.573544i \(-0.805568\pi\)
0.292334 + 0.956316i \(0.405568\pi\)
\(350\) 0.934657 0.679068i 0.0499595 0.0362977i
\(351\) 0.0234625 0.0722103i 0.00125234 0.00385430i
\(352\) −6.71969 4.88214i −0.358161 0.260219i
\(353\) 8.65725 26.6443i 0.460779 1.41813i −0.403436 0.915008i \(-0.632184\pi\)
0.864215 0.503123i \(-0.167816\pi\)
\(354\) 0.589810 + 1.81525i 0.0313481 + 0.0964794i
\(355\) 3.74153 2.71838i 0.198580 0.144277i
\(356\) 5.39941 + 16.6177i 0.286168 + 0.880735i
\(357\) 4.32166 + 13.3007i 0.228726 + 0.703947i
\(358\) 1.05271 0.764835i 0.0556372 0.0404228i
\(359\) −7.52044 23.1455i −0.396913 1.22157i −0.927461 0.373919i \(-0.878014\pi\)
0.530548 0.847655i \(-0.321986\pi\)
\(360\) −0.152602 + 0.469661i −0.00804284 + 0.0247533i
\(361\) −13.4034 9.73815i −0.705443 0.512534i
\(362\) −0.365958 + 1.12630i −0.0192343 + 0.0591972i
\(363\) 24.7947 18.0144i 1.30138 0.945511i
\(364\) 0.0576598 0.0418923i 0.00302219 0.00219575i
\(365\) 3.53118 + 2.56555i 0.184831 + 0.134287i
\(366\) 0.681384 0.0356165
\(367\) −1.68920 −0.0881753 −0.0440876 0.999028i \(-0.514038\pi\)
−0.0440876 + 0.999028i \(0.514038\pi\)
\(368\) −12.9292 9.39362i −0.673981 0.489676i
\(369\) 1.79235 + 5.51628i 0.0933058 + 0.287166i
\(370\) 0.501732 1.54417i 0.0260838 0.0802777i
\(371\) −21.0916 −1.09502
\(372\) 0 0
\(373\) 24.2842 1.25739 0.628695 0.777652i \(-0.283589\pi\)
0.628695 + 0.777652i \(0.283589\pi\)
\(374\) −0.766072 + 2.35773i −0.0396126 + 0.121915i
\(375\) −4.77049 14.6821i −0.246347 0.758179i
\(376\) −3.92695 2.85309i −0.202517 0.147137i
\(377\) 0.0399245 0.00205621
\(378\) 1.86739 0.0960480
\(379\) −10.7960 7.84372i −0.554551 0.402905i 0.274910 0.961470i \(-0.411352\pi\)
−0.829461 + 0.558565i \(0.811352\pi\)
\(380\) 11.7723 8.55310i 0.603908 0.438765i
\(381\) −2.07675 + 1.50885i −0.106395 + 0.0773005i
\(382\) −0.383896 + 1.18151i −0.0196418 + 0.0604513i
\(383\) −20.2614 14.7208i −1.03531 0.752197i −0.0659458 0.997823i \(-0.521006\pi\)
−0.969365 + 0.245626i \(0.921006\pi\)
\(384\) 1.78154 5.48301i 0.0909137 0.279804i
\(385\) −5.70657 17.5630i −0.290834 0.895094i
\(386\) 2.07756 1.50943i 0.105745 0.0768281i
\(387\) −0.796647 2.45183i −0.0404959 0.124633i
\(388\) −2.07745 6.39372i −0.105466 0.324592i
\(389\) −17.7471 + 12.8940i −0.899813 + 0.653752i −0.938418 0.345502i \(-0.887709\pi\)
0.0386049 + 0.999255i \(0.487709\pi\)
\(390\) 0.000939693 0.00289208i 4.75832e−5 0.000146446i
\(391\) −4.47993 + 13.7878i −0.226560 + 0.697279i
\(392\) 0.0452456 + 0.0328729i 0.00228525 + 0.00166033i
\(393\) −3.23152 + 9.94560i −0.163009 + 0.501689i
\(394\) 0.0756746 0.0549808i 0.00381243 0.00276989i
\(395\) 3.24241 2.35575i 0.163143 0.118530i
\(396\) −7.34069 5.33332i −0.368883 0.268010i
\(397\) 2.21630 0.111233 0.0556165 0.998452i \(-0.482288\pi\)
0.0556165 + 0.998452i \(0.482288\pi\)
\(398\) 1.22817 0.0615624
\(399\) −19.0351 13.8298i −0.952945 0.692355i
\(400\) −4.21250 12.9648i −0.210625 0.648238i
\(401\) −8.24135 + 25.3643i −0.411553 + 1.26663i 0.503744 + 0.863853i \(0.331955\pi\)
−0.915298 + 0.402778i \(0.868045\pi\)
\(402\) −0.655708 −0.0327038
\(403\) 0 0
\(404\) 17.2031 0.855885
\(405\) 2.24363 6.90518i 0.111487 0.343121i
\(406\) 0.303433 + 0.933871i 0.0150591 + 0.0463472i
\(407\) 48.4575 + 35.2065i 2.40195 + 1.74512i
\(408\) −2.59451 −0.128448
\(409\) −37.8777 −1.87293 −0.936465 0.350760i \(-0.885923\pi\)
−0.936465 + 0.350760i \(0.885923\pi\)
\(410\) −0.882440 0.641130i −0.0435806 0.0316632i
\(411\) 11.4134 8.29235i 0.562983 0.409031i
\(412\) 4.30444 3.12736i 0.212065 0.154074i
\(413\) −8.56375 + 26.3565i −0.421395 + 1.29692i
\(414\) 0.333530 + 0.242324i 0.0163921 + 0.0119096i
\(415\) 0.786523 2.42067i 0.0386089 0.118826i
\(416\) 0.00613673 + 0.0188869i 0.000300878 + 0.000926007i
\(417\) −15.9746 + 11.6062i −0.782278 + 0.568358i
\(418\) −1.28884 3.96664i −0.0630392 0.194015i
\(419\) −2.83276 8.71835i −0.138390 0.425919i 0.857712 0.514130i \(-0.171885\pi\)
−0.996102 + 0.0882107i \(0.971885\pi\)
\(420\) 7.78763 5.65805i 0.379998 0.276084i
\(421\) −1.00989 3.10813i −0.0492192 0.151481i 0.923426 0.383776i \(-0.125377\pi\)
−0.972645 + 0.232295i \(0.925377\pi\)
\(422\) 0.539621 1.66078i 0.0262684 0.0808457i
\(423\) −6.44308 4.68117i −0.313273 0.227606i
\(424\) 1.20915 3.72138i 0.0587215 0.180726i
\(425\) −10.0044 + 7.26861i −0.485284 + 0.352579i
\(426\) 0.559005 0.406141i 0.0270839 0.0196776i
\(427\) 8.00389 + 5.81517i 0.387336 + 0.281416i
\(428\) 15.8284 0.765095
\(429\) −0.112181 −0.00541613
\(430\) 0.392220 + 0.284964i 0.0189145 + 0.0137422i
\(431\) −7.25281 22.3218i −0.349355 1.07521i −0.959211 0.282692i \(-0.908772\pi\)
0.609855 0.792513i \(-0.291228\pi\)
\(432\) 6.80894 20.9558i 0.327595 1.00824i
\(433\) 27.3421 1.31398 0.656990 0.753900i \(-0.271829\pi\)
0.656990 + 0.753900i \(0.271829\pi\)
\(434\) 0 0
\(435\) 5.39227 0.258540
\(436\) −3.86295 + 11.8890i −0.185002 + 0.569378i
\(437\) −7.53702 23.1966i −0.360545 1.10964i
\(438\) 0.527578 + 0.383308i 0.0252087 + 0.0183152i
\(439\) −33.0439 −1.57710 −0.788551 0.614970i \(-0.789168\pi\)
−0.788551 + 0.614970i \(0.789168\pi\)
\(440\) 3.42595 0.163326
\(441\) 0.0742361 + 0.0539357i 0.00353505 + 0.00256836i
\(442\) 0.00479521 0.00348392i 0.000228085 0.000165713i
\(443\) 10.7814 7.83313i 0.512239 0.372163i −0.301434 0.953487i \(-0.597465\pi\)
0.813672 + 0.581324i \(0.197465\pi\)
\(444\) −9.64808 + 29.6937i −0.457878 + 1.40920i
\(445\) −8.75713 6.36243i −0.415128 0.301608i
\(446\) 0.379713 1.16864i 0.0179800 0.0553366i
\(447\) −8.31880 25.6026i −0.393466 1.21096i
\(448\) 16.4680 11.9647i 0.778040 0.565279i
\(449\) 3.49014 + 10.7415i 0.164710 + 0.506924i 0.999015 0.0443786i \(-0.0141308\pi\)
−0.834305 + 0.551303i \(0.814131\pi\)
\(450\) 0.108668 + 0.334447i 0.00512268 + 0.0157660i
\(451\) 32.5537 23.6516i 1.53289 1.11371i
\(452\) 1.68482 + 5.18534i 0.0792472 + 0.243898i
\(453\) −3.01495 + 9.27905i −0.141655 + 0.435968i
\(454\) −0.944778 0.686421i −0.0443406 0.0322153i
\(455\) −0.0136439 + 0.0419915i −0.000639635 + 0.00196859i
\(456\) 3.53137 2.56569i 0.165371 0.120149i
\(457\) −3.68158 + 2.67482i −0.172217 + 0.125123i −0.670555 0.741860i \(-0.733944\pi\)
0.498338 + 0.866983i \(0.333944\pi\)
\(458\) 1.48224 + 1.07691i 0.0692604 + 0.0503207i
\(459\) −19.9881 −0.932965
\(460\) 9.97857 0.465253
\(461\) −23.2966 16.9260i −1.08503 0.788320i −0.106477 0.994315i \(-0.533957\pi\)
−0.978553 + 0.205995i \(0.933957\pi\)
\(462\) −0.852593 2.62401i −0.0396662 0.122080i
\(463\) 3.72413 11.4617i 0.173075 0.532670i −0.826465 0.562988i \(-0.809652\pi\)
0.999540 + 0.0303177i \(0.00965190\pi\)
\(464\) 11.5863 0.537879
\(465\) 0 0
\(466\) −3.54965 −0.164435
\(467\) −5.91149 + 18.1937i −0.273551 + 0.841904i 0.716048 + 0.698051i \(0.245949\pi\)
−0.989599 + 0.143853i \(0.954051\pi\)
\(468\) 0.00670385 + 0.0206323i 0.000309885 + 0.000953729i
\(469\) −7.70230 5.59605i −0.355659 0.258401i
\(470\) 1.49770 0.0690836
\(471\) −23.2615 −1.07183
\(472\) −4.15937 3.02196i −0.191451 0.139097i
\(473\) −14.4692 + 10.5125i −0.665293 + 0.483364i
\(474\) 0.484433 0.351961i 0.0222508 0.0161661i
\(475\) 6.42900 19.7864i 0.294983 0.907864i
\(476\) −15.1793 11.0284i −0.695742 0.505486i
\(477\) 1.98389 6.10580i 0.0908363 0.279565i
\(478\) −0.345685 1.06391i −0.0158113 0.0486621i
\(479\) 9.94368 7.22451i 0.454338 0.330096i −0.336968 0.941516i \(-0.609401\pi\)
0.791306 + 0.611420i \(0.209401\pi\)
\(480\) 0.828837 + 2.55090i 0.0378311 + 0.116432i
\(481\) −0.0442536 0.136199i −0.00201779 0.00621012i
\(482\) −0.0791783 + 0.0575264i −0.00360647 + 0.00262026i
\(483\) −4.98589 15.3450i −0.226866 0.698221i
\(484\) −12.7060 + 39.1051i −0.577547 + 1.77751i
\(485\) 3.36934 + 2.44797i 0.152994 + 0.111157i
\(486\) −0.313888 + 0.966047i −0.0142382 + 0.0438208i
\(487\) −12.2378 + 8.89125i −0.554546 + 0.402901i −0.829459 0.558568i \(-0.811351\pi\)
0.274913 + 0.961469i \(0.411351\pi\)
\(488\) −1.48487 + 1.07882i −0.0672171 + 0.0488361i
\(489\) −8.61218 6.25712i −0.389456 0.282957i
\(490\) −0.0172562 −0.000779556
\(491\) 30.5340 1.37798 0.688990 0.724771i \(-0.258054\pi\)
0.688990 + 0.724771i \(0.258054\pi\)
\(492\) 16.9689 + 12.3287i 0.765019 + 0.555819i
\(493\) −3.24788 9.99596i −0.146277 0.450195i
\(494\) −0.00308149 + 0.00948386i −0.000138643 + 0.000426699i
\(495\) 5.62108 0.252649
\(496\) 0 0
\(497\) 10.0325 0.450020
\(498\) 0.117511 0.361661i 0.00526579 0.0162064i
\(499\) 8.90808 + 27.4163i 0.398781 + 1.22732i 0.925978 + 0.377577i \(0.123243\pi\)
−0.527197 + 0.849743i \(0.676757\pi\)
\(500\) 16.7558 + 12.1738i 0.749341 + 0.544428i
\(501\) 30.2807 1.35284
\(502\) −2.45516 −0.109579
\(503\) 2.52240 + 1.83263i 0.112468 + 0.0817130i 0.642598 0.766204i \(-0.277857\pi\)
−0.530129 + 0.847917i \(0.677857\pi\)
\(504\) −0.866672 + 0.629674i −0.0386046 + 0.0280479i
\(505\) −8.62192 + 6.26419i −0.383670 + 0.278753i
\(506\) 0.883817 2.72011i 0.0392904 0.120924i
\(507\) −15.5574 11.3031i −0.690929 0.501989i
\(508\) 1.06423 3.27536i 0.0472175 0.145321i
\(509\) −4.10861 12.6450i −0.182111 0.560479i 0.817776 0.575537i \(-0.195207\pi\)
−0.999887 + 0.0150575i \(0.995207\pi\)
\(510\) 0.647650 0.470545i 0.0286784 0.0208361i
\(511\) 2.92593 + 9.00507i 0.129435 + 0.398361i
\(512\) 2.97586 + 9.15876i 0.131516 + 0.404764i
\(513\) 27.2056 19.7660i 1.20116 0.872691i
\(514\) −0.346293 1.06578i −0.0152743 0.0470096i
\(515\) −1.01855 + 3.13477i −0.0448826 + 0.138134i
\(516\) −7.54221 5.47974i −0.332027 0.241232i
\(517\) −17.0734 + 52.5466i −0.750888 + 2.31100i
\(518\) 2.84948 2.07027i 0.125199 0.0909623i
\(519\) −25.2122 + 18.3178i −1.10669 + 0.804061i
\(520\) −0.00662676 0.00481462i −0.000290603 0.000211135i
\(521\) 8.44298 0.369894 0.184947 0.982749i \(-0.440789\pi\)
0.184947 + 0.982749i \(0.440789\pi\)
\(522\) −0.298887 −0.0130819
\(523\) −32.0890 23.3141i −1.40316 1.01945i −0.994274 0.106865i \(-0.965919\pi\)
−0.408882 0.912587i \(-0.634081\pi\)
\(524\) −4.33544 13.3431i −0.189395 0.582897i
\(525\) 4.25292 13.0891i 0.185612 0.571256i
\(526\) −0.388418 −0.0169358
\(527\) 0 0
\(528\) −32.5554 −1.41679
\(529\) −1.93891 + 5.96734i −0.0843002 + 0.259449i
\(530\) 0.373084 + 1.14823i 0.0162057 + 0.0498761i
\(531\) −6.82442 4.95823i −0.296155 0.215169i
\(532\) 31.5662 1.36857
\(533\) −0.0962066 −0.00416717
\(534\) −1.30836 0.950582i −0.0566184 0.0411357i
\(535\) −7.93296 + 5.76363i −0.342972 + 0.249184i
\(536\) 1.42892 1.03817i 0.0617200 0.0448422i
\(537\) 4.79006 14.7423i 0.206706 0.636177i
\(538\) −1.40418 1.02020i −0.0605386 0.0439839i
\(539\) 0.196717 0.605433i 0.00847321 0.0260778i
\(540\) 4.25142 + 13.0845i 0.182952 + 0.563068i
\(541\) −17.6602 + 12.8309i −0.759270 + 0.551642i −0.898686 0.438592i \(-0.855477\pi\)
0.139416 + 0.990234i \(0.455477\pi\)
\(542\) 0.539463 + 1.66030i 0.0231719 + 0.0713158i
\(543\) 4.35954 + 13.4173i 0.187086 + 0.575791i
\(544\) 4.22952 3.07293i 0.181339 0.131751i
\(545\) −2.39309 7.36519i −0.102509 0.315490i
\(546\) −0.00203847 + 0.00627377i −8.72385e−5 + 0.000268492i
\(547\) −22.1186 16.0701i −0.945725 0.687109i 0.00406722 0.999992i \(-0.498705\pi\)
−0.949792 + 0.312883i \(0.898705\pi\)
\(548\) −5.84881 + 18.0008i −0.249849 + 0.768955i
\(549\) −2.43628 + 1.77006i −0.103978 + 0.0755445i
\(550\) 1.97370 1.43398i 0.0841589 0.0611450i
\(551\) 14.3055 + 10.3936i 0.609437 + 0.442782i
\(552\) 2.99329 0.127403
\(553\) 8.69417 0.369714
\(554\) −2.21230 1.60733i −0.0939915 0.0682888i
\(555\) −5.97697 18.3952i −0.253708 0.780834i
\(556\) 8.18615 25.1944i 0.347170 1.06848i
\(557\) −27.9171 −1.18289 −0.591443 0.806347i \(-0.701441\pi\)
−0.591443 + 0.806347i \(0.701441\pi\)
\(558\) 0 0
\(559\) 0.0427611 0.00180860
\(560\) −3.95952 + 12.1861i −0.167320 + 0.514959i
\(561\) 9.12598 + 28.0869i 0.385299 + 1.18583i
\(562\) −0.233694 0.169788i −0.00985777 0.00716209i
\(563\) −25.7662 −1.08591 −0.542957 0.839760i \(-0.682695\pi\)
−0.542957 + 0.839760i \(0.682695\pi\)
\(564\) −28.8000 −1.21270
\(565\) −2.73255 1.98532i −0.114959 0.0835229i
\(566\) −1.39935 + 1.01668i −0.0588189 + 0.0427344i
\(567\) 12.7422 9.25775i 0.535122 0.388789i
\(568\) −0.575150 + 1.77013i −0.0241327 + 0.0742729i
\(569\) −13.1169 9.53000i −0.549890 0.399518i 0.277855 0.960623i \(-0.410377\pi\)
−0.827745 + 0.561105i \(0.810377\pi\)
\(570\) −0.416192 + 1.28091i −0.0174324 + 0.0536513i
\(571\) −2.89841 8.92039i −0.121295 0.373307i 0.871913 0.489661i \(-0.162879\pi\)
−0.993208 + 0.116354i \(0.962879\pi\)
\(572\) 0.121759 0.0884633i 0.00509101 0.00369883i
\(573\) 4.57323 + 14.0750i 0.191049 + 0.587990i
\(574\) −0.731187 2.25036i −0.0305192 0.0939283i
\(575\) 11.5420 8.38578i 0.481336 0.349711i
\(576\) 1.91466 + 5.89273i 0.0797776 + 0.245530i
\(577\) 9.78854 30.1260i 0.407502 1.25416i −0.511286 0.859411i \(-0.670831\pi\)
0.918788 0.394752i \(-0.129169\pi\)
\(578\) 0.445440 + 0.323631i 0.0185279 + 0.0134613i
\(579\) 9.45338 29.0945i 0.392869 1.20913i
\(580\) −5.85269 + 4.25223i −0.243020 + 0.176564i
\(581\) 4.46689 3.24538i 0.185318 0.134641i
\(582\) 0.503398 + 0.365740i 0.0208665 + 0.0151604i
\(583\) −44.5388 −1.84461
\(584\) −1.75658 −0.0726880
\(585\) −0.0108728 0.00789952i −0.000449533 0.000326605i
\(586\) 0.992316 + 3.05404i 0.0409922 + 0.126161i
\(587\) −0.0577249 + 0.177659i −0.00238256 + 0.00733278i −0.952241 0.305348i \(-0.901227\pi\)
0.949858 + 0.312681i \(0.101227\pi\)
\(588\) 0.331829 0.0136844
\(589\) 0 0
\(590\) 1.58634 0.0653086
\(591\) 0.344338 1.05976i 0.0141642 0.0435928i
\(592\) −12.8426 39.5255i −0.527828 1.62449i
\(593\) 10.8949 + 7.91559i 0.447399 + 0.325054i 0.788568 0.614948i \(-0.210823\pi\)
−0.341169 + 0.940002i \(0.610823\pi\)
\(594\) 3.94333 0.161797
\(595\) 11.6234 0.476514
\(596\) 29.2188 + 21.2287i 1.19685 + 0.869561i
\(597\) 11.8365 8.59974i 0.484437 0.351964i
\(598\) −0.00553223 + 0.00401940i −0.000226230 + 0.000164365i
\(599\) −5.71417 + 17.5864i −0.233475 + 0.718561i 0.763845 + 0.645399i \(0.223309\pi\)
−0.997320 + 0.0731620i \(0.976691\pi\)
\(600\) 2.06562 + 1.50076i 0.0843285 + 0.0612683i
\(601\) 5.51922 16.9864i 0.225134 0.692890i −0.773144 0.634230i \(-0.781317\pi\)
0.998278 0.0586601i \(-0.0186828\pi\)
\(602\) 0.324992 + 1.00022i 0.0132457 + 0.0407660i
\(603\) 2.34448 1.70337i 0.0954747 0.0693664i
\(604\) −4.04488 12.4489i −0.164584 0.506537i
\(605\) −7.87136 24.2256i −0.320016 0.984909i
\(606\) −1.28816 + 0.935904i −0.0523280 + 0.0380185i
\(607\) 8.94927 + 27.5430i 0.363240 + 1.11794i 0.951076 + 0.308957i \(0.0999798\pi\)
−0.587837 + 0.808980i \(0.700020\pi\)
\(608\) −2.71797 + 8.36505i −0.110228 + 0.339248i
\(609\) 9.46341 + 6.87557i 0.383477 + 0.278612i
\(610\) 0.175001 0.538598i 0.00708558 0.0218072i
\(611\) 0.106871 0.0776461i 0.00432352 0.00314122i
\(612\) 4.62039 3.35691i 0.186768 0.135695i
\(613\) −16.7017 12.1345i −0.674575 0.490108i 0.196978 0.980408i \(-0.436887\pi\)
−0.871554 + 0.490300i \(0.836887\pi\)
\(614\) −0.0814167 −0.00328571
\(615\) −12.9938 −0.523962
\(616\) 6.01253 + 4.36836i 0.242252 + 0.176006i
\(617\) 0.215559 + 0.663421i 0.00867806 + 0.0267083i 0.955302 0.295632i \(-0.0955303\pi\)
−0.946624 + 0.322341i \(0.895530\pi\)
\(618\) −0.152177 + 0.468352i −0.00612145 + 0.0188399i
\(619\) 2.41091 0.0969026 0.0484513 0.998826i \(-0.484571\pi\)
0.0484513 + 0.998826i \(0.484571\pi\)
\(620\) 0 0
\(621\) 23.0603 0.925376
\(622\) −0.845696 + 2.60279i −0.0339093 + 0.104362i
\(623\) −7.25613 22.3321i −0.290711 0.894715i
\(624\) 0.0629713 + 0.0457514i 0.00252087 + 0.00183152i
\(625\) 4.61172 0.184469
\(626\) 1.18132 0.0472150
\(627\) −40.1961 29.2041i −1.60528 1.16630i
\(628\) 25.2477 18.3435i 1.00749 0.731985i
\(629\) −30.5002 + 22.1597i −1.21612 + 0.883565i
\(630\) 0.102142 0.314362i 0.00406945 0.0125245i
\(631\) 29.4592 + 21.4034i 1.17275 + 0.852054i 0.991336 0.131352i \(-0.0419319\pi\)
0.181416 + 0.983406i \(0.441932\pi\)
\(632\) −0.498424 + 1.53399i −0.0198262 + 0.0610189i
\(633\) −6.42834 19.7844i −0.255504 0.786359i
\(634\) 0.210466 0.152912i 0.00835865 0.00607292i
\(635\) 0.659288 + 2.02908i 0.0261630 + 0.0805216i
\(636\) −7.17424 22.0800i −0.284477 0.875530i
\(637\) −0.00123135 0.000894625i −4.87877e−5 3.54463e-5i
\(638\) 0.640755 + 1.97204i 0.0253677 + 0.0780738i
\(639\) −0.943668 + 2.90431i −0.0373309 + 0.114893i
\(640\) −3.87647 2.81642i −0.153231 0.111329i
\(641\) −0.664297 + 2.04450i −0.0262382 + 0.0807527i −0.963318 0.268362i \(-0.913518\pi\)
0.937080 + 0.349115i \(0.113518\pi\)
\(642\) −1.18523 + 0.861118i −0.0467772 + 0.0339856i
\(643\) −14.3562 + 10.4304i −0.566155 + 0.411336i −0.833706 0.552208i \(-0.813785\pi\)
0.267552 + 0.963544i \(0.413785\pi\)
\(644\) 17.5123 + 12.7235i 0.690083 + 0.501375i
\(645\) 5.77539 0.227406
\(646\) 2.62517 0.103286
\(647\) 32.4985 + 23.6115i 1.27765 + 0.928265i 0.999479 0.0322678i \(-0.0102729\pi\)
0.278168 + 0.960533i \(0.410273\pi\)
\(648\) 0.902937 + 2.77895i 0.0354707 + 0.109168i
\(649\) −18.0839 + 55.6567i −0.709857 + 2.18471i
\(650\) −0.00583292 −0.000228786
\(651\) 0 0
\(652\) 14.2818 0.559317
\(653\) −0.746666 + 2.29800i −0.0292193 + 0.0899278i −0.964603 0.263708i \(-0.915055\pi\)
0.935383 + 0.353635i \(0.115055\pi\)
\(654\) −0.357541 1.10040i −0.0139810 0.0430290i
\(655\) 7.03152 + 5.10869i 0.274744 + 0.199613i
\(656\) −27.9196 −1.09008
\(657\) −2.88209 −0.112441
\(658\) 2.62845 + 1.90968i 0.102468 + 0.0744471i
\(659\) −21.3322 + 15.4987i −0.830983 + 0.603745i −0.919837 0.392300i \(-0.871679\pi\)
0.0888542 + 0.996045i \(0.471679\pi\)
\(660\) 16.4450 11.9480i 0.640122 0.465076i
\(661\) −11.6851 + 35.9630i −0.454497 + 1.39880i 0.417227 + 0.908802i \(0.363002\pi\)
−0.871724 + 0.489996i \(0.836998\pi\)
\(662\) −0.251891 0.183009i −0.00979002 0.00711286i
\(663\) 0.0218194 0.0671531i 0.000847394 0.00260801i
\(664\) 0.316532 + 0.974186i 0.0122838 + 0.0378058i
\(665\) −15.8205 + 11.4943i −0.613494 + 0.445729i
\(666\) 0.331296 + 1.01962i 0.0128375 + 0.0395097i
\(667\) 3.74708 + 11.5323i 0.145087 + 0.446533i
\(668\) −32.8662 + 23.8787i −1.27163 + 0.923895i
\(669\) −4.52341 13.9216i −0.174885 0.538241i
\(670\) −0.168407 + 0.518303i −0.00650612 + 0.0200238i
\(671\) 16.9017 + 12.2798i 0.652483 + 0.474057i
\(672\) −1.79799 + 5.53365i −0.0693590 + 0.213465i
\(673\) 20.9368 15.2115i 0.807055 0.586360i −0.105920 0.994375i \(-0.533779\pi\)
0.912975 + 0.408015i \(0.133779\pi\)
\(674\) 2.73387 1.98627i 0.105305 0.0765084i
\(675\) 15.9135 + 11.5618i 0.612511 + 0.445015i
\(676\) 25.7992 0.992276
\(677\) 19.9464 0.766602 0.383301 0.923623i \(-0.374787\pi\)
0.383301 + 0.923623i \(0.374787\pi\)
\(678\) −0.408259 0.296617i −0.0156791 0.0113915i
\(679\) 2.79183 + 8.59236i 0.107140 + 0.329744i
\(680\) −0.666354 + 2.05083i −0.0255535 + 0.0786456i
\(681\) −13.9117 −0.533099
\(682\) 0 0
\(683\) −10.3960 −0.397793 −0.198897 0.980020i \(-0.563736\pi\)
−0.198897 + 0.980020i \(0.563736\pi\)
\(684\) −2.96915 + 9.13810i −0.113528 + 0.349404i
\(685\) −3.62333 11.1515i −0.138440 0.426075i
\(686\) 1.84521 + 1.34062i 0.0704505 + 0.0511853i
\(687\) 21.8258 0.832706
\(688\) 12.4095 0.473107
\(689\) 0.0861507 + 0.0625921i 0.00328208 + 0.00238457i
\(690\) −0.747193 + 0.542867i −0.0284451 + 0.0206666i
\(691\) 10.8816 7.90591i 0.413954 0.300755i −0.361247 0.932470i \(-0.617649\pi\)
0.775201 + 0.631715i \(0.217649\pi\)
\(692\) 12.9200 39.7636i 0.491144 1.51159i
\(693\) 9.86496 + 7.16731i 0.374739 + 0.272264i
\(694\) 0.933533 2.87312i 0.0354364 0.109062i
\(695\) 5.07131 + 15.6079i 0.192366 + 0.592041i
\(696\) −1.75564 + 1.27555i −0.0665474 + 0.0483495i
\(697\) 7.82647 + 24.0874i 0.296449 + 0.912376i
\(698\) 0.466820 + 1.43672i 0.0176694 + 0.0543808i
\(699\) −34.2100 + 24.8550i −1.29394 + 0.940104i
\(700\) 5.70575 + 17.5605i 0.215657 + 0.663725i
\(701\) −0.470661 + 1.44855i −0.0177766 + 0.0547109i −0.959551 0.281534i \(-0.909157\pi\)
0.941775 + 0.336245i \(0.109157\pi\)
\(702\) −0.00762752 0.00554172i −0.000287882 0.000209159i
\(703\) 19.6000 60.3227i 0.739229 2.27511i
\(704\) 34.7752 25.2657i 1.31064 0.952236i
\(705\) 14.4341 10.4870i 0.543621 0.394964i
\(706\) −2.81441 2.04479i −0.105922 0.0769567i
\(707\) −23.1188 −0.869471
\(708\) −30.5046 −1.14643
\(709\) 1.24999 + 0.908169i 0.0469442 + 0.0341070i 0.611010 0.791623i \(-0.290764\pi\)
−0.564066 + 0.825730i \(0.690764\pi\)
\(710\) −0.177463 0.546174i −0.00666006 0.0204976i
\(711\) −0.817781 + 2.51687i −0.0306692 + 0.0943901i
\(712\) 4.35623 0.163257
\(713\) 0 0
\(714\) 1.73660 0.0649908
\(715\) −0.0288116 + 0.0886729i −0.00107749 + 0.00331618i
\(716\) 6.42639 + 19.7784i 0.240166 + 0.739154i
\(717\) −10.7812 7.83297i −0.402630 0.292528i
\(718\) −3.02199 −0.112780
\(719\) 36.4715 1.36016 0.680079 0.733139i \(-0.261946\pi\)
0.680079 + 0.733139i \(0.261946\pi\)
\(720\) −3.15533 2.29248i −0.117592 0.0854356i
\(721\) −5.78463 + 4.20278i −0.215431 + 0.156520i
\(722\) −1.66436 + 1.20923i −0.0619412 + 0.0450029i
\(723\) −0.360280 + 1.10883i −0.0133990 + 0.0412378i
\(724\) −15.3124 11.1251i −0.569080 0.413461i
\(725\) −3.19622 + 9.83696i −0.118705 + 0.365335i
\(726\) −1.17602 3.61943i −0.0436464 0.134330i
\(727\) −9.16225 + 6.65676i −0.339809 + 0.246886i −0.744581 0.667532i \(-0.767351\pi\)
0.404772 + 0.914418i \(0.367351\pi\)
\(728\) −0.00549091 0.0168993i −0.000203507 0.000626329i
\(729\) 9.21398 + 28.3577i 0.341259 + 1.05029i
\(730\) 0.438483 0.318577i 0.0162290 0.0117911i
\(731\) −3.47864 10.7062i −0.128662 0.395982i
\(732\) −3.36519 + 10.3570i −0.124381 + 0.382806i
\(733\) −1.47532 1.07188i −0.0544921 0.0395908i 0.560206 0.828353i \(-0.310722\pi\)
−0.614698 + 0.788763i \(0.710722\pi\)
\(734\) −0.0648179 + 0.199489i −0.00239247 + 0.00736328i
\(735\) −0.166308 + 0.120830i −0.00613436 + 0.00445687i
\(736\) −4.87959 + 3.54523i −0.179864 + 0.130679i
\(737\) −16.2648 11.8171i −0.599122 0.435288i
\(738\) 0.720232 0.0265121
\(739\) −35.2840 −1.29794 −0.648971 0.760813i \(-0.724800\pi\)
−0.648971 + 0.760813i \(0.724800\pi\)
\(740\) 20.9934 + 15.2526i 0.771733 + 0.560697i
\(741\) 0.0367089 + 0.112978i 0.00134853 + 0.00415036i
\(742\) −0.809328 + 2.49086i −0.0297114 + 0.0914422i
\(743\) −26.9859 −0.990018 −0.495009 0.868888i \(-0.664835\pi\)
−0.495009 + 0.868888i \(0.664835\pi\)
\(744\) 0 0
\(745\) −22.3741 −0.819722
\(746\) 0.931837 2.86790i 0.0341170 0.105001i
\(747\) 0.519346 + 1.59838i 0.0190019 + 0.0584817i
\(748\) −32.0539 23.2885i −1.17201 0.851513i
\(749\) −21.2714 −0.777240
\(750\) −1.91696 −0.0699976
\(751\) 17.1193 + 12.4379i 0.624691 + 0.453865i 0.854557 0.519358i \(-0.173829\pi\)
−0.229866 + 0.973222i \(0.573829\pi\)
\(752\) 31.0144 22.5333i 1.13098 0.821703i
\(753\) −23.6617 + 17.1912i −0.862281 + 0.626484i
\(754\) 0.00153198 0.00471496i 5.57916e−5 0.000171709i
\(755\) 6.56027 + 4.76631i 0.238753 + 0.173464i
\(756\) −9.22258 + 28.3842i −0.335422 + 1.03232i
\(757\) 16.5689 + 50.9937i 0.602205 + 1.85340i 0.514966 + 0.857210i \(0.327804\pi\)
0.0872392 + 0.996187i \(0.472196\pi\)
\(758\) −1.34058 + 0.973991i −0.0486922 + 0.0353769i
\(759\) −10.5286 32.4038i −0.382165 1.17618i
\(760\) −1.12107 3.45031i −0.0406656 0.125156i
\(761\) 6.67260 4.84793i 0.241882 0.175737i −0.460240 0.887795i \(-0.652236\pi\)
0.702121 + 0.712057i \(0.252236\pi\)
\(762\) 0.0985012 + 0.303156i 0.00356832 + 0.0109822i
\(763\) 5.19133 15.9773i 0.187939 0.578416i
\(764\) −16.0629 11.6704i −0.581136 0.422220i
\(765\) −1.09331 + 3.36486i −0.0395287 + 0.121657i
\(766\) −2.51596 + 1.82795i −0.0909052 + 0.0660465i
\(767\) 0.113196 0.0822417i 0.00408727 0.00296958i
\(768\) 17.6886 + 12.8515i 0.638284 + 0.463740i
\(769\) 26.3326 0.949577 0.474788 0.880100i \(-0.342525\pi\)
0.474788 + 0.880100i \(0.342525\pi\)
\(770\) −2.29311 −0.0826381
\(771\) −10.8001 7.84675i −0.388957 0.282594i
\(772\) 12.6827 + 39.0335i 0.456462 + 1.40485i
\(773\) −3.66000 + 11.2643i −0.131641 + 0.405150i −0.995052 0.0993508i \(-0.968323\pi\)
0.863411 + 0.504501i \(0.168323\pi\)
\(774\) −0.320123 −0.0115066
\(775\) 0 0
\(776\) −1.67608 −0.0601677
\(777\) 12.9658 39.9047i 0.465146 1.43157i
\(778\) 0.841753 + 2.59065i 0.0301783 + 0.0928793i
\(779\) −34.4723 25.0456i −1.23510 0.897351i
\(780\) −0.0486004 −0.00174017
\(781\) 21.1855 0.758078
\(782\) 1.45639 + 1.05813i 0.0520806 + 0.0378387i
\(783\) −13.5254 + 9.82681i −0.483360 + 0.351181i
\(784\) −0.357342 + 0.259624i −0.0127622 + 0.00927230i
\(785\) −5.97429 + 18.3870i −0.213231 + 0.656259i
\(786\) 1.05055 + 0.763267i 0.0374718 + 0.0272248i
\(787\) 12.0136 36.9740i 0.428238 1.31798i −0.471621 0.881801i \(-0.656331\pi\)
0.899859 0.436180i \(-0.143669\pi\)
\(788\) 0.461967 + 1.42179i 0.0164569 + 0.0506491i
\(789\) −3.74340 + 2.71974i −0.133269 + 0.0968254i
\(790\) −0.153789 0.473314i −0.00547157 0.0168397i
\(791\) −2.26419 6.96845i −0.0805052 0.247769i
\(792\) −1.83014 + 1.32967i −0.0650311 + 0.0472478i
\(793\) −0.0154354 0.0475053i −0.000548127 0.00168696i
\(794\) 0.0850441 0.261739i 0.00301810 0.00928876i
\(795\) 11.6357 + 8.45381i 0.412675 + 0.299826i
\(796\) −6.06562 + 18.6681i −0.214990 + 0.661672i
\(797\) −42.1225 + 30.6038i −1.49206 + 1.08404i −0.518641 + 0.854992i \(0.673562\pi\)
−0.973415 + 0.229050i \(0.926438\pi\)
\(798\) −2.36367 + 1.71731i −0.0836731 + 0.0607921i
\(799\) −28.1344 20.4408i −0.995323 0.723144i
\(800\) −5.14482 −0.181897
\(801\) 7.14742 0.252542
\(802\) 2.67921 + 1.94656i 0.0946061 + 0.0687354i
\(803\) 6.17863 + 19.0159i 0.218039 + 0.671056i
\(804\) 3.23839 9.96673i 0.114209 0.351500i
\(805\) −13.4099 −0.472638
\(806\) 0 0
\(807\) −20.6764 −0.727845
\(808\) 1.32536 4.07905i 0.0466261 0.143500i
\(809\) 9.64388 + 29.6808i 0.339061 + 1.04352i 0.964687 + 0.263399i \(0.0848435\pi\)
−0.625626 + 0.780123i \(0.715157\pi\)
\(810\) −0.729389 0.529932i −0.0256281 0.0186199i
\(811\) 16.4241 0.576729 0.288364 0.957521i \(-0.406889\pi\)
0.288364 + 0.957521i \(0.406889\pi\)
\(812\) −15.6934 −0.550729
\(813\) 16.8247 + 12.2238i 0.590067 + 0.428709i
\(814\) 6.01720 4.37175i 0.210903 0.153230i
\(815\) −7.15780 + 5.20045i −0.250727 + 0.182164i
\(816\) 6.33208 19.4881i 0.221667 0.682222i
\(817\) 15.3220 + 11.1321i 0.536047 + 0.389461i
\(818\) −1.45344 + 4.47324i −0.0508185 + 0.156403i
\(819\) −0.00900913 0.0277272i −0.000314804 0.000968868i
\(820\) 14.1033 10.2467i 0.492509 0.357829i
\(821\) −12.4433 38.2967i −0.434275 1.33656i −0.893827 0.448411i \(-0.851990\pi\)
0.459552 0.888151i \(-0.348010\pi\)
\(822\) −0.541345 1.66609i −0.0188816 0.0581115i
\(823\) −18.8505 + 13.6957i −0.657088 + 0.477402i −0.865678 0.500601i \(-0.833112\pi\)
0.208591 + 0.978003i \(0.433112\pi\)
\(824\) −0.409910 1.26157i −0.0142799 0.0439490i
\(825\) 8.98082 27.6401i 0.312672 0.962305i
\(826\) 2.78402 + 2.02271i 0.0968684 + 0.0703790i
\(827\) 7.45869 22.9555i 0.259364 0.798240i −0.733574 0.679609i \(-0.762149\pi\)
0.992938 0.118631i \(-0.0378506\pi\)
\(828\) −5.33054 + 3.87286i −0.185249 + 0.134591i
\(829\) 18.3804 13.3541i 0.638376 0.463807i −0.220916 0.975293i \(-0.570905\pi\)
0.859292 + 0.511485i \(0.170905\pi\)
\(830\) −0.255693 0.185772i −0.00887525 0.00644825i
\(831\) −32.5758 −1.13004
\(832\) −0.102772 −0.00356298
\(833\) 0.324160 + 0.235516i 0.0112315 + 0.00816014i
\(834\) 0.757681 + 2.33190i 0.0262364 + 0.0807472i
\(835\) 7.77704 23.9353i 0.269136 0.828315i
\(836\) 66.6580 2.30541
\(837\) 0 0
\(838\) −1.13831 −0.0393223
\(839\) −1.85861 + 5.72022i −0.0641664 + 0.197484i −0.978000 0.208605i \(-0.933108\pi\)
0.913834 + 0.406089i \(0.133108\pi\)
\(840\) −0.741612 2.28245i −0.0255881 0.0787519i
\(841\) 16.3494 + 11.8785i 0.563772 + 0.409605i
\(842\) −0.405813 −0.0139852
\(843\) −3.44111 −0.118518
\(844\) 22.5788 + 16.4044i 0.777193 + 0.564664i
\(845\) −12.9302 + 9.39431i −0.444811 + 0.323174i
\(846\) −0.800067 + 0.581282i −0.0275069 + 0.0199849i
\(847\) 17.0753 52.5524i 0.586714 1.80572i
\(848\) 25.0013 + 18.1645i 0.858550 + 0.623773i
\(849\) −6.36736 + 19.5967i −0.218527 + 0.672558i
\(850\) 0.474513 + 1.46040i 0.0162756 + 0.0500913i
\(851\) 35.1881 25.5656i 1.20623 0.876378i
\(852\) 3.41253 + 10.5027i 0.116911 + 0.359816i
\(853\) 3.34165 + 10.2845i 0.114416 + 0.352136i 0.991825 0.127607i \(-0.0407297\pi\)
−0.877409 + 0.479744i \(0.840730\pi\)
\(854\) 0.993881 0.722097i 0.0340099 0.0247096i
\(855\) −1.83938 5.66104i −0.0629056 0.193603i
\(856\) 1.21946 3.75310i 0.0416802 0.128278i
\(857\) 27.5745 + 20.0341i 0.941928 + 0.684351i 0.948884 0.315625i \(-0.102214\pi\)
−0.00695590 + 0.999976i \(0.502214\pi\)
\(858\) −0.00430461 + 0.0132482i −0.000146957 + 0.000452287i
\(859\) 6.08213 4.41893i 0.207520 0.150772i −0.479171 0.877722i \(-0.659063\pi\)
0.686691 + 0.726950i \(0.259063\pi\)
\(860\) −6.26852 + 4.55435i −0.213755 + 0.155302i
\(861\) −22.8041 16.5682i −0.777162 0.564642i
\(862\) −2.91445 −0.0992666
\(863\) −22.2748 −0.758243 −0.379121 0.925347i \(-0.623774\pi\)
−0.379121 + 0.925347i \(0.623774\pi\)
\(864\) −6.72770 4.88796i −0.228881 0.166292i
\(865\) 8.00392 + 24.6335i 0.272141 + 0.837565i
\(866\) 1.04917 3.22903i 0.0356524 0.109727i
\(867\) 6.55906 0.222757
\(868\) 0 0
\(869\) 18.3594 0.622798
\(870\) 0.206913 0.636812i 0.00701499 0.0215899i
\(871\) 0.0148538 + 0.0457152i 0.000503301 + 0.00154900i
\(872\) 2.52140 + 1.83190i 0.0853854 + 0.0620361i
\(873\) −2.75000 −0.0930734
\(874\) −3.02866 −0.102446
\(875\) −22.5177 16.3600i −0.761236 0.553070i
\(876\) −8.43184 + 6.12609i −0.284886 + 0.206981i
\(877\) 21.9773 15.9675i 0.742122 0.539183i −0.151253 0.988495i \(-0.548331\pi\)
0.893375 + 0.449312i \(0.148331\pi\)
\(878\) −1.26796 + 3.90239i −0.0427917 + 0.131699i
\(879\) 30.9482 + 22.4852i 1.04386 + 0.758406i
\(880\) −8.36125 + 25.7333i −0.281858 + 0.867469i
\(881\) −7.03618 21.6551i −0.237055 0.729580i −0.996842 0.0794084i \(-0.974697\pi\)
0.759787 0.650172i \(-0.225303\pi\)
\(882\) 0.00921824 0.00669744i 0.000310394 0.000225515i
\(883\) −6.34514 19.5283i −0.213531 0.657180i −0.999255 0.0386029i \(-0.987709\pi\)
0.785724 0.618578i \(-0.212291\pi\)
\(884\) 0.0292731 + 0.0900932i 0.000984560 + 0.00303016i
\(885\) 15.2885 11.1077i 0.513916 0.373382i
\(886\) −0.511366 1.57382i −0.0171797 0.0528736i
\(887\) 16.5966 51.0792i 0.557261 1.71507i −0.132636 0.991165i \(-0.542344\pi\)
0.689897 0.723908i \(-0.257656\pi\)
\(888\) 6.29743 + 4.57535i 0.211328 + 0.153539i
\(889\) −1.43019 + 4.40167i −0.0479670 + 0.147627i
\(890\) −1.08741 + 0.790052i −0.0364502 + 0.0264826i
\(891\) 26.9075 19.5495i 0.901436 0.654931i
\(892\) 15.8879 + 11.5433i 0.531967 + 0.386497i
\(893\) 58.5071 1.95787
\(894\) −3.34281 −0.111800
\(895\) −10.4228 7.57258i −0.348395 0.253123i
\(896\) −3.21203 9.88561i −0.107306 0.330255i
\(897\) −0.0251730 + 0.0774744i −0.000840501 + 0.00258680i
\(898\) 1.40247 0.0468010
\(899\) 0 0
\(900\) −5.62027 −0.187342
\(901\) 8.66288 26.6616i 0.288602 0.888227i
\(902\) −1.54404 4.75205i −0.0514108 0.158226i
\(903\) 10.1358 + 7.36408i 0.337298 + 0.245061i
\(904\) 1.35931 0.0452099
\(905\) 11.7253 0.389763
\(906\) 0.980140 + 0.712113i 0.0325630 + 0.0236584i
\(907\) −43.1601 + 31.3576i −1.43311 + 1.04121i −0.443679 + 0.896186i \(0.646327\pi\)
−0.989428 + 0.145028i \(0.953673\pi\)
\(908\) 15.0996 10.9705i 0.501098 0.364069i
\(909\) 2.17457 6.69264i 0.0721260 0.221981i
\(910\) 0.00443554 + 0.00322260i 0.000147037 + 0.000106828i
\(911\) −13.7656 + 42.3662i −0.456075 + 1.40365i 0.413794 + 0.910371i \(0.364203\pi\)
−0.869869 + 0.493283i \(0.835797\pi\)
\(912\) 10.6531 + 32.7868i 0.352759 + 1.08568i
\(913\) 9.43266 6.85323i 0.312175 0.226809i
\(914\) 0.174619 + 0.537422i 0.00577589 + 0.0177764i
\(915\) −2.08473 6.41615i −0.0689191 0.212111i
\(916\) −23.6894 + 17.2113i −0.782719 + 0.568679i
\(917\) 5.82629 + 17.9315i 0.192401 + 0.592149i
\(918\) −0.766985 + 2.36054i −0.0253143 + 0.0779094i
\(919\) 9.43229 + 6.85296i 0.311142 + 0.226058i 0.732387 0.680889i \(-0.238406\pi\)
−0.421244 + 0.906947i \(0.638406\pi\)
\(920\) 0.768772 2.36604i 0.0253457 0.0780059i
\(921\) −0.784658 + 0.570088i −0.0258554 + 0.0187850i
\(922\) −2.89284 + 2.10177i −0.0952707 + 0.0692182i
\(923\) −0.0409788 0.0297729i −0.00134883 0.000979986i
\(924\) 44.0956 1.45064
\(925\) 37.1007 1.21986
\(926\) −1.21069 0.879618i −0.0397857 0.0289060i
\(927\) −0.672553 2.06991i −0.0220895 0.0679846i
\(928\) 1.35126 4.15874i 0.0443572 0.136517i
\(929\) 16.1137 0.528675 0.264337 0.964430i \(-0.414847\pi\)
0.264337 + 0.964430i \(0.414847\pi\)
\(930\) 0 0
\(931\) −0.674109 −0.0220930
\(932\) 17.5309 53.9546i 0.574244 1.76734i
\(933\) 10.0745 + 31.0062i 0.329825 + 1.01510i
\(934\) 1.92179 + 1.39626i 0.0628828 + 0.0456870i
\(935\) 24.5450 0.802708
\(936\) 0.00540865 0.000176787
\(937\) −36.6391 26.6199i −1.19695 0.869633i −0.202966 0.979186i \(-0.565058\pi\)
−0.993981 + 0.109553i \(0.965058\pi\)
\(938\) −0.956430 + 0.694887i −0.0312285 + 0.0226889i
\(939\) 11.3850 8.27171i 0.371536 0.269937i
\(940\) −7.39676 + 22.7649i −0.241256 + 0.742509i
\(941\) 19.8280 + 14.4059i 0.646376 + 0.469619i 0.862035 0.506849i \(-0.169190\pi\)
−0.215659 + 0.976469i \(0.569190\pi\)
\(942\) −0.892591 + 2.74711i −0.0290822 + 0.0895058i
\(943\) −9.02939 27.7896i −0.294037 0.904954i
\(944\) 32.8500 23.8669i 1.06918 0.776803i
\(945\) −5.71337 17.5840i −0.185856 0.572006i
\(946\) 0.686280 + 2.11215i 0.0223129 + 0.0686720i
\(947\) 36.2065 26.3056i 1.17655 0.854816i 0.184775 0.982781i \(-0.440844\pi\)
0.991779 + 0.127964i \(0.0408443\pi\)
\(948\) 2.95729 + 9.10162i 0.0960485 + 0.295607i
\(949\) 0.0147725 0.0454652i 0.000479537 0.00147586i
\(950\) −2.09003 1.51849i −0.0678094 0.0492664i
\(951\) 0.957669 2.94740i 0.0310545 0.0955760i
\(952\) −3.78441 + 2.74954i −0.122654 + 0.0891130i
\(953\) 24.9268 18.1103i 0.807457 0.586652i −0.105635 0.994405i \(-0.533688\pi\)
0.913092 + 0.407753i \(0.133688\pi\)
\(954\) −0.644951 0.468584i −0.0208811 0.0151710i
\(955\) 12.3001 0.398020
\(956\) 17.8786 0.578236
\(957\) 19.9837 + 14.5190i 0.645982 + 0.469334i
\(958\) −0.471634 1.45154i −0.0152378 0.0468971i
\(959\) 7.86006 24.1908i 0.253815 0.781161i
\(960\) −13.8806 −0.447994
\(961\) 0 0
\(962\) −0.0177828 −0.000573339
\(963\) 2.00081 6.15785i 0.0644751 0.198434i
\(964\) −0.483356 1.48762i −0.0155678 0.0479129i
\(965\) −20.5697 14.9448i −0.662164 0.481090i
\(966\) −2.00352 −0.0644622
\(967\) 44.5447 1.43246 0.716230 0.697864i \(-0.245866\pi\)
0.716230 + 0.697864i \(0.245866\pi\)
\(968\) 8.29338 + 6.02550i 0.266559 + 0.193667i
\(969\) 25.3003 18.3817i 0.812762 0.590506i
\(970\) 0.418387 0.303976i 0.0134336 0.00976008i
\(971\) 1.96452 6.04617i 0.0630445 0.194031i −0.914573 0.404420i \(-0.867473\pi\)
0.977618 + 0.210390i \(0.0674732\pi\)
\(972\) −13.1336 9.54216i −0.421262 0.306065i
\(973\) −11.0012 + 33.8581i −0.352681 + 1.08544i
\(974\) 0.580443 + 1.78642i 0.0185986 + 0.0572406i
\(975\) −0.0562152 + 0.0408427i −0.00180033 + 0.00130801i
\(976\) −4.47943 13.7863i −0.143383 0.441287i
\(977\) −4.15101 12.7755i −0.132803 0.408724i 0.862439 0.506161i \(-0.168936\pi\)
−0.995242 + 0.0974365i \(0.968936\pi\)
\(978\) −1.06941 + 0.776975i −0.0341961 + 0.0248449i
\(979\) −15.3227 47.1583i −0.489714 1.50719i
\(980\) 0.0852243 0.262293i 0.00272239 0.00837866i
\(981\) 4.13695 + 3.00567i 0.132083 + 0.0959636i
\(982\) 1.17165 3.60598i 0.0373889 0.115071i
\(983\) −34.1224 + 24.7914i −1.08834 + 0.790723i −0.979118 0.203294i \(-0.934835\pi\)
−0.109219 + 0.994018i \(0.534835\pi\)
\(984\) 4.23060 3.07371i 0.134866 0.0979862i
\(985\) −0.749249 0.544361i −0.0238731 0.0173448i
\(986\) −1.30512 −0.0415635
\(987\) 38.7036 1.23195
\(988\) −0.128935 0.0936771i −0.00410198 0.00298026i
\(989\) 4.01331 + 12.3517i 0.127616 + 0.392761i
\(990\) 0.215692 0.663833i 0.00685515 0.0210980i
\(991\) 40.1209 1.27448 0.637241 0.770665i \(-0.280076\pi\)
0.637241 + 0.770665i \(0.280076\pi\)
\(992\) 0 0
\(993\) −3.70907 −0.117704
\(994\) 0.384969 1.18481i 0.0122105 0.0375800i
\(995\) −3.75764 11.5648i −0.119125 0.366630i
\(996\) 4.91687 + 3.57232i 0.155797 + 0.113193i
\(997\) −40.6053 −1.28598 −0.642991 0.765874i \(-0.722307\pi\)
−0.642991 + 0.765874i \(0.722307\pi\)
\(998\) 3.57960 0.113310
\(999\) 48.5153 + 35.2484i 1.53496 + 1.11521i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.s.628.11 64
31.2 even 5 961.2.a.l.1.11 16
31.3 odd 30 961.2.g.w.816.5 128
31.4 even 5 inner 961.2.d.s.531.11 64
31.5 even 3 961.2.g.w.448.11 128
31.6 odd 6 961.2.g.w.846.11 128
31.7 even 15 961.2.g.w.547.11 128
31.8 even 5 inner 961.2.d.s.388.6 64
31.9 even 15 961.2.g.w.338.6 128
31.10 even 15 961.2.c.l.521.12 32
31.11 odd 30 961.2.g.w.844.11 128
31.12 odd 30 961.2.c.l.439.11 32
31.13 odd 30 961.2.g.w.732.6 128
31.14 even 15 961.2.g.w.235.5 128
31.15 odd 10 inner 961.2.d.s.374.5 64
31.16 even 5 inner 961.2.d.s.374.6 64
31.17 odd 30 961.2.g.w.235.6 128
31.18 even 15 961.2.g.w.732.5 128
31.19 even 15 961.2.c.l.439.12 32
31.20 even 15 961.2.g.w.844.12 128
31.21 odd 30 961.2.c.l.521.11 32
31.22 odd 30 961.2.g.w.338.5 128
31.23 odd 10 inner 961.2.d.s.388.5 64
31.24 odd 30 961.2.g.w.547.12 128
31.25 even 3 961.2.g.w.846.12 128
31.26 odd 6 961.2.g.w.448.12 128
31.27 odd 10 inner 961.2.d.s.531.12 64
31.28 even 15 961.2.g.w.816.6 128
31.29 odd 10 961.2.a.l.1.12 yes 16
31.30 odd 2 inner 961.2.d.s.628.12 64
93.2 odd 10 8649.2.a.bs.1.5 16
93.29 even 10 8649.2.a.bs.1.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.l.1.11 16 31.2 even 5
961.2.a.l.1.12 yes 16 31.29 odd 10
961.2.c.l.439.11 32 31.12 odd 30
961.2.c.l.439.12 32 31.19 even 15
961.2.c.l.521.11 32 31.21 odd 30
961.2.c.l.521.12 32 31.10 even 15
961.2.d.s.374.5 64 31.15 odd 10 inner
961.2.d.s.374.6 64 31.16 even 5 inner
961.2.d.s.388.5 64 31.23 odd 10 inner
961.2.d.s.388.6 64 31.8 even 5 inner
961.2.d.s.531.11 64 31.4 even 5 inner
961.2.d.s.531.12 64 31.27 odd 10 inner
961.2.d.s.628.11 64 1.1 even 1 trivial
961.2.d.s.628.12 64 31.30 odd 2 inner
961.2.g.w.235.5 128 31.14 even 15
961.2.g.w.235.6 128 31.17 odd 30
961.2.g.w.338.5 128 31.22 odd 30
961.2.g.w.338.6 128 31.9 even 15
961.2.g.w.448.11 128 31.5 even 3
961.2.g.w.448.12 128 31.26 odd 6
961.2.g.w.547.11 128 31.7 even 15
961.2.g.w.547.12 128 31.24 odd 30
961.2.g.w.732.5 128 31.18 even 15
961.2.g.w.732.6 128 31.13 odd 30
961.2.g.w.816.5 128 31.3 odd 30
961.2.g.w.816.6 128 31.28 even 15
961.2.g.w.844.11 128 31.11 odd 30
961.2.g.w.844.12 128 31.20 even 15
961.2.g.w.846.11 128 31.6 odd 6
961.2.g.w.846.12 128 31.25 even 3
8649.2.a.bs.1.5 16 93.2 odd 10
8649.2.a.bs.1.6 16 93.29 even 10