Properties

Label 961.2.a.l.1.11
Level $961$
Weight $2$
Character 961.1
Self dual yes
Analytic conductor $7.674$
Analytic rank $1$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(1,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-8,0,8,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.67362363425\)
Analytic rank: \(1\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 24x^{14} + 220x^{12} - 992x^{10} + 2366x^{8} - 2944x^{6} + 1688x^{4} - 288x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(-1.47925\) of defining polynomial
Character \(\chi\) \(=\) 961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.124175 q^{2} -1.47925 q^{3} -1.98458 q^{4} -1.22944 q^{5} -0.183686 q^{6} +2.66703 q^{7} -0.494784 q^{8} -0.811809 q^{9} -0.152666 q^{10} +5.63192 q^{11} +2.93570 q^{12} +0.0134654 q^{13} +0.331177 q^{14} +1.81866 q^{15} +3.90772 q^{16} -3.54485 q^{17} -0.100806 q^{18} -5.96385 q^{19} +2.43993 q^{20} -3.94521 q^{21} +0.699342 q^{22} +4.08969 q^{23} +0.731911 q^{24} -3.48847 q^{25} +0.00167206 q^{26} +5.63863 q^{27} -5.29293 q^{28} +2.96497 q^{29} +0.225832 q^{30} +1.47481 q^{32} -8.33104 q^{33} -0.440181 q^{34} -3.27896 q^{35} +1.61110 q^{36} -10.6352 q^{37} -0.740559 q^{38} -0.0199187 q^{39} +0.608309 q^{40} -7.14473 q^{41} -0.489895 q^{42} +3.17563 q^{43} -11.1770 q^{44} +0.998075 q^{45} +0.507836 q^{46} -9.81029 q^{47} -5.78051 q^{48} +0.113032 q^{49} -0.433179 q^{50} +5.24373 q^{51} -0.0267232 q^{52} -7.90828 q^{53} +0.700175 q^{54} -6.92413 q^{55} -1.31960 q^{56} +8.82205 q^{57} +0.368174 q^{58} -10.3909 q^{59} -3.60928 q^{60} -3.70951 q^{61} -2.16512 q^{63} -7.63231 q^{64} -0.0165550 q^{65} -1.03450 q^{66} +3.56973 q^{67} +7.03504 q^{68} -6.04969 q^{69} -0.407164 q^{70} +3.76169 q^{71} +0.401670 q^{72} +3.55021 q^{73} -1.32063 q^{74} +5.16032 q^{75} +11.8357 q^{76} +15.0205 q^{77} -0.00247340 q^{78} +3.25987 q^{79} -4.80433 q^{80} -5.90554 q^{81} -0.887194 q^{82} -2.07024 q^{83} +7.82959 q^{84} +4.35820 q^{85} +0.394333 q^{86} -4.38594 q^{87} -2.78658 q^{88} -8.80431 q^{89} +0.123936 q^{90} +0.0359126 q^{91} -8.11632 q^{92} -1.21819 q^{94} +7.33223 q^{95} -2.18161 q^{96} +3.38749 q^{97} +0.0140358 q^{98} -4.57204 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{2} + 8 q^{4} - 16 q^{5} - 16 q^{7} + 8 q^{10} - 8 q^{14} - 8 q^{16} - 24 q^{18} - 32 q^{19} - 24 q^{20} - 8 q^{28} - 8 q^{32} - 32 q^{33} - 16 q^{35} - 40 q^{36} - 24 q^{38} - 32 q^{39} - 32 q^{41}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.124175 0.0878047 0.0439024 0.999036i \(-0.486021\pi\)
0.0439024 + 0.999036i \(0.486021\pi\)
\(3\) −1.47925 −0.854047 −0.427024 0.904240i \(-0.640438\pi\)
−0.427024 + 0.904240i \(0.640438\pi\)
\(4\) −1.98458 −0.992290
\(5\) −1.22944 −0.549824 −0.274912 0.961469i \(-0.588649\pi\)
−0.274912 + 0.961469i \(0.588649\pi\)
\(6\) −0.183686 −0.0749894
\(7\) 2.66703 1.00804 0.504021 0.863692i \(-0.331854\pi\)
0.504021 + 0.863692i \(0.331854\pi\)
\(8\) −0.494784 −0.174933
\(9\) −0.811809 −0.270603
\(10\) −0.152666 −0.0482772
\(11\) 5.63192 1.69809 0.849044 0.528322i \(-0.177179\pi\)
0.849044 + 0.528322i \(0.177179\pi\)
\(12\) 2.93570 0.847463
\(13\) 0.0134654 0.00373463 0.00186731 0.999998i \(-0.499406\pi\)
0.00186731 + 0.999998i \(0.499406\pi\)
\(14\) 0.331177 0.0885108
\(15\) 1.81866 0.469576
\(16\) 3.90772 0.976930
\(17\) −3.54485 −0.859753 −0.429876 0.902888i \(-0.641443\pi\)
−0.429876 + 0.902888i \(0.641443\pi\)
\(18\) −0.100806 −0.0237602
\(19\) −5.96385 −1.36820 −0.684101 0.729388i \(-0.739805\pi\)
−0.684101 + 0.729388i \(0.739805\pi\)
\(20\) 2.43993 0.545585
\(21\) −3.94521 −0.860915
\(22\) 0.699342 0.149100
\(23\) 4.08969 0.852759 0.426380 0.904544i \(-0.359789\pi\)
0.426380 + 0.904544i \(0.359789\pi\)
\(24\) 0.731911 0.149401
\(25\) −3.48847 −0.697693
\(26\) 0.00167206 0.000327918 0
\(27\) 5.63863 1.08516
\(28\) −5.29293 −1.00027
\(29\) 2.96497 0.550581 0.275290 0.961361i \(-0.411226\pi\)
0.275290 + 0.961361i \(0.411226\pi\)
\(30\) 0.225832 0.0412310
\(31\) 0 0
\(32\) 1.47481 0.260712
\(33\) −8.33104 −1.45025
\(34\) −0.440181 −0.0754903
\(35\) −3.27896 −0.554246
\(36\) 1.61110 0.268517
\(37\) −10.6352 −1.74842 −0.874211 0.485546i \(-0.838621\pi\)
−0.874211 + 0.485546i \(0.838621\pi\)
\(38\) −0.740559 −0.120135
\(39\) −0.0199187 −0.00318955
\(40\) 0.608309 0.0961822
\(41\) −7.14473 −1.11582 −0.557910 0.829902i \(-0.688396\pi\)
−0.557910 + 0.829902i \(0.688396\pi\)
\(42\) −0.489895 −0.0755924
\(43\) 3.17563 0.484279 0.242139 0.970241i \(-0.422151\pi\)
0.242139 + 0.970241i \(0.422151\pi\)
\(44\) −11.1770 −1.68500
\(45\) 0.998075 0.148784
\(46\) 0.507836 0.0748763
\(47\) −9.81029 −1.43098 −0.715489 0.698624i \(-0.753796\pi\)
−0.715489 + 0.698624i \(0.753796\pi\)
\(48\) −5.78051 −0.834345
\(49\) 0.113032 0.0161475
\(50\) −0.433179 −0.0612608
\(51\) 5.24373 0.734269
\(52\) −0.0267232 −0.00370584
\(53\) −7.90828 −1.08629 −0.543143 0.839640i \(-0.682766\pi\)
−0.543143 + 0.839640i \(0.682766\pi\)
\(54\) 0.700175 0.0952818
\(55\) −6.92413 −0.933650
\(56\) −1.31960 −0.176339
\(57\) 8.82205 1.16851
\(58\) 0.368174 0.0483436
\(59\) −10.3909 −1.35278 −0.676392 0.736542i \(-0.736457\pi\)
−0.676392 + 0.736542i \(0.736457\pi\)
\(60\) −3.60928 −0.465956
\(61\) −3.70951 −0.474954 −0.237477 0.971393i \(-0.576320\pi\)
−0.237477 + 0.971393i \(0.576320\pi\)
\(62\) 0 0
\(63\) −2.16512 −0.272779
\(64\) −7.63231 −0.954039
\(65\) −0.0165550 −0.00205339
\(66\) −1.03450 −0.127339
\(67\) 3.56973 0.436112 0.218056 0.975936i \(-0.430028\pi\)
0.218056 + 0.975936i \(0.430028\pi\)
\(68\) 7.03504 0.853124
\(69\) −6.04969 −0.728297
\(70\) −0.407164 −0.0486654
\(71\) 3.76169 0.446430 0.223215 0.974769i \(-0.428345\pi\)
0.223215 + 0.974769i \(0.428345\pi\)
\(72\) 0.401670 0.0473373
\(73\) 3.55021 0.415520 0.207760 0.978180i \(-0.433383\pi\)
0.207760 + 0.978180i \(0.433383\pi\)
\(74\) −1.32063 −0.153520
\(75\) 5.16032 0.595863
\(76\) 11.8357 1.35765
\(77\) 15.0205 1.71174
\(78\) −0.00247340 −0.000280058 0
\(79\) 3.25987 0.366765 0.183382 0.983042i \(-0.441295\pi\)
0.183382 + 0.983042i \(0.441295\pi\)
\(80\) −4.80433 −0.537140
\(81\) −5.90554 −0.656171
\(82\) −0.887194 −0.0979742
\(83\) −2.07024 −0.227238 −0.113619 0.993524i \(-0.536244\pi\)
−0.113619 + 0.993524i \(0.536244\pi\)
\(84\) 7.82959 0.854278
\(85\) 4.35820 0.472713
\(86\) 0.394333 0.0425220
\(87\) −4.38594 −0.470222
\(88\) −2.78658 −0.297051
\(89\) −8.80431 −0.933255 −0.466627 0.884454i \(-0.654531\pi\)
−0.466627 + 0.884454i \(0.654531\pi\)
\(90\) 0.123936 0.0130640
\(91\) 0.0359126 0.00376466
\(92\) −8.11632 −0.846185
\(93\) 0 0
\(94\) −1.21819 −0.125647
\(95\) 7.33223 0.752271
\(96\) −2.18161 −0.222660
\(97\) 3.38749 0.343948 0.171974 0.985101i \(-0.444986\pi\)
0.171974 + 0.985101i \(0.444986\pi\)
\(98\) 0.0140358 0.00141783
\(99\) −4.57204 −0.459508
\(100\) 6.92314 0.692314
\(101\) −8.66837 −0.862535 −0.431267 0.902224i \(-0.641933\pi\)
−0.431267 + 0.902224i \(0.641933\pi\)
\(102\) 0.651139 0.0644723
\(103\) 2.68096 0.264163 0.132081 0.991239i \(-0.457834\pi\)
0.132081 + 0.991239i \(0.457834\pi\)
\(104\) −0.00666246 −0.000653308 0
\(105\) 4.85042 0.473352
\(106\) −0.982008 −0.0953811
\(107\) −7.97570 −0.771040 −0.385520 0.922700i \(-0.625978\pi\)
−0.385520 + 0.922700i \(0.625978\pi\)
\(108\) −11.1903 −1.07679
\(109\) 6.29895 0.603330 0.301665 0.953414i \(-0.402458\pi\)
0.301665 + 0.953414i \(0.402458\pi\)
\(110\) −0.859802 −0.0819789
\(111\) 15.7322 1.49324
\(112\) 10.4220 0.984786
\(113\) −2.74728 −0.258442 −0.129221 0.991616i \(-0.541248\pi\)
−0.129221 + 0.991616i \(0.541248\pi\)
\(114\) 1.09547 0.102601
\(115\) −5.02805 −0.468868
\(116\) −5.88422 −0.546336
\(117\) −0.0109313 −0.00101060
\(118\) −1.29029 −0.118781
\(119\) −9.45421 −0.866666
\(120\) −0.899844 −0.0821441
\(121\) 20.7185 1.88350
\(122\) −0.460627 −0.0417032
\(123\) 10.5689 0.952962
\(124\) 0 0
\(125\) 10.4361 0.933433
\(126\) −0.268853 −0.0239513
\(127\) −1.73534 −0.153986 −0.0769931 0.997032i \(-0.524532\pi\)
−0.0769931 + 0.997032i \(0.524532\pi\)
\(128\) −3.89735 −0.344481
\(129\) −4.69756 −0.413597
\(130\) −0.00205571 −0.000180297 0
\(131\) 7.06939 0.617656 0.308828 0.951118i \(-0.400063\pi\)
0.308828 + 0.951118i \(0.400063\pi\)
\(132\) 16.5336 1.43907
\(133\) −15.9058 −1.37920
\(134\) 0.443270 0.0382927
\(135\) −6.93239 −0.596645
\(136\) 1.75394 0.150399
\(137\) 9.53710 0.814809 0.407405 0.913248i \(-0.366434\pi\)
0.407405 + 0.913248i \(0.366434\pi\)
\(138\) −0.751218 −0.0639479
\(139\) −13.3484 −1.13220 −0.566098 0.824338i \(-0.691547\pi\)
−0.566098 + 0.824338i \(0.691547\pi\)
\(140\) 6.50737 0.549973
\(141\) 14.5119 1.22212
\(142\) 0.467106 0.0391987
\(143\) 0.0758360 0.00634173
\(144\) −3.17232 −0.264360
\(145\) −3.64526 −0.302723
\(146\) 0.440846 0.0364846
\(147\) −0.167204 −0.0137907
\(148\) 21.1065 1.73494
\(149\) 18.1985 1.49088 0.745440 0.666573i \(-0.232239\pi\)
0.745440 + 0.666573i \(0.232239\pi\)
\(150\) 0.640781 0.0523196
\(151\) 6.59561 0.536743 0.268371 0.963316i \(-0.413515\pi\)
0.268371 + 0.963316i \(0.413515\pi\)
\(152\) 2.95082 0.239343
\(153\) 2.87774 0.232652
\(154\) 1.86516 0.150299
\(155\) 0 0
\(156\) 0.0395303 0.00316496
\(157\) 15.7251 1.25500 0.627502 0.778615i \(-0.284078\pi\)
0.627502 + 0.778615i \(0.284078\pi\)
\(158\) 0.404794 0.0322037
\(159\) 11.6984 0.927740
\(160\) −1.81319 −0.143346
\(161\) 10.9073 0.859617
\(162\) −0.733318 −0.0576149
\(163\) −7.19636 −0.563663 −0.281831 0.959464i \(-0.590942\pi\)
−0.281831 + 0.959464i \(0.590942\pi\)
\(164\) 14.1793 1.10722
\(165\) 10.2425 0.797381
\(166\) −0.257071 −0.0199526
\(167\) −20.4703 −1.58404 −0.792018 0.610498i \(-0.790969\pi\)
−0.792018 + 0.610498i \(0.790969\pi\)
\(168\) 1.95203 0.150602
\(169\) −12.9998 −0.999986
\(170\) 0.541178 0.0415064
\(171\) 4.84151 0.370240
\(172\) −6.30229 −0.480545
\(173\) −21.0674 −1.60173 −0.800863 0.598848i \(-0.795625\pi\)
−0.800863 + 0.598848i \(0.795625\pi\)
\(174\) −0.544622 −0.0412877
\(175\) −9.30383 −0.703304
\(176\) 22.0080 1.65891
\(177\) 15.3708 1.15534
\(178\) −1.09327 −0.0819442
\(179\) −10.4789 −0.783231 −0.391615 0.920129i \(-0.628084\pi\)
−0.391615 + 0.920129i \(0.628084\pi\)
\(180\) −1.98076 −0.147637
\(181\) −9.53710 −0.708887 −0.354443 0.935077i \(-0.615330\pi\)
−0.354443 + 0.935077i \(0.615330\pi\)
\(182\) 0.00445943 0.000330555 0
\(183\) 5.48730 0.405633
\(184\) −2.02351 −0.149175
\(185\) 13.0754 0.961325
\(186\) 0 0
\(187\) −19.9643 −1.45994
\(188\) 19.4693 1.41994
\(189\) 15.0384 1.09388
\(190\) 0.910477 0.0660529
\(191\) −10.0046 −0.723905 −0.361952 0.932197i \(-0.617890\pi\)
−0.361952 + 0.932197i \(0.617890\pi\)
\(192\) 11.2901 0.814794
\(193\) −20.6806 −1.48862 −0.744310 0.667835i \(-0.767221\pi\)
−0.744310 + 0.667835i \(0.767221\pi\)
\(194\) 0.420641 0.0302003
\(195\) 0.0244890 0.00175369
\(196\) −0.224322 −0.0160230
\(197\) −0.753285 −0.0536693 −0.0268347 0.999640i \(-0.508543\pi\)
−0.0268347 + 0.999640i \(0.508543\pi\)
\(198\) −0.567732 −0.0403470
\(199\) 9.89063 0.701128 0.350564 0.936539i \(-0.385990\pi\)
0.350564 + 0.936539i \(0.385990\pi\)
\(200\) 1.72604 0.122049
\(201\) −5.28053 −0.372460
\(202\) −1.07639 −0.0757346
\(203\) 7.90765 0.555008
\(204\) −10.4066 −0.728609
\(205\) 8.78405 0.613505
\(206\) 0.332907 0.0231947
\(207\) −3.32005 −0.230759
\(208\) 0.0526190 0.00364847
\(209\) −33.5879 −2.32333
\(210\) 0.602299 0.0415626
\(211\) 14.0629 0.968128 0.484064 0.875033i \(-0.339160\pi\)
0.484064 + 0.875033i \(0.339160\pi\)
\(212\) 15.6946 1.07791
\(213\) −5.56449 −0.381273
\(214\) −0.990379 −0.0677009
\(215\) −3.90426 −0.266268
\(216\) −2.78990 −0.189829
\(217\) 0 0
\(218\) 0.782170 0.0529753
\(219\) −5.25165 −0.354874
\(220\) 13.7415 0.926452
\(221\) −0.0477328 −0.00321086
\(222\) 1.95354 0.131113
\(223\) 9.89557 0.662656 0.331328 0.943516i \(-0.392503\pi\)
0.331328 + 0.943516i \(0.392503\pi\)
\(224\) 3.93335 0.262808
\(225\) 2.83197 0.188798
\(226\) −0.341142 −0.0226924
\(227\) 9.40457 0.624204 0.312102 0.950049i \(-0.398967\pi\)
0.312102 + 0.950049i \(0.398967\pi\)
\(228\) −17.5081 −1.15950
\(229\) −14.7546 −0.975011 −0.487506 0.873120i \(-0.662093\pi\)
−0.487506 + 0.873120i \(0.662093\pi\)
\(230\) −0.624356 −0.0411688
\(231\) −22.2191 −1.46191
\(232\) −1.46702 −0.0963145
\(233\) −28.5860 −1.87273 −0.936365 0.351028i \(-0.885832\pi\)
−0.936365 + 0.351028i \(0.885832\pi\)
\(234\) −0.00135739 −8.87356e−5 0
\(235\) 12.0612 0.786786
\(236\) 20.6216 1.34235
\(237\) −4.82218 −0.313234
\(238\) −1.17397 −0.0760974
\(239\) −9.00876 −0.582729 −0.291364 0.956612i \(-0.594109\pi\)
−0.291364 + 0.956612i \(0.594109\pi\)
\(240\) 7.10682 0.458743
\(241\) 0.788163 0.0507700 0.0253850 0.999678i \(-0.491919\pi\)
0.0253850 + 0.999678i \(0.491919\pi\)
\(242\) 2.57271 0.165380
\(243\) −8.18011 −0.524754
\(244\) 7.36182 0.471292
\(245\) −0.138967 −0.00887829
\(246\) 1.31238 0.0836746
\(247\) −0.0803056 −0.00510972
\(248\) 0 0
\(249\) 3.06241 0.194072
\(250\) 1.29590 0.0819598
\(251\) −19.7718 −1.24798 −0.623992 0.781430i \(-0.714490\pi\)
−0.623992 + 0.781430i \(0.714490\pi\)
\(252\) 4.29685 0.270676
\(253\) 23.0328 1.44806
\(254\) −0.215485 −0.0135207
\(255\) −6.44688 −0.403719
\(256\) 14.7807 0.923792
\(257\) −9.02462 −0.562940 −0.281470 0.959570i \(-0.590822\pi\)
−0.281470 + 0.959570i \(0.590822\pi\)
\(258\) −0.583318 −0.0363158
\(259\) −28.3645 −1.76248
\(260\) 0.0328546 0.00203756
\(261\) −2.40699 −0.148989
\(262\) 0.877840 0.0542331
\(263\) −3.12800 −0.192881 −0.0964403 0.995339i \(-0.530746\pi\)
−0.0964403 + 0.995339i \(0.530746\pi\)
\(264\) 4.12206 0.253695
\(265\) 9.72280 0.597267
\(266\) −1.97509 −0.121101
\(267\) 13.0238 0.797044
\(268\) −7.08441 −0.432749
\(269\) 13.9776 0.852231 0.426115 0.904669i \(-0.359882\pi\)
0.426115 + 0.904669i \(0.359882\pi\)
\(270\) −0.860827 −0.0523882
\(271\) 14.0587 0.854008 0.427004 0.904250i \(-0.359569\pi\)
0.427004 + 0.904250i \(0.359569\pi\)
\(272\) −13.8523 −0.839918
\(273\) −0.0531238 −0.00321520
\(274\) 1.18427 0.0715441
\(275\) −19.6468 −1.18474
\(276\) 12.0061 0.722682
\(277\) 22.0218 1.32316 0.661581 0.749874i \(-0.269886\pi\)
0.661581 + 0.749874i \(0.269886\pi\)
\(278\) −1.65753 −0.0994121
\(279\) 0 0
\(280\) 1.62238 0.0969556
\(281\) 2.32625 0.138772 0.0693862 0.997590i \(-0.477896\pi\)
0.0693862 + 0.997590i \(0.477896\pi\)
\(282\) 1.80201 0.107308
\(283\) 13.9295 0.828021 0.414010 0.910272i \(-0.364128\pi\)
0.414010 + 0.910272i \(0.364128\pi\)
\(284\) −7.46537 −0.442988
\(285\) −10.8462 −0.642475
\(286\) 0.00941691 0.000556834 0
\(287\) −19.0552 −1.12479
\(288\) −1.19726 −0.0705494
\(289\) −4.43403 −0.260825
\(290\) −0.452649 −0.0265805
\(291\) −5.01096 −0.293748
\(292\) −7.04567 −0.412317
\(293\) 25.8604 1.51078 0.755390 0.655276i \(-0.227448\pi\)
0.755390 + 0.655276i \(0.227448\pi\)
\(294\) −0.0207625 −0.00121089
\(295\) 12.7751 0.743794
\(296\) 5.26214 0.305856
\(297\) 31.7563 1.84269
\(298\) 2.25979 0.130906
\(299\) 0.0550693 0.00318474
\(300\) −10.2411 −0.591269
\(301\) 8.46949 0.488173
\(302\) 0.819007 0.0471286
\(303\) 12.8227 0.736645
\(304\) −23.3051 −1.33664
\(305\) 4.56064 0.261141
\(306\) 0.357343 0.0204279
\(307\) −0.655663 −0.0374206 −0.0187103 0.999825i \(-0.505956\pi\)
−0.0187103 + 0.999825i \(0.505956\pi\)
\(308\) −29.8094 −1.69855
\(309\) −3.96582 −0.225608
\(310\) 0 0
\(311\) −22.0394 −1.24974 −0.624869 0.780730i \(-0.714848\pi\)
−0.624869 + 0.780730i \(0.714848\pi\)
\(312\) 0.00985547 0.000557956 0
\(313\) 9.51336 0.537727 0.268863 0.963178i \(-0.413352\pi\)
0.268863 + 0.963178i \(0.413352\pi\)
\(314\) 1.95266 0.110195
\(315\) 2.66189 0.149981
\(316\) −6.46948 −0.363937
\(317\) −2.09503 −0.117669 −0.0588343 0.998268i \(-0.518738\pi\)
−0.0588343 + 0.998268i \(0.518738\pi\)
\(318\) 1.45264 0.0814599
\(319\) 16.6985 0.934934
\(320\) 9.38350 0.524554
\(321\) 11.7981 0.658505
\(322\) 1.35441 0.0754784
\(323\) 21.1410 1.17631
\(324\) 11.7200 0.651112
\(325\) −0.0469736 −0.00260562
\(326\) −0.893606 −0.0494923
\(327\) −9.31775 −0.515273
\(328\) 3.53510 0.195193
\(329\) −26.1643 −1.44248
\(330\) 1.27186 0.0700139
\(331\) 2.50739 0.137819 0.0689093 0.997623i \(-0.478048\pi\)
0.0689093 + 0.997623i \(0.478048\pi\)
\(332\) 4.10855 0.225486
\(333\) 8.63378 0.473128
\(334\) −2.54189 −0.139086
\(335\) −4.38878 −0.239785
\(336\) −15.4168 −0.841054
\(337\) −27.2137 −1.48242 −0.741212 0.671271i \(-0.765749\pi\)
−0.741212 + 0.671271i \(0.765749\pi\)
\(338\) −1.61425 −0.0878035
\(339\) 4.06392 0.220722
\(340\) −8.64920 −0.469069
\(341\) 0 0
\(342\) 0.601193 0.0325088
\(343\) −18.3677 −0.991764
\(344\) −1.57125 −0.0847161
\(345\) 7.43776 0.400435
\(346\) −2.61604 −0.140639
\(347\) 24.3284 1.30602 0.653010 0.757350i \(-0.273506\pi\)
0.653010 + 0.757350i \(0.273506\pi\)
\(348\) 8.70425 0.466597
\(349\) 12.1656 0.651211 0.325605 0.945506i \(-0.394432\pi\)
0.325605 + 0.945506i \(0.394432\pi\)
\(350\) −1.15530 −0.0617534
\(351\) 0.0759264 0.00405265
\(352\) 8.30600 0.442711
\(353\) 28.0154 1.49111 0.745556 0.666443i \(-0.232184\pi\)
0.745556 + 0.666443i \(0.232184\pi\)
\(354\) 1.90867 0.101444
\(355\) −4.62479 −0.245458
\(356\) 17.4729 0.926060
\(357\) 13.9852 0.740174
\(358\) −1.30122 −0.0687714
\(359\) −24.3366 −1.28444 −0.642219 0.766521i \(-0.721986\pi\)
−0.642219 + 0.766521i \(0.721986\pi\)
\(360\) −0.493831 −0.0260272
\(361\) 16.5675 0.871975
\(362\) −1.18427 −0.0622436
\(363\) −30.6479 −1.60860
\(364\) −0.0712714 −0.00373564
\(365\) −4.36478 −0.228463
\(366\) 0.681384 0.0356165
\(367\) −1.68920 −0.0881753 −0.0440876 0.999028i \(-0.514038\pi\)
−0.0440876 + 0.999028i \(0.514038\pi\)
\(368\) 15.9814 0.833087
\(369\) 5.80016 0.301944
\(370\) 1.62364 0.0844089
\(371\) −21.0916 −1.09502
\(372\) 0 0
\(373\) 24.2842 1.25739 0.628695 0.777652i \(-0.283589\pi\)
0.628695 + 0.777652i \(0.283589\pi\)
\(374\) −2.47906 −0.128189
\(375\) −15.4376 −0.797196
\(376\) 4.85397 0.250324
\(377\) 0.0399245 0.00205621
\(378\) 1.86739 0.0960480
\(379\) 13.3445 0.685462 0.342731 0.939433i \(-0.388648\pi\)
0.342731 + 0.939433i \(0.388648\pi\)
\(380\) −14.5514 −0.746471
\(381\) 2.56700 0.131512
\(382\) −1.24231 −0.0635622
\(383\) 25.0445 1.27971 0.639857 0.768494i \(-0.278994\pi\)
0.639857 + 0.768494i \(0.278994\pi\)
\(384\) 5.76518 0.294203
\(385\) −18.4669 −0.941158
\(386\) −2.56800 −0.130708
\(387\) −2.57800 −0.131047
\(388\) −6.72276 −0.341296
\(389\) 21.9366 1.11223 0.556115 0.831105i \(-0.312291\pi\)
0.556115 + 0.831105i \(0.312291\pi\)
\(390\) 0.00304091 0.000153982 0
\(391\) −14.4973 −0.733162
\(392\) −0.0559267 −0.00282472
\(393\) −10.4574 −0.527507
\(394\) −0.0935389 −0.00471242
\(395\) −4.00784 −0.201656
\(396\) 9.07359 0.455965
\(397\) 2.21630 0.111233 0.0556165 0.998452i \(-0.482288\pi\)
0.0556165 + 0.998452i \(0.482288\pi\)
\(398\) 1.22817 0.0615624
\(399\) 23.5286 1.17791
\(400\) −13.6320 −0.681598
\(401\) −26.6696 −1.33181 −0.665907 0.746035i \(-0.731955\pi\)
−0.665907 + 0.746035i \(0.731955\pi\)
\(402\) −0.655708 −0.0327038
\(403\) 0 0
\(404\) 17.2031 0.855885
\(405\) 7.26053 0.360779
\(406\) 0.981930 0.0487323
\(407\) −59.8968 −2.96897
\(408\) −2.59451 −0.128448
\(409\) −37.8777 −1.87293 −0.936465 0.350760i \(-0.885923\pi\)
−0.936465 + 0.350760i \(0.885923\pi\)
\(410\) 1.09076 0.0538686
\(411\) −14.1078 −0.695886
\(412\) −5.32058 −0.262126
\(413\) −27.7129 −1.36366
\(414\) −0.412266 −0.0202618
\(415\) 2.54524 0.124941
\(416\) 0.0198589 0.000973661 0
\(417\) 19.7456 0.966948
\(418\) −4.17077 −0.203999
\(419\) −9.16702 −0.447838 −0.223919 0.974608i \(-0.571885\pi\)
−0.223919 + 0.974608i \(0.571885\pi\)
\(420\) −9.62604 −0.469703
\(421\) −3.26808 −0.159277 −0.0796383 0.996824i \(-0.525377\pi\)
−0.0796383 + 0.996824i \(0.525377\pi\)
\(422\) 1.74625 0.0850062
\(423\) 7.96408 0.387227
\(424\) 3.91289 0.190027
\(425\) 12.3661 0.599843
\(426\) −0.690969 −0.0334775
\(427\) −9.89336 −0.478773
\(428\) 15.8284 0.765095
\(429\) −0.112181 −0.00541613
\(430\) −0.484810 −0.0233796
\(431\) −23.4706 −1.13054 −0.565269 0.824907i \(-0.691228\pi\)
−0.565269 + 0.824907i \(0.691228\pi\)
\(432\) 22.0342 1.06012
\(433\) 27.3421 1.31398 0.656990 0.753900i \(-0.271829\pi\)
0.656990 + 0.753900i \(0.271829\pi\)
\(434\) 0 0
\(435\) 5.39227 0.258540
\(436\) −12.5008 −0.598679
\(437\) −24.3903 −1.16675
\(438\) −0.652122 −0.0311596
\(439\) −33.0439 −1.57710 −0.788551 0.614970i \(-0.789168\pi\)
−0.788551 + 0.614970i \(0.789168\pi\)
\(440\) 3.42595 0.163326
\(441\) −0.0917608 −0.00436956
\(442\) −0.00592720 −0.000281928 0
\(443\) −13.3265 −0.633162 −0.316581 0.948566i \(-0.602535\pi\)
−0.316581 + 0.948566i \(0.602535\pi\)
\(444\) −31.2218 −1.48172
\(445\) 10.8244 0.513126
\(446\) 1.22878 0.0581844
\(447\) −26.9202 −1.27328
\(448\) −20.3556 −0.961711
\(449\) 11.2943 0.533012 0.266506 0.963833i \(-0.414131\pi\)
0.266506 + 0.963833i \(0.414131\pi\)
\(450\) 0.351659 0.0165773
\(451\) −40.2385 −1.89476
\(452\) 5.45219 0.256449
\(453\) −9.75658 −0.458404
\(454\) 1.16781 0.0548080
\(455\) −0.0441525 −0.00206990
\(456\) −4.36501 −0.204410
\(457\) 4.55068 0.212872 0.106436 0.994320i \(-0.466056\pi\)
0.106436 + 0.994320i \(0.466056\pi\)
\(458\) −1.83215 −0.0856106
\(459\) −19.9881 −0.932965
\(460\) 9.97857 0.465253
\(461\) 28.7961 1.34117 0.670585 0.741833i \(-0.266043\pi\)
0.670585 + 0.741833i \(0.266043\pi\)
\(462\) −2.75905 −0.128363
\(463\) 12.0515 0.560082 0.280041 0.959988i \(-0.409652\pi\)
0.280041 + 0.959988i \(0.409652\pi\)
\(464\) 11.5863 0.537879
\(465\) 0 0
\(466\) −3.54965 −0.164435
\(467\) −19.1300 −0.885230 −0.442615 0.896712i \(-0.645949\pi\)
−0.442615 + 0.896712i \(0.645949\pi\)
\(468\) 0.0216941 0.00100281
\(469\) 9.52056 0.439619
\(470\) 1.49770 0.0690836
\(471\) −23.2615 −1.07183
\(472\) 5.14126 0.236646
\(473\) 17.8849 0.822348
\(474\) −0.598793 −0.0275035
\(475\) 20.8047 0.954585
\(476\) 18.7626 0.859985
\(477\) 6.42002 0.293952
\(478\) −1.11866 −0.0511663
\(479\) −12.2911 −0.561593 −0.280797 0.959767i \(-0.590599\pi\)
−0.280797 + 0.959767i \(0.590599\pi\)
\(480\) 2.68217 0.122424
\(481\) −0.143208 −0.00652971
\(482\) 0.0978698 0.00445785
\(483\) −16.1347 −0.734154
\(484\) −41.1176 −1.86898
\(485\) −4.16474 −0.189111
\(486\) −1.01576 −0.0460759
\(487\) 15.1267 0.685456 0.342728 0.939435i \(-0.388649\pi\)
0.342728 + 0.939435i \(0.388649\pi\)
\(488\) 1.83540 0.0830849
\(489\) 10.6452 0.481395
\(490\) −0.0172562 −0.000779556 0
\(491\) 30.5340 1.37798 0.688990 0.724771i \(-0.258054\pi\)
0.688990 + 0.724771i \(0.258054\pi\)
\(492\) −20.9748 −0.945615
\(493\) −10.5104 −0.473363
\(494\) −0.00997192 −0.000448658 0
\(495\) 5.62108 0.252649
\(496\) 0 0
\(497\) 10.0325 0.450020
\(498\) 0.380273 0.0170404
\(499\) 28.8272 1.29048 0.645240 0.763980i \(-0.276757\pi\)
0.645240 + 0.763980i \(0.276757\pi\)
\(500\) −20.7113 −0.926237
\(501\) 30.2807 1.35284
\(502\) −2.45516 −0.109579
\(503\) −3.11786 −0.139018 −0.0695092 0.997581i \(-0.522143\pi\)
−0.0695092 + 0.997581i \(0.522143\pi\)
\(504\) 1.07126 0.0477179
\(505\) 10.6573 0.474243
\(506\) 2.86009 0.127147
\(507\) 19.2300 0.854035
\(508\) 3.44392 0.152799
\(509\) −13.2957 −0.589323 −0.294661 0.955602i \(-0.595207\pi\)
−0.294661 + 0.955602i \(0.595207\pi\)
\(510\) −0.800539 −0.0354485
\(511\) 9.46849 0.418862
\(512\) 9.63009 0.425594
\(513\) −33.6280 −1.48471
\(514\) −1.12063 −0.0494288
\(515\) −3.29609 −0.145243
\(516\) 9.32269 0.410408
\(517\) −55.2507 −2.42992
\(518\) −3.52215 −0.154754
\(519\) 31.1640 1.36795
\(520\) 0.00819113 0.000359205 0
\(521\) 8.44298 0.369894 0.184947 0.982749i \(-0.440789\pi\)
0.184947 + 0.982749i \(0.440789\pi\)
\(522\) −0.298887 −0.0130819
\(523\) 39.6642 1.73440 0.867198 0.497964i \(-0.165919\pi\)
0.867198 + 0.497964i \(0.165919\pi\)
\(524\) −14.0298 −0.612894
\(525\) 13.7627 0.600655
\(526\) −0.388418 −0.0169358
\(527\) 0 0
\(528\) −32.5554 −1.41679
\(529\) −6.27443 −0.272801
\(530\) 1.20732 0.0524428
\(531\) 8.43545 0.366067
\(532\) 31.5662 1.36857
\(533\) −0.0962066 −0.00416717
\(534\) 1.61723 0.0699842
\(535\) 9.80568 0.423937
\(536\) −1.76624 −0.0762901
\(537\) 15.5010 0.668916
\(538\) 1.73567 0.0748299
\(539\) 0.636590 0.0274199
\(540\) 13.7579 0.592045
\(541\) 21.8292 0.938509 0.469255 0.883063i \(-0.344523\pi\)
0.469255 + 0.883063i \(0.344523\pi\)
\(542\) 1.74574 0.0749859
\(543\) 14.1078 0.605423
\(544\) −5.22797 −0.224148
\(545\) −7.74422 −0.331726
\(546\) −0.00659663 −0.000282310 0
\(547\) 27.3401 1.16898 0.584490 0.811401i \(-0.301295\pi\)
0.584490 + 0.811401i \(0.301295\pi\)
\(548\) −18.9271 −0.808527
\(549\) 3.01141 0.128524
\(550\) −2.43963 −0.104026
\(551\) −17.6826 −0.753305
\(552\) 2.99329 0.127403
\(553\) 8.69417 0.369714
\(554\) 2.73455 0.116180
\(555\) −19.3419 −0.821017
\(556\) 26.4909 1.12347
\(557\) −27.9171 −1.18289 −0.591443 0.806347i \(-0.701441\pi\)
−0.591443 + 0.806347i \(0.701441\pi\)
\(558\) 0 0
\(559\) 0.0427611 0.00180860
\(560\) −12.8133 −0.541460
\(561\) 29.5323 1.24685
\(562\) 0.288861 0.0121849
\(563\) −25.7662 −1.08591 −0.542957 0.839760i \(-0.682695\pi\)
−0.542957 + 0.839760i \(0.682695\pi\)
\(564\) −28.8000 −1.21270
\(565\) 3.37762 0.142098
\(566\) 1.72969 0.0727042
\(567\) −15.7502 −0.661447
\(568\) −1.86122 −0.0780952
\(569\) 16.2134 0.679701 0.339851 0.940479i \(-0.389623\pi\)
0.339851 + 0.940479i \(0.389623\pi\)
\(570\) −1.34683 −0.0564123
\(571\) −9.37945 −0.392518 −0.196259 0.980552i \(-0.562879\pi\)
−0.196259 + 0.980552i \(0.562879\pi\)
\(572\) −0.150503 −0.00629283
\(573\) 14.7993 0.618249
\(574\) −2.36617 −0.0987620
\(575\) −14.2667 −0.594964
\(576\) 6.19598 0.258166
\(577\) 31.6764 1.31870 0.659352 0.751834i \(-0.270831\pi\)
0.659352 + 0.751834i \(0.270831\pi\)
\(578\) −0.550594 −0.0229017
\(579\) 30.5918 1.27135
\(580\) 7.23432 0.300389
\(581\) −5.52138 −0.229065
\(582\) −0.622234 −0.0257924
\(583\) −44.5388 −1.84461
\(584\) −1.75658 −0.0726880
\(585\) 0.0134395 0.000555654 0
\(586\) 3.21120 0.132654
\(587\) −0.186802 −0.00771014 −0.00385507 0.999993i \(-0.501227\pi\)
−0.00385507 + 0.999993i \(0.501227\pi\)
\(588\) 0.331829 0.0136844
\(589\) 0 0
\(590\) 1.58634 0.0653086
\(591\) 1.11430 0.0458362
\(592\) −41.5596 −1.70809
\(593\) −13.4668 −0.553015 −0.276508 0.961012i \(-0.589177\pi\)
−0.276508 + 0.961012i \(0.589177\pi\)
\(594\) 3.94333 0.161797
\(595\) 11.6234 0.476514
\(596\) −36.1164 −1.47939
\(597\) −14.6307 −0.598797
\(598\) 0.00683821 0.000279635 0
\(599\) −18.4914 −0.755540 −0.377770 0.925899i \(-0.623309\pi\)
−0.377770 + 0.925899i \(0.623309\pi\)
\(600\) −2.55325 −0.104236
\(601\) 17.8606 0.728548 0.364274 0.931292i \(-0.381317\pi\)
0.364274 + 0.931292i \(0.381317\pi\)
\(602\) 1.05170 0.0428639
\(603\) −2.89794 −0.118013
\(604\) −13.0895 −0.532605
\(605\) −25.4723 −1.03560
\(606\) 1.59226 0.0646809
\(607\) 28.9604 1.17547 0.587734 0.809054i \(-0.300020\pi\)
0.587734 + 0.809054i \(0.300020\pi\)
\(608\) −8.79553 −0.356706
\(609\) −11.6974 −0.474003
\(610\) 0.566315 0.0229294
\(611\) −0.132099 −0.00534417
\(612\) −5.71111 −0.230858
\(613\) 20.6444 0.833821 0.416910 0.908948i \(-0.363113\pi\)
0.416910 + 0.908948i \(0.363113\pi\)
\(614\) −0.0814167 −0.00328571
\(615\) −12.9938 −0.523962
\(616\) −7.43189 −0.299439
\(617\) 0.697562 0.0280828 0.0140414 0.999901i \(-0.495530\pi\)
0.0140414 + 0.999901i \(0.495530\pi\)
\(618\) −0.492454 −0.0198094
\(619\) 2.41091 0.0969026 0.0484513 0.998826i \(-0.484571\pi\)
0.0484513 + 0.998826i \(0.484571\pi\)
\(620\) 0 0
\(621\) 23.0603 0.925376
\(622\) −2.73673 −0.109733
\(623\) −23.4813 −0.940760
\(624\) −0.0778369 −0.00311597
\(625\) 4.61172 0.184469
\(626\) 1.18132 0.0472150
\(627\) 49.6851 1.98423
\(628\) −31.2078 −1.24533
\(629\) 37.7003 1.50321
\(630\) 0.330539 0.0131690
\(631\) −36.4136 −1.44960 −0.724801 0.688959i \(-0.758068\pi\)
−0.724801 + 0.688959i \(0.758068\pi\)
\(632\) −1.61293 −0.0641590
\(633\) −20.8025 −0.826827
\(634\) −0.260150 −0.0103319
\(635\) 2.13350 0.0846654
\(636\) −23.2163 −0.920587
\(637\) 0.00152203 6.03049e−5 0
\(638\) 2.07353 0.0820917
\(639\) −3.05377 −0.120805
\(640\) 4.79158 0.189404
\(641\) −2.14971 −0.0849085 −0.0424542 0.999098i \(-0.513518\pi\)
−0.0424542 + 0.999098i \(0.513518\pi\)
\(642\) 1.46502 0.0578198
\(643\) 17.7453 0.699806 0.349903 0.936786i \(-0.386215\pi\)
0.349903 + 0.936786i \(0.386215\pi\)
\(644\) −21.6464 −0.852989
\(645\) 5.77539 0.227406
\(646\) 2.62517 0.103286
\(647\) −40.1703 −1.57926 −0.789629 0.613584i \(-0.789727\pi\)
−0.789629 + 0.613584i \(0.789727\pi\)
\(648\) 2.92197 0.114786
\(649\) −58.5209 −2.29715
\(650\) −0.00583292 −0.000228786 0
\(651\) 0 0
\(652\) 14.2818 0.559317
\(653\) −2.41626 −0.0945556 −0.0472778 0.998882i \(-0.515055\pi\)
−0.0472778 + 0.998882i \(0.515055\pi\)
\(654\) −1.15703 −0.0452434
\(655\) −8.69143 −0.339602
\(656\) −27.9196 −1.09008
\(657\) −2.88209 −0.112441
\(658\) −3.24894 −0.126657
\(659\) 26.3680 1.02715 0.513576 0.858044i \(-0.328321\pi\)
0.513576 + 0.858044i \(0.328321\pi\)
\(660\) −20.3272 −0.791234
\(661\) −37.8137 −1.47078 −0.735392 0.677642i \(-0.763002\pi\)
−0.735392 + 0.677642i \(0.763002\pi\)
\(662\) 0.311354 0.0121011
\(663\) 0.0706089 0.00274222
\(664\) 1.02432 0.0397513
\(665\) 19.5552 0.758320
\(666\) 1.07210 0.0415429
\(667\) 12.1258 0.469513
\(668\) 40.6249 1.57182
\(669\) −14.6381 −0.565940
\(670\) −0.544976 −0.0210542
\(671\) −20.8916 −0.806513
\(672\) −5.81842 −0.224451
\(673\) −25.8793 −0.997575 −0.498788 0.866724i \(-0.666221\pi\)
−0.498788 + 0.866724i \(0.666221\pi\)
\(674\) −3.37925 −0.130164
\(675\) −19.6702 −0.757105
\(676\) 25.7992 0.992276
\(677\) 19.9464 0.766602 0.383301 0.923623i \(-0.374787\pi\)
0.383301 + 0.923623i \(0.374787\pi\)
\(678\) 0.504635 0.0193804
\(679\) 9.03454 0.346714
\(680\) −2.15637 −0.0826929
\(681\) −13.9117 −0.533099
\(682\) 0 0
\(683\) −10.3960 −0.397793 −0.198897 0.980020i \(-0.563736\pi\)
−0.198897 + 0.980020i \(0.563736\pi\)
\(684\) −9.60837 −0.367385
\(685\) −11.7253 −0.448002
\(686\) −2.28081 −0.0870816
\(687\) 21.8258 0.832706
\(688\) 12.4095 0.473107
\(689\) −0.106488 −0.00405687
\(690\) 0.923581 0.0351601
\(691\) −13.4503 −0.511675 −0.255837 0.966720i \(-0.582351\pi\)
−0.255837 + 0.966720i \(0.582351\pi\)
\(692\) 41.8100 1.58938
\(693\) −12.1938 −0.463203
\(694\) 3.02098 0.114675
\(695\) 16.4111 0.622509
\(696\) 2.17009 0.0822571
\(697\) 25.3270 0.959328
\(698\) 1.51066 0.0571794
\(699\) 42.2859 1.59940
\(700\) 18.4642 0.697881
\(701\) −1.52309 −0.0575264 −0.0287632 0.999586i \(-0.509157\pi\)
−0.0287632 + 0.999586i \(0.509157\pi\)
\(702\) 0.00942813 0.000355842 0
\(703\) 63.4270 2.39219
\(704\) −42.9846 −1.62004
\(705\) −17.8416 −0.671953
\(706\) 3.47881 0.130927
\(707\) −23.1188 −0.869471
\(708\) −30.5046 −1.14643
\(709\) −1.54507 −0.0580263 −0.0290131 0.999579i \(-0.509236\pi\)
−0.0290131 + 0.999579i \(0.509236\pi\)
\(710\) −0.574281 −0.0215524
\(711\) −2.64640 −0.0992476
\(712\) 4.35623 0.163257
\(713\) 0 0
\(714\) 1.73660 0.0649908
\(715\) −0.0932362 −0.00348684
\(716\) 20.7962 0.777192
\(717\) 13.3262 0.497678
\(718\) −3.02199 −0.112780
\(719\) 36.4715 1.36016 0.680079 0.733139i \(-0.261946\pi\)
0.680079 + 0.733139i \(0.261946\pi\)
\(720\) 3.90020 0.145352
\(721\) 7.15019 0.266287
\(722\) 2.05727 0.0765635
\(723\) −1.16589 −0.0433600
\(724\) 18.9271 0.703422
\(725\) −10.3432 −0.384136
\(726\) −3.80570 −0.141243
\(727\) 11.3252 0.420027 0.210013 0.977698i \(-0.432649\pi\)
0.210013 + 0.977698i \(0.432649\pi\)
\(728\) −0.0177690 −0.000658561 0
\(729\) 29.8171 1.10434
\(730\) −0.541995 −0.0200601
\(731\) −11.2571 −0.416360
\(732\) −10.8900 −0.402506
\(733\) 1.82359 0.0673559 0.0336779 0.999433i \(-0.489278\pi\)
0.0336779 + 0.999433i \(0.489278\pi\)
\(734\) −0.209755 −0.00774221
\(735\) 0.205568 0.00758248
\(736\) 6.03151 0.222324
\(737\) 20.1044 0.740556
\(738\) 0.720232 0.0265121
\(739\) −35.2840 −1.29794 −0.648971 0.760813i \(-0.724800\pi\)
−0.648971 + 0.760813i \(0.724800\pi\)
\(740\) −25.9493 −0.953914
\(741\) 0.118792 0.00436395
\(742\) −2.61904 −0.0961481
\(743\) −26.9859 −0.990018 −0.495009 0.868888i \(-0.664835\pi\)
−0.495009 + 0.868888i \(0.664835\pi\)
\(744\) 0 0
\(745\) −22.3741 −0.819722
\(746\) 3.01549 0.110405
\(747\) 1.68064 0.0614913
\(748\) 39.6208 1.44868
\(749\) −21.2714 −0.777240
\(750\) −1.91696 −0.0699976
\(751\) −21.1606 −0.772161 −0.386080 0.922465i \(-0.626171\pi\)
−0.386080 + 0.922465i \(0.626171\pi\)
\(752\) −38.3359 −1.39797
\(753\) 29.2475 1.06584
\(754\) 0.00495761 0.000180545 0
\(755\) −8.10894 −0.295114
\(756\) −29.8449 −1.08545
\(757\) 53.6180 1.94878 0.974389 0.224869i \(-0.0721956\pi\)
0.974389 + 0.224869i \(0.0721956\pi\)
\(758\) 1.65705 0.0601868
\(759\) −34.0714 −1.23671
\(760\) −3.62787 −0.131597
\(761\) −8.24779 −0.298982 −0.149491 0.988763i \(-0.547764\pi\)
−0.149491 + 0.988763i \(0.547764\pi\)
\(762\) 0.318757 0.0115473
\(763\) 16.7995 0.608182
\(764\) 19.8549 0.718323
\(765\) −3.53803 −0.127918
\(766\) 3.10989 0.112365
\(767\) −0.139918 −0.00505214
\(768\) −21.8644 −0.788962
\(769\) 26.3326 0.949577 0.474788 0.880100i \(-0.342525\pi\)
0.474788 + 0.880100i \(0.342525\pi\)
\(770\) −2.29311 −0.0826381
\(771\) 13.3497 0.480778
\(772\) 41.0422 1.47714
\(773\) −11.8440 −0.426000 −0.213000 0.977052i \(-0.568323\pi\)
−0.213000 + 0.977052i \(0.568323\pi\)
\(774\) −0.320123 −0.0115066
\(775\) 0 0
\(776\) −1.67608 −0.0601677
\(777\) 41.9582 1.50524
\(778\) 2.72397 0.0976591
\(779\) 42.6101 1.52667
\(780\) −0.0486004 −0.00174017
\(781\) 21.1855 0.758078
\(782\) −1.80020 −0.0643751
\(783\) 16.7184 0.597466
\(784\) 0.441700 0.0157750
\(785\) −19.3332 −0.690032
\(786\) −1.29855 −0.0463176
\(787\) 38.8768 1.38581 0.692904 0.721030i \(-0.256331\pi\)
0.692904 + 0.721030i \(0.256331\pi\)
\(788\) 1.49496 0.0532556
\(789\) 4.62710 0.164729
\(790\) −0.497672 −0.0177064
\(791\) −7.32706 −0.260520
\(792\) 2.26217 0.0803828
\(793\) −0.0499500 −0.00177378
\(794\) 0.275208 0.00976678
\(795\) −14.3825 −0.510094
\(796\) −19.6288 −0.695723
\(797\) 52.0663 1.84428 0.922141 0.386854i \(-0.126438\pi\)
0.922141 + 0.386854i \(0.126438\pi\)
\(798\) 2.92166 0.103426
\(799\) 34.7760 1.23029
\(800\) −5.14482 −0.181897
\(801\) 7.14742 0.252542
\(802\) −3.31168 −0.116940
\(803\) 19.9945 0.705590
\(804\) 10.4796 0.369589
\(805\) −13.4099 −0.472638
\(806\) 0 0
\(807\) −20.6764 −0.727845
\(808\) 4.28897 0.150885
\(809\) 31.2082 1.09722 0.548612 0.836077i \(-0.315157\pi\)
0.548612 + 0.836077i \(0.315157\pi\)
\(810\) 0.901574 0.0316781
\(811\) 16.4241 0.576729 0.288364 0.957521i \(-0.406889\pi\)
0.288364 + 0.957521i \(0.406889\pi\)
\(812\) −15.6934 −0.550729
\(813\) −20.7964 −0.729363
\(814\) −7.43766 −0.260690
\(815\) 8.84753 0.309916
\(816\) 20.4910 0.717330
\(817\) −18.9390 −0.662591
\(818\) −4.70345 −0.164452
\(819\) −0.0291542 −0.00101873
\(820\) −17.4327 −0.608775
\(821\) −40.2675 −1.40534 −0.702672 0.711514i \(-0.748010\pi\)
−0.702672 + 0.711514i \(0.748010\pi\)
\(822\) −1.75183 −0.0611020
\(823\) 23.3005 0.812205 0.406102 0.913828i \(-0.366888\pi\)
0.406102 + 0.913828i \(0.366888\pi\)
\(824\) −1.32650 −0.0462107
\(825\) 29.0625 1.01183
\(826\) −3.44124 −0.119736
\(827\) 24.1368 0.839319 0.419660 0.907682i \(-0.362149\pi\)
0.419660 + 0.907682i \(0.362149\pi\)
\(828\) 6.58890 0.228980
\(829\) −22.7194 −0.789076 −0.394538 0.918880i \(-0.629095\pi\)
−0.394538 + 0.918880i \(0.629095\pi\)
\(830\) 0.316055 0.0109704
\(831\) −32.5758 −1.13004
\(832\) −0.102772 −0.00356298
\(833\) −0.400683 −0.0138829
\(834\) 2.45191 0.0849026
\(835\) 25.1670 0.870941
\(836\) 66.6580 2.30541
\(837\) 0 0
\(838\) −1.13831 −0.0393223
\(839\) −6.01460 −0.207647 −0.103823 0.994596i \(-0.533108\pi\)
−0.103823 + 0.994596i \(0.533108\pi\)
\(840\) −2.39991 −0.0828047
\(841\) −20.2090 −0.696861
\(842\) −0.405813 −0.0139852
\(843\) −3.44111 −0.118518
\(844\) −27.9089 −0.960664
\(845\) 15.9826 0.549817
\(846\) 0.988937 0.0340003
\(847\) 55.2568 1.89865
\(848\) −30.9034 −1.06123
\(849\) −20.6052 −0.707169
\(850\) 1.53555 0.0526691
\(851\) −43.4948 −1.49098
\(852\) 11.0432 0.378333
\(853\) 10.8138 0.370258 0.185129 0.982714i \(-0.440730\pi\)
0.185129 + 0.982714i \(0.440730\pi\)
\(854\) −1.22850 −0.0420385
\(855\) −5.95237 −0.203567
\(856\) 3.94625 0.134880
\(857\) −34.0840 −1.16429 −0.582144 0.813086i \(-0.697786\pi\)
−0.582144 + 0.813086i \(0.697786\pi\)
\(858\) −0.0139300 −0.000475562 0
\(859\) −7.51793 −0.256508 −0.128254 0.991741i \(-0.540937\pi\)
−0.128254 + 0.991741i \(0.540937\pi\)
\(860\) 7.74832 0.264215
\(861\) 28.1874 0.960626
\(862\) −2.91445 −0.0992666
\(863\) −22.2748 −0.758243 −0.379121 0.925347i \(-0.623774\pi\)
−0.379121 + 0.925347i \(0.623774\pi\)
\(864\) 8.31590 0.282913
\(865\) 25.9012 0.880668
\(866\) 3.39520 0.115374
\(867\) 6.55906 0.222757
\(868\) 0 0
\(869\) 18.3594 0.622798
\(870\) 0.669583 0.0227010
\(871\) 0.0480678 0.00162872
\(872\) −3.11662 −0.105542
\(873\) −2.75000 −0.0930734
\(874\) −3.02866 −0.102446
\(875\) 27.8334 0.940939
\(876\) 10.4223 0.352138
\(877\) −27.1655 −0.917313 −0.458656 0.888614i \(-0.651669\pi\)
−0.458656 + 0.888614i \(0.651669\pi\)
\(878\) −4.10322 −0.138477
\(879\) −38.2541 −1.29028
\(880\) −27.0576 −0.912111
\(881\) −22.7696 −0.767126 −0.383563 0.923515i \(-0.625303\pi\)
−0.383563 + 0.923515i \(0.625303\pi\)
\(882\) −0.0113944 −0.000383668 0
\(883\) −20.5333 −0.691000 −0.345500 0.938419i \(-0.612291\pi\)
−0.345500 + 0.938419i \(0.612291\pi\)
\(884\) 0.0947296 0.00318610
\(885\) −18.8976 −0.635235
\(886\) −1.65481 −0.0555946
\(887\) 53.7079 1.80333 0.901667 0.432431i \(-0.142344\pi\)
0.901667 + 0.432431i \(0.142344\pi\)
\(888\) −7.78405 −0.261215
\(889\) −4.62819 −0.155224
\(890\) 1.34412 0.0450549
\(891\) −33.2595 −1.11424
\(892\) −19.6386 −0.657547
\(893\) 58.5071 1.95787
\(894\) −3.34281 −0.111800
\(895\) 12.8832 0.430639
\(896\) −10.3943 −0.347251
\(897\) −0.0814614 −0.00271992
\(898\) 1.40247 0.0468010
\(899\) 0 0
\(900\) −5.62027 −0.187342
\(901\) 28.0337 0.933937
\(902\) −4.99661 −0.166369
\(903\) −12.5285 −0.416923
\(904\) 1.35931 0.0452099
\(905\) 11.7253 0.389763
\(906\) −1.21152 −0.0402500
\(907\) 53.3488 1.77142 0.885709 0.464241i \(-0.153673\pi\)
0.885709 + 0.464241i \(0.153673\pi\)
\(908\) −18.6641 −0.619391
\(909\) 7.03706 0.233405
\(910\) −0.00548262 −0.000181747 0
\(911\) −44.5464 −1.47589 −0.737944 0.674861i \(-0.764203\pi\)
−0.737944 + 0.674861i \(0.764203\pi\)
\(912\) 34.4741 1.14155
\(913\) −11.6594 −0.385870
\(914\) 0.565079 0.0186912
\(915\) −6.74634 −0.223027
\(916\) 29.2817 0.967494
\(917\) 18.8543 0.622623
\(918\) −2.48202 −0.0819187
\(919\) −11.6589 −0.384593 −0.192297 0.981337i \(-0.561594\pi\)
−0.192297 + 0.981337i \(0.561594\pi\)
\(920\) 2.48780 0.0820203
\(921\) 0.969891 0.0319590
\(922\) 3.57575 0.117761
\(923\) 0.0506526 0.00166725
\(924\) 44.0956 1.45064
\(925\) 37.1007 1.21986
\(926\) 1.49649 0.0491779
\(927\) −2.17643 −0.0714833
\(928\) 4.37276 0.143543
\(929\) 16.1137 0.528675 0.264337 0.964430i \(-0.414847\pi\)
0.264337 + 0.964430i \(0.414847\pi\)
\(930\) 0 0
\(931\) −0.674109 −0.0220930
\(932\) 56.7312 1.85829
\(933\) 32.6018 1.06734
\(934\) −2.37546 −0.0777274
\(935\) 24.5450 0.802708
\(936\) 0.00540865 0.000176787 0
\(937\) 45.2884 1.47951 0.739754 0.672877i \(-0.234942\pi\)
0.739754 + 0.672877i \(0.234942\pi\)
\(938\) 1.18221 0.0386006
\(939\) −14.0727 −0.459244
\(940\) −23.9364 −0.780720
\(941\) −24.5088 −0.798964 −0.399482 0.916741i \(-0.630810\pi\)
−0.399482 + 0.916741i \(0.630810\pi\)
\(942\) −2.88849 −0.0941120
\(943\) −29.2197 −0.951525
\(944\) −40.6049 −1.32158
\(945\) −18.4889 −0.601443
\(946\) 2.22085 0.0722060
\(947\) −44.7537 −1.45430 −0.727150 0.686478i \(-0.759156\pi\)
−0.727150 + 0.686478i \(0.759156\pi\)
\(948\) 9.57001 0.310819
\(949\) 0.0478049 0.00155181
\(950\) 2.58341 0.0838170
\(951\) 3.09908 0.100495
\(952\) 4.67779 0.151608
\(953\) −30.8112 −0.998071 −0.499036 0.866581i \(-0.666312\pi\)
−0.499036 + 0.866581i \(0.666312\pi\)
\(954\) 0.797203 0.0258104
\(955\) 12.3001 0.398020
\(956\) 17.8786 0.578236
\(957\) −24.7013 −0.798478
\(958\) −1.52624 −0.0493105
\(959\) 25.4357 0.821361
\(960\) −13.8806 −0.447994
\(961\) 0 0
\(962\) −0.0177828 −0.000573339 0
\(963\) 6.47474 0.208646
\(964\) −1.56417 −0.0503786
\(965\) 25.4256 0.818479
\(966\) −2.00352 −0.0644622
\(967\) 44.5447 1.43246 0.716230 0.697864i \(-0.245866\pi\)
0.716230 + 0.697864i \(0.245866\pi\)
\(968\) −10.2512 −0.329486
\(969\) −31.2728 −1.00463
\(970\) −0.517155 −0.0166048
\(971\) 6.35732 0.204016 0.102008 0.994784i \(-0.467473\pi\)
0.102008 + 0.994784i \(0.467473\pi\)
\(972\) 16.2341 0.520708
\(973\) −35.6005 −1.14130
\(974\) 1.87835 0.0601863
\(975\) 0.0694858 0.00222533
\(976\) −14.4957 −0.463997
\(977\) −13.4329 −0.429758 −0.214879 0.976641i \(-0.568936\pi\)
−0.214879 + 0.976641i \(0.568936\pi\)
\(978\) 1.32187 0.0422687
\(979\) −49.5852 −1.58475
\(980\) 0.275792 0.00880984
\(981\) −5.11355 −0.163263
\(982\) 3.79155 0.120993
\(983\) 42.1777 1.34526 0.672629 0.739980i \(-0.265165\pi\)
0.672629 + 0.739980i \(0.265165\pi\)
\(984\) −5.22930 −0.166704
\(985\) 0.926123 0.0295087
\(986\) −1.30512 −0.0415635
\(987\) 38.7036 1.23195
\(988\) 0.159373 0.00507033
\(989\) 12.9873 0.412973
\(990\) 0.697995 0.0221837
\(991\) 40.1209 1.27448 0.637241 0.770665i \(-0.280076\pi\)
0.637241 + 0.770665i \(0.280076\pi\)
\(992\) 0 0
\(993\) −3.70907 −0.117704
\(994\) 1.24579 0.0395139
\(995\) −12.1600 −0.385497
\(996\) −6.07759 −0.192576
\(997\) −40.6053 −1.28598 −0.642991 0.765874i \(-0.722307\pi\)
−0.642991 + 0.765874i \(0.722307\pi\)
\(998\) 3.57960 0.113310
\(999\) −59.9682 −1.89731
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.a.l.1.11 16
3.2 odd 2 8649.2.a.bs.1.5 16
31.2 even 5 961.2.d.s.531.11 64
31.3 odd 30 961.2.g.w.846.11 128
31.4 even 5 961.2.d.s.388.6 64
31.5 even 3 961.2.c.l.521.12 32
31.6 odd 6 961.2.c.l.439.11 32
31.7 even 15 961.2.g.w.235.5 128
31.8 even 5 961.2.d.s.374.6 64
31.9 even 15 961.2.g.w.732.5 128
31.10 even 15 961.2.g.w.844.12 128
31.11 odd 30 961.2.g.w.338.5 128
31.12 odd 30 961.2.g.w.547.12 128
31.13 odd 30 961.2.g.w.448.12 128
31.14 even 15 961.2.g.w.816.6 128
31.15 odd 10 961.2.d.s.628.12 64
31.16 even 5 961.2.d.s.628.11 64
31.17 odd 30 961.2.g.w.816.5 128
31.18 even 15 961.2.g.w.448.11 128
31.19 even 15 961.2.g.w.547.11 128
31.20 even 15 961.2.g.w.338.6 128
31.21 odd 30 961.2.g.w.844.11 128
31.22 odd 30 961.2.g.w.732.6 128
31.23 odd 10 961.2.d.s.374.5 64
31.24 odd 30 961.2.g.w.235.6 128
31.25 even 3 961.2.c.l.439.12 32
31.26 odd 6 961.2.c.l.521.11 32
31.27 odd 10 961.2.d.s.388.5 64
31.28 even 15 961.2.g.w.846.12 128
31.29 odd 10 961.2.d.s.531.12 64
31.30 odd 2 inner 961.2.a.l.1.12 yes 16
93.92 even 2 8649.2.a.bs.1.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.l.1.11 16 1.1 even 1 trivial
961.2.a.l.1.12 yes 16 31.30 odd 2 inner
961.2.c.l.439.11 32 31.6 odd 6
961.2.c.l.439.12 32 31.25 even 3
961.2.c.l.521.11 32 31.26 odd 6
961.2.c.l.521.12 32 31.5 even 3
961.2.d.s.374.5 64 31.23 odd 10
961.2.d.s.374.6 64 31.8 even 5
961.2.d.s.388.5 64 31.27 odd 10
961.2.d.s.388.6 64 31.4 even 5
961.2.d.s.531.11 64 31.2 even 5
961.2.d.s.531.12 64 31.29 odd 10
961.2.d.s.628.11 64 31.16 even 5
961.2.d.s.628.12 64 31.15 odd 10
961.2.g.w.235.5 128 31.7 even 15
961.2.g.w.235.6 128 31.24 odd 30
961.2.g.w.338.5 128 31.11 odd 30
961.2.g.w.338.6 128 31.20 even 15
961.2.g.w.448.11 128 31.18 even 15
961.2.g.w.448.12 128 31.13 odd 30
961.2.g.w.547.11 128 31.19 even 15
961.2.g.w.547.12 128 31.12 odd 30
961.2.g.w.732.5 128 31.9 even 15
961.2.g.w.732.6 128 31.22 odd 30
961.2.g.w.816.5 128 31.17 odd 30
961.2.g.w.816.6 128 31.14 even 15
961.2.g.w.844.11 128 31.21 odd 30
961.2.g.w.844.12 128 31.10 even 15
961.2.g.w.846.11 128 31.3 odd 30
961.2.g.w.846.12 128 31.28 even 15
8649.2.a.bs.1.5 16 3.2 odd 2
8649.2.a.bs.1.6 16 93.92 even 2