Properties

Label 961.2.c.l.521.3
Level $961$
Weight $2$
Character 961.521
Analytic conductor $7.674$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(439,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.439"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-16,0,16,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 521.3
Character \(\chi\) \(=\) 961.521
Dual form 961.2.c.l.439.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.88954 q^{2} +(-0.934717 - 1.61898i) q^{3} +1.57037 q^{4} +(-1.24571 + 2.15763i) q^{5} +(1.76619 + 3.05913i) q^{6} +(1.95083 + 3.37894i) q^{7} +0.811809 q^{8} +(-0.247392 + 0.428495i) q^{9} +(2.35382 - 4.07693i) q^{10} +(-0.0228551 + 0.0395863i) q^{11} +(-1.46785 - 2.54239i) q^{12} +(2.52387 - 4.37148i) q^{13} +(-3.68617 - 6.38464i) q^{14} +4.65754 q^{15} -4.67468 q^{16} +(-0.202598 - 0.350910i) q^{17} +(0.467457 - 0.809660i) q^{18} +(2.82864 + 4.89935i) q^{19} +(-1.95622 + 3.38827i) q^{20} +(3.64695 - 6.31670i) q^{21} +(0.0431858 - 0.0747999i) q^{22} -0.710805 q^{23} +(-0.758812 - 1.31430i) q^{24} +(-0.603580 - 1.04543i) q^{25} +(-4.76896 + 8.26009i) q^{26} -4.68334 q^{27} +(3.06352 + 5.30617i) q^{28} -5.72084 q^{29} -8.80062 q^{30} +7.20939 q^{32} +0.0854524 q^{33} +(0.382817 + 0.663058i) q^{34} -9.72066 q^{35} +(-0.388496 + 0.672895i) q^{36} +(2.94974 + 5.10910i) q^{37} +(-5.34483 - 9.25752i) q^{38} -9.43643 q^{39} +(-1.01128 + 1.75158i) q^{40} +(0.441306 - 0.764364i) q^{41} +(-6.89106 + 11.9357i) q^{42} +(-1.49564 - 2.59052i) q^{43} +(-0.0358910 + 0.0621650i) q^{44} +(-0.616357 - 1.06756i) q^{45} +1.34310 q^{46} +3.20010 q^{47} +(4.36950 + 7.56820i) q^{48} +(-4.11148 + 7.12128i) q^{49} +(1.14049 + 1.97539i) q^{50} +(-0.378743 + 0.656002i) q^{51} +(3.96341 - 6.86482i) q^{52} +(-2.59392 + 4.49279i) q^{53} +8.84936 q^{54} +(-0.0569417 - 0.0986259i) q^{55} +(1.58370 + 2.74305i) q^{56} +(5.28796 - 9.15901i) q^{57} +10.8098 q^{58} +(-0.719926 - 1.24695i) q^{59} +7.31405 q^{60} +13.4661 q^{61} -1.93048 q^{63} -4.27307 q^{64} +(6.28802 + 10.8912i) q^{65} -0.161466 q^{66} +(1.10189 - 1.90853i) q^{67} +(-0.318153 - 0.551057i) q^{68} +(0.664402 + 1.15078i) q^{69} +18.3676 q^{70} +(4.50703 - 7.80641i) q^{71} +(-0.200835 + 0.347857i) q^{72} +(-1.11394 + 1.92939i) q^{73} +(-5.57366 - 9.65385i) q^{74} +(-1.12835 + 1.95437i) q^{75} +(4.44200 + 7.69378i) q^{76} -0.178346 q^{77} +17.8305 q^{78} +(1.56676 + 2.71372i) q^{79} +(5.82329 - 10.0862i) q^{80} +(5.11977 + 8.86770i) q^{81} +(-0.833865 + 1.44430i) q^{82} +(-7.54510 + 13.0685i) q^{83} +(5.72705 - 9.91954i) q^{84} +1.00951 q^{85} +(2.82607 + 4.89489i) q^{86} +(5.34736 + 9.26191i) q^{87} +(-0.0185540 + 0.0321365i) q^{88} +7.91106 q^{89} +(1.16463 + 2.01720i) q^{90} +19.6946 q^{91} -1.11623 q^{92} -6.04673 q^{94} -14.0947 q^{95} +(-6.73874 - 11.6718i) q^{96} +2.48466 q^{97} +(7.76880 - 13.4560i) q^{98} +(-0.0113084 - 0.0195867i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 16 q^{2} + 16 q^{4} + 16 q^{5} + 16 q^{7} - 8 q^{10} + 8 q^{14} - 16 q^{16} + 24 q^{18} + 32 q^{19} + 24 q^{20} + 8 q^{28} - 16 q^{32} - 64 q^{33} - 32 q^{35} + 40 q^{36} + 24 q^{38} - 64 q^{39}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.88954 −1.33611 −0.668054 0.744113i \(-0.732872\pi\)
−0.668054 + 0.744113i \(0.732872\pi\)
\(3\) −0.934717 1.61898i −0.539659 0.934717i −0.998922 0.0464167i \(-0.985220\pi\)
0.459263 0.888300i \(-0.348114\pi\)
\(4\) 1.57037 0.785184
\(5\) −1.24571 + 2.15763i −0.557098 + 0.964922i 0.440639 + 0.897684i \(0.354752\pi\)
−0.997737 + 0.0672375i \(0.978581\pi\)
\(6\) 1.76619 + 3.05913i 0.721043 + 1.24888i
\(7\) 1.95083 + 3.37894i 0.737344 + 1.27712i 0.953687 + 0.300801i \(0.0972538\pi\)
−0.216343 + 0.976318i \(0.569413\pi\)
\(8\) 0.811809 0.287018
\(9\) −0.247392 + 0.428495i −0.0824640 + 0.142832i
\(10\) 2.35382 4.07693i 0.744343 1.28924i
\(11\) −0.0228551 + 0.0395863i −0.00689109 + 0.0119357i −0.869450 0.494020i \(-0.835527\pi\)
0.862559 + 0.505956i \(0.168860\pi\)
\(12\) −1.46785 2.54239i −0.423731 0.733924i
\(13\) 2.52387 4.37148i 0.699997 1.21243i −0.268470 0.963288i \(-0.586518\pi\)
0.968467 0.249142i \(-0.0801485\pi\)
\(14\) −3.68617 6.38464i −0.985172 1.70637i
\(15\) 4.65754 1.20257
\(16\) −4.67468 −1.16867
\(17\) −0.202598 0.350910i −0.0491372 0.0851081i 0.840411 0.541950i \(-0.182314\pi\)
−0.889548 + 0.456842i \(0.848980\pi\)
\(18\) 0.467457 0.809660i 0.110181 0.190839i
\(19\) 2.82864 + 4.89935i 0.648935 + 1.12399i 0.983378 + 0.181572i \(0.0581185\pi\)
−0.334443 + 0.942416i \(0.608548\pi\)
\(20\) −1.95622 + 3.38827i −0.437424 + 0.757641i
\(21\) 3.64695 6.31670i 0.795829 1.37842i
\(22\) 0.0431858 0.0747999i 0.00920723 0.0159474i
\(23\) −0.710805 −0.148213 −0.0741066 0.997250i \(-0.523611\pi\)
−0.0741066 + 0.997250i \(0.523611\pi\)
\(24\) −0.758812 1.31430i −0.154892 0.268281i
\(25\) −0.603580 1.04543i −0.120716 0.209086i
\(26\) −4.76896 + 8.26009i −0.935271 + 1.61994i
\(27\) −4.68334 −0.901309
\(28\) 3.06352 + 5.30617i 0.578951 + 1.00277i
\(29\) −5.72084 −1.06233 −0.531166 0.847268i \(-0.678246\pi\)
−0.531166 + 0.847268i \(0.678246\pi\)
\(30\) −8.80062 −1.60677
\(31\) 0 0
\(32\) 7.20939 1.27445
\(33\) 0.0854524 0.0148754
\(34\) 0.382817 + 0.663058i 0.0656525 + 0.113714i
\(35\) −9.72066 −1.64309
\(36\) −0.388496 + 0.672895i −0.0647494 + 0.112149i
\(37\) 2.94974 + 5.10910i 0.484934 + 0.839931i 0.999850 0.0173099i \(-0.00551020\pi\)
−0.514916 + 0.857241i \(0.672177\pi\)
\(38\) −5.34483 9.25752i −0.867047 1.50177i
\(39\) −9.43643 −1.51104
\(40\) −1.01128 + 1.75158i −0.159897 + 0.276950i
\(41\) 0.441306 0.764364i 0.0689204 0.119374i −0.829506 0.558498i \(-0.811378\pi\)
0.898426 + 0.439124i \(0.144711\pi\)
\(42\) −6.89106 + 11.9357i −1.06331 + 1.84171i
\(43\) −1.49564 2.59052i −0.228083 0.395051i 0.729157 0.684346i \(-0.239912\pi\)
−0.957240 + 0.289296i \(0.906579\pi\)
\(44\) −0.0358910 + 0.0621650i −0.00541077 + 0.00937172i
\(45\) −0.616357 1.06756i −0.0918810 0.159143i
\(46\) 1.34310 0.198029
\(47\) 3.20010 0.466783 0.233391 0.972383i \(-0.425018\pi\)
0.233391 + 0.972383i \(0.425018\pi\)
\(48\) 4.36950 + 7.56820i 0.630684 + 1.09238i
\(49\) −4.11148 + 7.12128i −0.587354 + 1.01733i
\(50\) 1.14049 + 1.97539i 0.161290 + 0.279362i
\(51\) −0.378743 + 0.656002i −0.0530346 + 0.0918587i
\(52\) 3.96341 6.86482i 0.549626 0.951980i
\(53\) −2.59392 + 4.49279i −0.356302 + 0.617133i −0.987340 0.158619i \(-0.949296\pi\)
0.631038 + 0.775752i \(0.282629\pi\)
\(54\) 8.84936 1.20425
\(55\) −0.0569417 0.0986259i −0.00767802 0.0132987i
\(56\) 1.58370 + 2.74305i 0.211631 + 0.366556i
\(57\) 5.28796 9.15901i 0.700407 1.21314i
\(58\) 10.8098 1.41939
\(59\) −0.719926 1.24695i −0.0937264 0.162339i 0.815350 0.578968i \(-0.196545\pi\)
−0.909076 + 0.416630i \(0.863211\pi\)
\(60\) 7.31405 0.944240
\(61\) 13.4661 1.72416 0.862080 0.506772i \(-0.169161\pi\)
0.862080 + 0.506772i \(0.169161\pi\)
\(62\) 0 0
\(63\) −1.93048 −0.243217
\(64\) −4.27307 −0.534134
\(65\) 6.28802 + 10.8912i 0.779933 + 1.35088i
\(66\) −0.161466 −0.0198751
\(67\) 1.10189 1.90853i 0.134617 0.233164i −0.790834 0.612031i \(-0.790353\pi\)
0.925451 + 0.378867i \(0.123686\pi\)
\(68\) −0.318153 0.551057i −0.0385817 0.0668255i
\(69\) 0.664402 + 1.15078i 0.0799846 + 0.138537i
\(70\) 18.3676 2.19535
\(71\) 4.50703 7.80641i 0.534886 0.926450i −0.464283 0.885687i \(-0.653688\pi\)
0.999169 0.0407629i \(-0.0129788\pi\)
\(72\) −0.200835 + 0.347857i −0.0236686 + 0.0409953i
\(73\) −1.11394 + 1.92939i −0.130376 + 0.225818i −0.923822 0.382823i \(-0.874952\pi\)
0.793445 + 0.608641i \(0.208285\pi\)
\(74\) −5.57366 9.65385i −0.647924 1.12224i
\(75\) −1.12835 + 1.95437i −0.130291 + 0.225671i
\(76\) 4.44200 + 7.69378i 0.509533 + 0.882537i
\(77\) −0.178346 −0.0203244
\(78\) 17.8305 2.01891
\(79\) 1.56676 + 2.71372i 0.176275 + 0.305317i 0.940602 0.339512i \(-0.110262\pi\)
−0.764327 + 0.644829i \(0.776929\pi\)
\(80\) 5.82329 10.0862i 0.651064 1.12768i
\(81\) 5.11977 + 8.86770i 0.568863 + 0.985300i
\(82\) −0.833865 + 1.44430i −0.0920850 + 0.159496i
\(83\) −7.54510 + 13.0685i −0.828183 + 1.43445i 0.0712799 + 0.997456i \(0.477292\pi\)
−0.899462 + 0.436998i \(0.856042\pi\)
\(84\) 5.72705 9.91954i 0.624872 1.08231i
\(85\) 1.00951 0.109497
\(86\) 2.82607 + 4.89489i 0.304743 + 0.527830i
\(87\) 5.34736 + 9.26191i 0.573298 + 0.992981i
\(88\) −0.0185540 + 0.0321365i −0.00197787 + 0.00342576i
\(89\) 7.91106 0.838571 0.419286 0.907854i \(-0.362281\pi\)
0.419286 + 0.907854i \(0.362281\pi\)
\(90\) 1.16463 + 2.01720i 0.122763 + 0.212632i
\(91\) 19.6946 2.06455
\(92\) −1.11623 −0.116375
\(93\) 0 0
\(94\) −6.04673 −0.623672
\(95\) −14.0947 −1.44608
\(96\) −6.73874 11.6718i −0.687769 1.19125i
\(97\) 2.48466 0.252279 0.126140 0.992013i \(-0.459741\pi\)
0.126140 + 0.992013i \(0.459741\pi\)
\(98\) 7.76880 13.4560i 0.784768 1.35926i
\(99\) −0.0113084 0.0195867i −0.00113653 0.00196853i
\(100\) −0.947843 1.64171i −0.0947843 0.164171i
\(101\) −13.6706 −1.36027 −0.680136 0.733086i \(-0.738079\pi\)
−0.680136 + 0.733086i \(0.738079\pi\)
\(102\) 0.715651 1.23954i 0.0708600 0.122733i
\(103\) −2.48116 + 4.29749i −0.244476 + 0.423445i −0.961984 0.273105i \(-0.911949\pi\)
0.717508 + 0.696550i \(0.245283\pi\)
\(104\) 2.04890 3.54881i 0.200912 0.347989i
\(105\) 9.08607 + 15.7375i 0.886710 + 1.53583i
\(106\) 4.90131 8.48932i 0.476057 0.824556i
\(107\) 7.64522 + 13.2419i 0.739091 + 1.28014i 0.952905 + 0.303269i \(0.0980781\pi\)
−0.213814 + 0.976874i \(0.568589\pi\)
\(108\) −7.35456 −0.707693
\(109\) −12.8764 −1.23333 −0.616666 0.787225i \(-0.711517\pi\)
−0.616666 + 0.787225i \(0.711517\pi\)
\(110\) 0.107594 + 0.186358i 0.0102587 + 0.0177685i
\(111\) 5.51434 9.55112i 0.523398 0.906553i
\(112\) −9.11951 15.7955i −0.861713 1.49253i
\(113\) 0.810133 1.40319i 0.0762109 0.132001i −0.825401 0.564546i \(-0.809051\pi\)
0.901612 + 0.432545i \(0.142384\pi\)
\(114\) −9.99182 + 17.3063i −0.935819 + 1.62089i
\(115\) 0.885456 1.53366i 0.0825692 0.143014i
\(116\) −8.98382 −0.834126
\(117\) 1.24877 + 2.16294i 0.115449 + 0.199964i
\(118\) 1.36033 + 2.35616i 0.125229 + 0.216902i
\(119\) 0.790467 1.36913i 0.0724620 0.125508i
\(120\) 3.78103 0.345160
\(121\) 5.49896 + 9.52447i 0.499905 + 0.865861i
\(122\) −25.4448 −2.30366
\(123\) −1.64998 −0.148774
\(124\) 0 0
\(125\) −9.44955 −0.845193
\(126\) 3.64772 0.324965
\(127\) 9.18225 + 15.9041i 0.814793 + 1.41126i 0.909477 + 0.415755i \(0.136483\pi\)
−0.0946843 + 0.995507i \(0.530184\pi\)
\(128\) −6.34463 −0.560791
\(129\) −2.79599 + 4.84281i −0.246174 + 0.426385i
\(130\) −11.8815 20.5793i −1.04207 1.80493i
\(131\) 7.30573 + 12.6539i 0.638304 + 1.10558i 0.985805 + 0.167896i \(0.0536972\pi\)
−0.347500 + 0.937680i \(0.612969\pi\)
\(132\) 0.134192 0.0116799
\(133\) −11.0364 + 19.1156i −0.956977 + 1.65753i
\(134\) −2.08207 + 3.60624i −0.179863 + 0.311532i
\(135\) 5.83407 10.1049i 0.502117 0.869692i
\(136\) −0.164471 0.284872i −0.0141032 0.0244275i
\(137\) −10.8182 + 18.7376i −0.924258 + 1.60086i −0.131508 + 0.991315i \(0.541982\pi\)
−0.792750 + 0.609547i \(0.791351\pi\)
\(138\) −1.25541 2.17444i −0.106868 0.185101i
\(139\) 0.137919 0.0116981 0.00584906 0.999983i \(-0.498138\pi\)
0.00584906 + 0.999983i \(0.498138\pi\)
\(140\) −15.2650 −1.29013
\(141\) −2.99119 5.18089i −0.251904 0.436310i
\(142\) −8.51622 + 14.7505i −0.714665 + 1.23784i
\(143\) 0.115367 + 0.199822i 0.00964747 + 0.0167099i
\(144\) 1.15648 2.00308i 0.0963732 0.166923i
\(145\) 7.12650 12.3435i 0.591823 1.02507i
\(146\) 2.10483 3.64567i 0.174197 0.301718i
\(147\) 15.3723 1.26788
\(148\) 4.63217 + 8.02316i 0.380762 + 0.659500i
\(149\) −7.50943 13.0067i −0.615196 1.06555i −0.990350 0.138589i \(-0.955743\pi\)
0.375154 0.926963i \(-0.377590\pi\)
\(150\) 2.13207 3.69286i 0.174083 0.301520i
\(151\) −2.62149 −0.213334 −0.106667 0.994295i \(-0.534018\pi\)
−0.106667 + 0.994295i \(0.534018\pi\)
\(152\) 2.29632 + 3.97734i 0.186256 + 0.322605i
\(153\) 0.200484 0.0162082
\(154\) 0.336992 0.0271556
\(155\) 0 0
\(156\) −14.8187 −1.18644
\(157\) 18.7778 1.49863 0.749316 0.662212i \(-0.230382\pi\)
0.749316 + 0.662212i \(0.230382\pi\)
\(158\) −2.96047 5.12768i −0.235522 0.407936i
\(159\) 9.69831 0.769126
\(160\) −8.98080 + 15.5552i −0.709994 + 1.22975i
\(161\) −1.38666 2.40177i −0.109284 0.189286i
\(162\) −9.67402 16.7559i −0.760063 1.31647i
\(163\) 4.50151 0.352585 0.176293 0.984338i \(-0.443590\pi\)
0.176293 + 0.984338i \(0.443590\pi\)
\(164\) 0.693012 1.20033i 0.0541151 0.0937302i
\(165\) −0.106449 + 0.184375i −0.00828703 + 0.0143536i
\(166\) 14.2568 24.6935i 1.10654 1.91659i
\(167\) 8.78332 + 15.2132i 0.679673 + 1.17723i 0.975079 + 0.221857i \(0.0712119\pi\)
−0.295406 + 0.955372i \(0.595455\pi\)
\(168\) 2.96063 5.12795i 0.228417 0.395630i
\(169\) −6.23987 10.8078i −0.479990 0.831368i
\(170\) −1.90751 −0.146300
\(171\) −2.79913 −0.214055
\(172\) −2.34870 4.06807i −0.179087 0.310187i
\(173\) −5.69753 + 9.86842i −0.433176 + 0.750282i −0.997145 0.0755138i \(-0.975940\pi\)
0.563969 + 0.825796i \(0.309274\pi\)
\(174\) −10.1041 17.5008i −0.765987 1.32673i
\(175\) 2.35497 4.07892i 0.178019 0.308337i
\(176\) 0.106841 0.185053i 0.00805341 0.0139489i
\(177\) −1.34585 + 2.33109i −0.101161 + 0.175215i
\(178\) −14.9483 −1.12042
\(179\) 2.49972 + 4.32964i 0.186838 + 0.323613i 0.944194 0.329389i \(-0.106843\pi\)
−0.757356 + 0.653002i \(0.773509\pi\)
\(180\) −0.967906 1.67646i −0.0721435 0.124956i
\(181\) −2.36746 + 4.10056i −0.175972 + 0.304792i −0.940497 0.339802i \(-0.889640\pi\)
0.764525 + 0.644594i \(0.222973\pi\)
\(182\) −37.2138 −2.75847
\(183\) −12.5870 21.8014i −0.930459 1.61160i
\(184\) −0.577038 −0.0425398
\(185\) −14.6981 −1.08062
\(186\) 0 0
\(187\) 0.0185216 0.00135443
\(188\) 5.02534 0.366510
\(189\) −9.13639 15.8247i −0.664575 1.15108i
\(190\) 26.6324 1.93212
\(191\) 7.31116 12.6633i 0.529017 0.916285i −0.470410 0.882448i \(-0.655894\pi\)
0.999427 0.0338369i \(-0.0107727\pi\)
\(192\) 3.99411 + 6.91801i 0.288250 + 0.499264i
\(193\) 3.61831 + 6.26709i 0.260452 + 0.451115i 0.966362 0.257186i \(-0.0827952\pi\)
−0.705910 + 0.708301i \(0.749462\pi\)
\(194\) −4.69487 −0.337072
\(195\) 11.7550 20.3603i 0.841796 1.45803i
\(196\) −6.45653 + 11.1830i −0.461180 + 0.798788i
\(197\) −4.16402 + 7.21230i −0.296674 + 0.513855i −0.975373 0.220562i \(-0.929211\pi\)
0.678699 + 0.734417i \(0.262544\pi\)
\(198\) 0.0213676 + 0.0370098i 0.00151853 + 0.00263017i
\(199\) −4.01850 + 6.96025i −0.284864 + 0.493399i −0.972576 0.232584i \(-0.925282\pi\)
0.687712 + 0.725984i \(0.258615\pi\)
\(200\) −0.489992 0.848691i −0.0346477 0.0600115i
\(201\) −4.11982 −0.290590
\(202\) 25.8311 1.81747
\(203\) −11.1604 19.3303i −0.783305 1.35672i
\(204\) −0.594766 + 1.03016i −0.0416419 + 0.0721259i
\(205\) 1.09948 + 1.90435i 0.0767908 + 0.133006i
\(206\) 4.68825 8.12029i 0.326646 0.565767i
\(207\) 0.175848 0.304577i 0.0122222 0.0211696i
\(208\) −11.7983 + 20.4353i −0.818065 + 1.41693i
\(209\) −0.258596 −0.0178875
\(210\) −17.1685 29.7367i −1.18474 2.05203i
\(211\) 7.95670 + 13.7814i 0.547762 + 0.948752i 0.998427 + 0.0560589i \(0.0178534\pi\)
−0.450665 + 0.892693i \(0.648813\pi\)
\(212\) −4.07340 + 7.05533i −0.279762 + 0.484562i
\(213\) −16.8512 −1.15462
\(214\) −14.4460 25.0211i −0.987505 1.71041i
\(215\) 7.45251 0.508257
\(216\) −3.80198 −0.258692
\(217\) 0 0
\(218\) 24.3304 1.64786
\(219\) 4.16486 0.281435
\(220\) −0.0894194 0.154879i −0.00602865 0.0104419i
\(221\) −2.04532 −0.137583
\(222\) −10.4196 + 18.0472i −0.699317 + 1.21125i
\(223\) 8.24810 + 14.2861i 0.552334 + 0.956670i 0.998106 + 0.0615234i \(0.0195959\pi\)
−0.445772 + 0.895147i \(0.647071\pi\)
\(224\) 14.0643 + 24.3601i 0.939710 + 1.62762i
\(225\) 0.597284 0.0398189
\(226\) −1.53078 + 2.65139i −0.101826 + 0.176368i
\(227\) 0.199410 0.345388i 0.0132353 0.0229242i −0.859332 0.511418i \(-0.829120\pi\)
0.872567 + 0.488494i \(0.162454\pi\)
\(228\) 8.30403 14.3830i 0.549948 0.952538i
\(229\) −12.8769 22.3035i −0.850931 1.47386i −0.880369 0.474290i \(-0.842705\pi\)
0.0294377 0.999567i \(-0.490628\pi\)
\(230\) −1.67311 + 2.89791i −0.110321 + 0.191082i
\(231\) 0.166703 + 0.288738i 0.0109683 + 0.0189976i
\(232\) −4.64423 −0.304909
\(233\) −10.6201 −0.695744 −0.347872 0.937542i \(-0.613096\pi\)
−0.347872 + 0.937542i \(0.613096\pi\)
\(234\) −2.35961 4.08696i −0.154252 0.267173i
\(235\) −3.98640 + 6.90464i −0.260044 + 0.450409i
\(236\) −1.13055 1.95817i −0.0735924 0.127466i
\(237\) 2.92896 5.07311i 0.190257 0.329534i
\(238\) −1.49362 + 2.58703i −0.0968171 + 0.167692i
\(239\) 5.61240 9.72097i 0.363036 0.628797i −0.625423 0.780286i \(-0.715073\pi\)
0.988459 + 0.151489i \(0.0484068\pi\)
\(240\) −21.7725 −1.40541
\(241\) −6.80597 11.7883i −0.438411 0.759350i 0.559156 0.829062i \(-0.311125\pi\)
−0.997567 + 0.0697124i \(0.977792\pi\)
\(242\) −10.3905 17.9969i −0.667927 1.15688i
\(243\) 2.54607 4.40992i 0.163330 0.282896i
\(244\) 21.1468 1.35378
\(245\) −10.2434 17.7421i −0.654427 1.13350i
\(246\) 3.11771 0.198778
\(247\) 28.5565 1.81701
\(248\) 0 0
\(249\) 28.2101 1.78775
\(250\) 17.8553 1.12927
\(251\) −7.13611 12.3601i −0.450427 0.780163i 0.547985 0.836488i \(-0.315395\pi\)
−0.998412 + 0.0563249i \(0.982062\pi\)
\(252\) −3.03156 −0.190970
\(253\) 0.0162456 0.0281381i 0.00102135 0.00176903i
\(254\) −17.3502 30.0515i −1.08865 1.88560i
\(255\) −0.943607 1.63438i −0.0590910 0.102349i
\(256\) 20.5346 1.28341
\(257\) −3.44310 + 5.96362i −0.214775 + 0.372000i −0.953203 0.302332i \(-0.902235\pi\)
0.738428 + 0.674332i \(0.235568\pi\)
\(258\) 5.28315 9.15068i 0.328914 0.569697i
\(259\) −11.5089 + 19.9340i −0.715127 + 1.23864i
\(260\) 9.87450 + 17.1031i 0.612391 + 1.06069i
\(261\) 1.41529 2.45135i 0.0876042 0.151735i
\(262\) −13.8045 23.9100i −0.852843 1.47717i
\(263\) 19.5044 1.20269 0.601345 0.798989i \(-0.294632\pi\)
0.601345 + 0.798989i \(0.294632\pi\)
\(264\) 0.0693710 0.00426949
\(265\) −6.46253 11.1934i −0.396990 0.687606i
\(266\) 20.8537 36.1197i 1.27862 2.21464i
\(267\) −7.39461 12.8078i −0.452543 0.783827i
\(268\) 1.73037 2.99709i 0.105699 0.183076i
\(269\) 2.61307 4.52596i 0.159321 0.275953i −0.775303 0.631590i \(-0.782403\pi\)
0.934624 + 0.355637i \(0.115736\pi\)
\(270\) −11.0237 + 19.0936i −0.670882 + 1.16200i
\(271\) −21.1113 −1.28242 −0.641211 0.767364i \(-0.721568\pi\)
−0.641211 + 0.767364i \(0.721568\pi\)
\(272\) 0.947080 + 1.64039i 0.0574251 + 0.0994633i
\(273\) −18.4089 31.8851i −1.11416 1.92977i
\(274\) 20.4414 35.4055i 1.23491 2.13892i
\(275\) 0.0551797 0.00332746
\(276\) 1.04335 + 1.80714i 0.0628026 + 0.108777i
\(277\) −29.6644 −1.78236 −0.891180 0.453649i \(-0.850122\pi\)
−0.891180 + 0.453649i \(0.850122\pi\)
\(278\) −0.260603 −0.0156299
\(279\) 0 0
\(280\) −7.89132 −0.471597
\(281\) 24.4213 1.45685 0.728427 0.685123i \(-0.240252\pi\)
0.728427 + 0.685123i \(0.240252\pi\)
\(282\) 5.65198 + 9.78951i 0.336570 + 0.582957i
\(283\) 17.8130 1.05888 0.529438 0.848349i \(-0.322403\pi\)
0.529438 + 0.848349i \(0.322403\pi\)
\(284\) 7.07769 12.2589i 0.419984 0.727433i
\(285\) 13.1745 + 22.8189i 0.780391 + 1.35168i
\(286\) −0.217991 0.377571i −0.0128901 0.0223262i
\(287\) 3.44365 0.203272
\(288\) −1.78354 + 3.08919i −0.105096 + 0.182032i
\(289\) 8.41791 14.5802i 0.495171 0.857661i
\(290\) −13.4658 + 23.3235i −0.790740 + 1.36960i
\(291\) −2.32246 4.02261i −0.136145 0.235810i
\(292\) −1.74929 + 3.02985i −0.102369 + 0.177309i
\(293\) 10.3943 + 18.0035i 0.607242 + 1.05177i 0.991693 + 0.128629i \(0.0410575\pi\)
−0.384451 + 0.923146i \(0.625609\pi\)
\(294\) −29.0465 −1.69403
\(295\) 3.58727 0.208859
\(296\) 2.39463 + 4.14761i 0.139185 + 0.241075i
\(297\) 0.107038 0.185396i 0.00621100 0.0107578i
\(298\) 14.1894 + 24.5767i 0.821968 + 1.42369i
\(299\) −1.79398 + 3.10727i −0.103749 + 0.179698i
\(300\) −1.77193 + 3.06907i −0.102302 + 0.177193i
\(301\) 5.83547 10.1073i 0.336351 0.582577i
\(302\) 4.95341 0.285037
\(303\) 12.7781 + 22.1323i 0.734083 + 1.27147i
\(304\) −13.2230 22.9029i −0.758391 1.31357i
\(305\) −16.7749 + 29.0549i −0.960526 + 1.66368i
\(306\) −0.378823 −0.0216559
\(307\) 6.01381 + 10.4162i 0.343227 + 0.594486i 0.985030 0.172383i \(-0.0551468\pi\)
−0.641803 + 0.766869i \(0.721813\pi\)
\(308\) −0.280069 −0.0159584
\(309\) 9.27673 0.527734
\(310\) 0 0
\(311\) −4.84477 −0.274722 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(312\) −7.66058 −0.433695
\(313\) −13.5994 23.5549i −0.768683 1.33140i −0.938277 0.345885i \(-0.887579\pi\)
0.169594 0.985514i \(-0.445755\pi\)
\(314\) −35.4815 −2.00233
\(315\) 2.40481 4.16526i 0.135496 0.234686i
\(316\) 2.46040 + 4.26153i 0.138408 + 0.239730i
\(317\) −10.8215 18.7434i −0.607796 1.05273i −0.991603 0.129320i \(-0.958721\pi\)
0.383807 0.923413i \(-0.374613\pi\)
\(318\) −18.3254 −1.02763
\(319\) 0.130751 0.226467i 0.00732063 0.0126797i
\(320\) 5.32300 9.21971i 0.297565 0.515397i
\(321\) 14.2922 24.7549i 0.797715 1.38168i
\(322\) 2.62015 + 4.53824i 0.146015 + 0.252906i
\(323\) 1.14615 1.98519i 0.0637736 0.110459i
\(324\) 8.03992 + 13.9255i 0.446662 + 0.773642i
\(325\) −6.09344 −0.338003
\(326\) −8.50578 −0.471092
\(327\) 12.0358 + 20.8465i 0.665579 + 1.15282i
\(328\) 0.358256 0.620518i 0.0197814 0.0342624i
\(329\) 6.24286 + 10.8129i 0.344180 + 0.596137i
\(330\) 0.201139 0.348384i 0.0110724 0.0191779i
\(331\) 1.84009 3.18713i 0.101140 0.175180i −0.811014 0.585026i \(-0.801084\pi\)
0.912155 + 0.409846i \(0.134418\pi\)
\(332\) −11.8486 + 20.5223i −0.650275 + 1.12631i
\(333\) −2.91897 −0.159958
\(334\) −16.5964 28.7459i −0.908117 1.57290i
\(335\) 2.74527 + 4.75494i 0.149990 + 0.259790i
\(336\) −17.0483 + 29.5286i −0.930062 + 1.61091i
\(337\) 11.6586 0.635085 0.317542 0.948244i \(-0.397142\pi\)
0.317542 + 0.948244i \(0.397142\pi\)
\(338\) 11.7905 + 20.4217i 0.641319 + 1.11080i
\(339\) −3.02898 −0.164512
\(340\) 1.58530 0.0859751
\(341\) 0 0
\(342\) 5.28908 0.286000
\(343\) −4.77154 −0.257639
\(344\) −1.21417 2.10301i −0.0654638 0.113387i
\(345\) −3.31060 −0.178237
\(346\) 10.7657 18.6468i 0.578769 1.00246i
\(347\) −16.7163 28.9534i −0.897375 1.55430i −0.830837 0.556516i \(-0.812138\pi\)
−0.0665385 0.997784i \(-0.521196\pi\)
\(348\) 8.39733 + 14.5446i 0.450144 + 0.779672i
\(349\) −7.51065 −0.402036 −0.201018 0.979588i \(-0.564425\pi\)
−0.201018 + 0.979588i \(0.564425\pi\)
\(350\) −4.44981 + 7.70729i −0.237852 + 0.411972i
\(351\) −11.8201 + 20.4731i −0.630913 + 1.09277i
\(352\) −0.164772 + 0.285393i −0.00878236 + 0.0152115i
\(353\) 8.04477 + 13.9340i 0.428180 + 0.741630i 0.996712 0.0810319i \(-0.0258216\pi\)
−0.568531 + 0.822662i \(0.692488\pi\)
\(354\) 2.54305 4.40469i 0.135161 0.234107i
\(355\) 11.2289 + 19.4490i 0.595968 + 1.03225i
\(356\) 12.4233 0.658432
\(357\) −2.95545 −0.156419
\(358\) −4.72333 8.18104i −0.249636 0.432382i
\(359\) 6.71698 11.6341i 0.354508 0.614027i −0.632525 0.774540i \(-0.717982\pi\)
0.987034 + 0.160513i \(0.0513149\pi\)
\(360\) −0.500364 0.866656i −0.0263715 0.0456768i
\(361\) −6.50242 + 11.2625i −0.342233 + 0.592764i
\(362\) 4.47341 7.74818i 0.235117 0.407235i
\(363\) 10.2799 17.8054i 0.539557 0.934540i
\(364\) 30.9277 1.62105
\(365\) −2.77528 4.80692i −0.145265 0.251606i
\(366\) 23.7837 + 41.1946i 1.24319 + 2.15327i
\(367\) 4.27206 7.39942i 0.222999 0.386246i −0.732718 0.680532i \(-0.761749\pi\)
0.955717 + 0.294286i \(0.0950818\pi\)
\(368\) 3.32279 0.173212
\(369\) 0.218351 + 0.378195i 0.0113669 + 0.0196880i
\(370\) 27.7726 1.44383
\(371\) −20.2412 −1.05087
\(372\) 0 0
\(373\) −21.0750 −1.09122 −0.545612 0.838038i \(-0.683703\pi\)
−0.545612 + 0.838038i \(0.683703\pi\)
\(374\) −0.0349973 −0.00180967
\(375\) 8.83265 + 15.2986i 0.456116 + 0.790016i
\(376\) 2.59787 0.133975
\(377\) −14.4387 + 25.0085i −0.743629 + 1.28800i
\(378\) 17.2636 + 29.9014i 0.887943 + 1.53796i
\(379\) −8.54759 14.8049i −0.439060 0.760475i 0.558557 0.829466i \(-0.311355\pi\)
−0.997617 + 0.0689913i \(0.978022\pi\)
\(380\) −22.1338 −1.13544
\(381\) 17.1656 29.7317i 0.879420 1.52320i
\(382\) −13.8147 + 23.9278i −0.706824 + 1.22426i
\(383\) 0.695115 1.20398i 0.0355187 0.0615203i −0.847720 0.530445i \(-0.822025\pi\)
0.883238 + 0.468924i \(0.155358\pi\)
\(384\) 5.93043 + 10.2718i 0.302636 + 0.524181i
\(385\) 0.222167 0.384805i 0.0113227 0.0196115i
\(386\) −6.83694 11.8419i −0.347991 0.602739i
\(387\) 1.48003 0.0752344
\(388\) 3.90183 0.198085
\(389\) 8.01963 + 13.8904i 0.406611 + 0.704271i 0.994508 0.104665i \(-0.0333771\pi\)
−0.587896 + 0.808936i \(0.700044\pi\)
\(390\) −22.2116 + 38.4717i −1.12473 + 1.94809i
\(391\) 0.144008 + 0.249428i 0.00728277 + 0.0126141i
\(392\) −3.33773 + 5.78112i −0.168581 + 0.291991i
\(393\) 13.6576 23.6556i 0.688933 1.19327i
\(394\) 7.86809 13.6279i 0.396389 0.686565i
\(395\) −7.80693 −0.392809
\(396\) −0.0177583 0.0307582i −0.000892387 0.00154566i
\(397\) 9.24716 + 16.0166i 0.464102 + 0.803848i 0.999160 0.0409672i \(-0.0130439\pi\)
−0.535059 + 0.844815i \(0.679711\pi\)
\(398\) 7.59313 13.1517i 0.380609 0.659234i
\(399\) 41.2636 2.06577
\(400\) 2.82155 + 4.88706i 0.141077 + 0.244353i
\(401\) 14.9769 0.747909 0.373955 0.927447i \(-0.378002\pi\)
0.373955 + 0.927447i \(0.378002\pi\)
\(402\) 7.78457 0.388259
\(403\) 0 0
\(404\) −21.4678 −1.06806
\(405\) −25.5110 −1.26765
\(406\) 21.0880 + 36.5255i 1.04658 + 1.81273i
\(407\) −0.269667 −0.0133669
\(408\) −0.307467 + 0.532549i −0.0152219 + 0.0263651i
\(409\) 4.01325 + 6.95115i 0.198442 + 0.343712i 0.948024 0.318200i \(-0.103078\pi\)
−0.749581 + 0.661912i \(0.769745\pi\)
\(410\) −2.07751 3.59835i −0.102601 0.177710i
\(411\) 40.4477 1.99514
\(412\) −3.89633 + 6.74864i −0.191958 + 0.332482i
\(413\) 2.80891 4.86517i 0.138217 0.239399i
\(414\) −0.332271 + 0.575511i −0.0163302 + 0.0282848i
\(415\) −18.7980 32.5591i −0.922758 1.59826i
\(416\) 18.1956 31.5157i 0.892112 1.54518i
\(417\) −0.128915 0.223287i −0.00631300 0.0109344i
\(418\) 0.488628 0.0238996
\(419\) 1.45890 0.0712718 0.0356359 0.999365i \(-0.488654\pi\)
0.0356359 + 0.999365i \(0.488654\pi\)
\(420\) 14.2685 + 24.7137i 0.696230 + 1.20591i
\(421\) −6.36822 + 11.0301i −0.310368 + 0.537574i −0.978442 0.206521i \(-0.933786\pi\)
0.668074 + 0.744095i \(0.267119\pi\)
\(422\) −15.0345 26.0406i −0.731869 1.26763i
\(423\) −0.791680 + 1.37123i −0.0384928 + 0.0666715i
\(424\) −2.10576 + 3.64729i −0.102265 + 0.177128i
\(425\) −0.244568 + 0.423604i −0.0118633 + 0.0205478i
\(426\) 31.8410 1.54270
\(427\) 26.2701 + 45.5012i 1.27130 + 2.20196i
\(428\) 12.0058 + 20.7947i 0.580322 + 1.00515i
\(429\) 0.215671 0.373553i 0.0104127 0.0180353i
\(430\) −14.0818 −0.679086
\(431\) 17.5775 + 30.4452i 0.846679 + 1.46649i 0.884155 + 0.467194i \(0.154735\pi\)
−0.0374755 + 0.999298i \(0.511932\pi\)
\(432\) 21.8931 1.05333
\(433\) −29.5616 −1.42064 −0.710319 0.703880i \(-0.751449\pi\)
−0.710319 + 0.703880i \(0.751449\pi\)
\(434\) 0 0
\(435\) −26.6450 −1.27753
\(436\) −20.2206 −0.968392
\(437\) −2.01061 3.48248i −0.0961807 0.166590i
\(438\) −7.86967 −0.376027
\(439\) −9.28133 + 16.0757i −0.442974 + 0.767253i −0.997909 0.0646407i \(-0.979410\pi\)
0.554935 + 0.831894i \(0.312743\pi\)
\(440\) −0.0462258 0.0800655i −0.00220373 0.00381697i
\(441\) −2.03429 3.52350i −0.0968710 0.167786i
\(442\) 3.86472 0.183826
\(443\) −12.4128 + 21.4997i −0.589752 + 1.02148i 0.404513 + 0.914532i \(0.367441\pi\)
−0.994265 + 0.106948i \(0.965892\pi\)
\(444\) 8.65954 14.9988i 0.410964 0.711810i
\(445\) −9.85488 + 17.0692i −0.467166 + 0.809155i
\(446\) −15.5851 26.9942i −0.737977 1.27821i
\(447\) −14.0384 + 24.3152i −0.663993 + 1.15007i
\(448\) −8.33604 14.4384i −0.393841 0.682152i
\(449\) 12.6167 0.595417 0.297708 0.954657i \(-0.403778\pi\)
0.297708 + 0.954657i \(0.403778\pi\)
\(450\) −1.12859 −0.0532024
\(451\) 0.0201722 + 0.0349393i 0.000949872 + 0.00164523i
\(452\) 1.27221 2.20353i 0.0598396 0.103645i
\(453\) 2.45035 + 4.24413i 0.115127 + 0.199407i
\(454\) −0.376793 + 0.652625i −0.0176838 + 0.0306292i
\(455\) −24.5337 + 42.4937i −1.15016 + 1.99213i
\(456\) 4.29281 7.43537i 0.201029 0.348193i
\(457\) 19.4392 0.909330 0.454665 0.890663i \(-0.349759\pi\)
0.454665 + 0.890663i \(0.349759\pi\)
\(458\) 24.3315 + 42.1434i 1.13694 + 1.96923i
\(459\) 0.948833 + 1.64343i 0.0442877 + 0.0767086i
\(460\) 1.39049 2.40840i 0.0648320 0.112292i
\(461\) −34.6818 −1.61529 −0.807645 0.589669i \(-0.799258\pi\)
−0.807645 + 0.589669i \(0.799258\pi\)
\(462\) −0.314992 0.545583i −0.0146548 0.0253828i
\(463\) 12.2908 0.571200 0.285600 0.958349i \(-0.407807\pi\)
0.285600 + 0.958349i \(0.407807\pi\)
\(464\) 26.7431 1.24152
\(465\) 0 0
\(466\) 20.0671 0.929588
\(467\) −37.7834 −1.74841 −0.874204 0.485558i \(-0.838616\pi\)
−0.874204 + 0.485558i \(0.838616\pi\)
\(468\) 1.96103 + 3.39660i 0.0906487 + 0.157008i
\(469\) 8.59840 0.397037
\(470\) 7.53246 13.0466i 0.347447 0.601795i
\(471\) −17.5519 30.4009i −0.808751 1.40080i
\(472\) −0.584443 1.01228i −0.0269012 0.0465942i
\(473\) 0.136732 0.00628695
\(474\) −5.53440 + 9.58586i −0.254203 + 0.440293i
\(475\) 3.41462 5.91430i 0.156674 0.271367i
\(476\) 1.24132 2.15004i 0.0568960 0.0985468i
\(477\) −1.28343 2.22296i −0.0587641 0.101782i
\(478\) −10.6049 + 18.3682i −0.485055 + 0.840141i
\(479\) −3.20009 5.54272i −0.146216 0.253253i 0.783610 0.621253i \(-0.213376\pi\)
−0.929826 + 0.368000i \(0.880043\pi\)
\(480\) 33.5780 1.53262
\(481\) 29.7791 1.35781
\(482\) 12.8602 + 22.2744i 0.585764 + 1.01457i
\(483\) −2.59227 + 4.48994i −0.117952 + 0.204300i
\(484\) 8.63538 + 14.9569i 0.392517 + 0.679860i
\(485\) −3.09516 + 5.36098i −0.140544 + 0.243430i
\(486\) −4.81090 + 8.33273i −0.218227 + 0.377980i
\(487\) 0.0226533 0.0392367i 0.00102652 0.00177798i −0.865512 0.500889i \(-0.833007\pi\)
0.866538 + 0.499111i \(0.166340\pi\)
\(488\) 10.9319 0.494865
\(489\) −4.20763 7.28784i −0.190276 0.329567i
\(490\) 19.3553 + 33.5244i 0.874385 + 1.51448i
\(491\) 13.0362 22.5793i 0.588314 1.01899i −0.406140 0.913811i \(-0.633125\pi\)
0.994453 0.105178i \(-0.0335413\pi\)
\(492\) −2.59108 −0.116815
\(493\) 1.15903 + 2.00750i 0.0522000 + 0.0904131i
\(494\) −53.9587 −2.42772
\(495\) 0.0563477 0.00253264
\(496\) 0 0
\(497\) 35.1698 1.57758
\(498\) −53.3042 −2.38862
\(499\) 7.89826 + 13.6802i 0.353575 + 0.612409i 0.986873 0.161498i \(-0.0516327\pi\)
−0.633298 + 0.773908i \(0.718299\pi\)
\(500\) −14.8393 −0.663632
\(501\) 16.4198 28.4400i 0.733584 1.27060i
\(502\) 13.4840 + 23.3549i 0.601820 + 1.04238i
\(503\) −10.7592 18.6355i −0.479731 0.830918i 0.519999 0.854167i \(-0.325932\pi\)
−0.999730 + 0.0232491i \(0.992599\pi\)
\(504\) −1.56718 −0.0698078
\(505\) 17.0295 29.4960i 0.757804 1.31256i
\(506\) −0.0306967 + 0.0531682i −0.00136463 + 0.00236361i
\(507\) −11.6650 + 20.2044i −0.518062 + 0.897310i
\(508\) 14.4195 + 24.9753i 0.639762 + 1.10810i
\(509\) 8.24837 14.2866i 0.365602 0.633242i −0.623270 0.782007i \(-0.714196\pi\)
0.988873 + 0.148765i \(0.0475297\pi\)
\(510\) 1.78298 + 3.08822i 0.0789519 + 0.136749i
\(511\) −8.69239 −0.384529
\(512\) −26.1117 −1.15398
\(513\) −13.2475 22.9453i −0.584890 1.01306i
\(514\) 6.50588 11.2685i 0.286962 0.497033i
\(515\) −6.18160 10.7068i −0.272394 0.471800i
\(516\) −4.39074 + 7.60498i −0.193291 + 0.334791i
\(517\) −0.0731388 + 0.126680i −0.00321664 + 0.00557139i
\(518\) 21.7465 37.6661i 0.955487 1.65495i
\(519\) 21.3023 0.935069
\(520\) 5.10467 + 8.84156i 0.223855 + 0.387728i
\(521\) 0.0891774 + 0.154460i 0.00390693 + 0.00676701i 0.867972 0.496613i \(-0.165423\pi\)
−0.864065 + 0.503380i \(0.832090\pi\)
\(522\) −2.67425 + 4.63193i −0.117049 + 0.202734i
\(523\) −1.27670 −0.0558263 −0.0279132 0.999610i \(-0.508886\pi\)
−0.0279132 + 0.999610i \(0.508886\pi\)
\(524\) 11.4727 + 19.8713i 0.501186 + 0.868080i
\(525\) −8.80491 −0.384278
\(526\) −36.8543 −1.60692
\(527\) 0 0
\(528\) −0.399463 −0.0173844
\(529\) −22.4948 −0.978033
\(530\) 12.2112 + 21.1504i 0.530421 + 0.918716i
\(531\) 0.712416 0.0309162
\(532\) −17.3312 + 30.0185i −0.751402 + 1.30147i
\(533\) −2.22760 3.85832i −0.0964880 0.167122i
\(534\) 13.9724 + 24.2009i 0.604645 + 1.04728i
\(535\) −38.0949 −1.64698
\(536\) 0.894524 1.54936i 0.0386376 0.0669222i
\(537\) 4.67306 8.09399i 0.201658 0.349281i
\(538\) −4.93750 + 8.55200i −0.212871 + 0.368703i
\(539\) −0.187937 0.325516i −0.00809501 0.0140210i
\(540\) 9.16164 15.8684i 0.394254 0.682868i
\(541\) −9.35228 16.1986i −0.402086 0.696433i 0.591891 0.806018i \(-0.298381\pi\)
−0.993978 + 0.109584i \(0.965048\pi\)
\(542\) 39.8908 1.71345
\(543\) 8.85162 0.379859
\(544\) −1.46061 2.52984i −0.0626229 0.108466i
\(545\) 16.0402 27.7824i 0.687086 1.19007i
\(546\) 34.7843 + 60.2482i 1.48863 + 2.57839i
\(547\) 11.5687 20.0376i 0.494641 0.856744i −0.505339 0.862921i \(-0.668633\pi\)
0.999981 + 0.00617649i \(0.00196605\pi\)
\(548\) −16.9885 + 29.4249i −0.725712 + 1.25697i
\(549\) −3.33141 + 5.77017i −0.142181 + 0.246265i
\(550\) −0.104264 −0.00444584
\(551\) −16.1822 28.0284i −0.689385 1.19405i
\(552\) 0.539368 + 0.934212i 0.0229570 + 0.0397627i
\(553\) −6.11298 + 10.5880i −0.259950 + 0.450247i
\(554\) 56.0521 2.38143
\(555\) 13.7385 + 23.7958i 0.583168 + 1.01008i
\(556\) 0.216583 0.00918517
\(557\) −26.2162 −1.11082 −0.555408 0.831578i \(-0.687438\pi\)
−0.555408 + 0.831578i \(0.687438\pi\)
\(558\) 0 0
\(559\) −15.0992 −0.638628
\(560\) 45.4410 1.92023
\(561\) −0.0173125 0.0299861i −0.000730933 0.00126601i
\(562\) −46.1451 −1.94651
\(563\) 13.5215 23.4199i 0.569862 0.987031i −0.426717 0.904385i \(-0.640330\pi\)
0.996579 0.0826452i \(-0.0263368\pi\)
\(564\) −4.69727 8.13591i −0.197791 0.342583i
\(565\) 2.01838 + 3.49594i 0.0849139 + 0.147075i
\(566\) −33.6585 −1.41477
\(567\) −19.9756 + 34.5988i −0.838896 + 1.45301i
\(568\) 3.65885 6.33731i 0.153522 0.265908i
\(569\) −6.27456 + 10.8679i −0.263043 + 0.455604i −0.967049 0.254590i \(-0.918060\pi\)
0.704006 + 0.710194i \(0.251393\pi\)
\(570\) −24.8938 43.1173i −1.04269 1.80598i
\(571\) 12.9699 22.4645i 0.542773 0.940111i −0.455970 0.889995i \(-0.650708\pi\)
0.998743 0.0501157i \(-0.0159590\pi\)
\(572\) 0.181169 + 0.313793i 0.00757504 + 0.0131204i
\(573\) −27.3355 −1.14196
\(574\) −6.50692 −0.271594
\(575\) 0.429028 + 0.743099i 0.0178917 + 0.0309894i
\(576\) 1.05712 1.83099i 0.0440468 0.0762913i
\(577\) −13.3108 23.0550i −0.554135 0.959791i −0.997970 0.0636821i \(-0.979716\pi\)
0.443835 0.896109i \(-0.353618\pi\)
\(578\) −15.9060 + 27.5500i −0.661602 + 1.14593i
\(579\) 6.76419 11.7159i 0.281110 0.486897i
\(580\) 11.1912 19.3838i 0.464690 0.804867i
\(581\) −58.8769 −2.44262
\(582\) 4.38838 + 7.60089i 0.181904 + 0.315067i
\(583\) −0.118569 0.205367i −0.00491061 0.00850543i
\(584\) −0.904303 + 1.56630i −0.0374203 + 0.0648139i
\(585\) −6.22242 −0.257266
\(586\) −19.6405 34.0183i −0.811341 1.40528i
\(587\) 23.0836 0.952762 0.476381 0.879239i \(-0.341948\pi\)
0.476381 + 0.879239i \(0.341948\pi\)
\(588\) 24.1401 0.995521
\(589\) 0 0
\(590\) −6.77830 −0.279058
\(591\) 15.5687 0.640412
\(592\) −13.7891 23.8834i −0.566728 0.981602i
\(593\) 21.7001 0.891117 0.445559 0.895253i \(-0.353005\pi\)
0.445559 + 0.895253i \(0.353005\pi\)
\(594\) −0.202253 + 0.350313i −0.00829856 + 0.0143735i
\(595\) 1.96938 + 3.41107i 0.0807369 + 0.139840i
\(596\) −11.7926 20.4253i −0.483042 0.836653i
\(597\) 15.0247 0.614918
\(598\) 3.38980 5.87131i 0.138619 0.240096i
\(599\) 12.1868 21.1082i 0.497941 0.862459i −0.502057 0.864835i \(-0.667423\pi\)
0.999997 + 0.00237627i \(0.000756392\pi\)
\(600\) −0.916008 + 1.58657i −0.0373959 + 0.0647715i
\(601\) −4.23648 7.33780i −0.172810 0.299315i 0.766591 0.642135i \(-0.221951\pi\)
−0.939401 + 0.342820i \(0.888618\pi\)
\(602\) −11.0264 + 19.0982i −0.449401 + 0.778385i
\(603\) 0.545197 + 0.944309i 0.0222021 + 0.0384552i
\(604\) −4.11670 −0.167506
\(605\) −27.4004 −1.11398
\(606\) −24.1448 41.8200i −0.980814 1.69882i
\(607\) −20.8076 + 36.0398i −0.844553 + 1.46281i 0.0414558 + 0.999140i \(0.486800\pi\)
−0.886009 + 0.463668i \(0.846533\pi\)
\(608\) 20.3928 + 35.3213i 0.827036 + 1.43247i
\(609\) −20.8636 + 36.1368i −0.845436 + 1.46434i
\(610\) 31.6968 54.9005i 1.28337 2.22286i
\(611\) 8.07665 13.9892i 0.326746 0.565941i
\(612\) 0.314834 0.0127264
\(613\) −19.9582 34.5687i −0.806106 1.39622i −0.915542 0.402223i \(-0.868238\pi\)
0.109436 0.993994i \(-0.465096\pi\)
\(614\) −11.3634 19.6819i −0.458588 0.794297i
\(615\) 2.05540 3.56006i 0.0828817 0.143555i
\(616\) −0.144783 −0.00583347
\(617\) 4.55839 + 7.89537i 0.183514 + 0.317855i 0.943075 0.332581i \(-0.107919\pi\)
−0.759561 + 0.650436i \(0.774586\pi\)
\(618\) −17.5288 −0.705110
\(619\) 13.4807 0.541834 0.270917 0.962603i \(-0.412673\pi\)
0.270917 + 0.962603i \(0.412673\pi\)
\(620\) 0 0
\(621\) 3.32894 0.133586
\(622\) 9.15439 0.367058
\(623\) 15.4331 + 26.7310i 0.618316 + 1.07095i
\(624\) 44.1123 1.76591
\(625\) 14.7893 25.6158i 0.591571 1.02463i
\(626\) 25.6966 + 44.5079i 1.02704 + 1.77889i
\(627\) 0.241714 + 0.418661i 0.00965313 + 0.0167197i
\(628\) 29.4881 1.17670
\(629\) 1.19522 2.07018i 0.0476566 0.0825436i
\(630\) −4.54400 + 7.87043i −0.181037 + 0.313565i
\(631\) 12.9397 22.4123i 0.515123 0.892219i −0.484723 0.874668i \(-0.661080\pi\)
0.999846 0.0175512i \(-0.00558701\pi\)
\(632\) 1.27191 + 2.20302i 0.0505940 + 0.0876314i
\(633\) 14.8745 25.7634i 0.591210 1.02401i
\(634\) 20.4477 + 35.4164i 0.812081 + 1.40657i
\(635\) −45.7536 −1.81568
\(636\) 15.2299 0.603905
\(637\) 20.7537 + 35.9464i 0.822291 + 1.42425i
\(638\) −0.247059 + 0.427918i −0.00978115 + 0.0169414i
\(639\) 2.23001 + 3.86248i 0.0882177 + 0.152797i
\(640\) 7.90356 13.6894i 0.312415 0.541120i
\(641\) 18.2353 31.5845i 0.720251 1.24751i −0.240648 0.970612i \(-0.577360\pi\)
0.960899 0.276899i \(-0.0893067\pi\)
\(642\) −27.0058 + 46.7754i −1.06583 + 1.84608i
\(643\) 36.1150 1.42424 0.712119 0.702059i \(-0.247736\pi\)
0.712119 + 0.702059i \(0.247736\pi\)
\(644\) −2.17757 3.77165i −0.0858081 0.148624i
\(645\) −6.96599 12.0654i −0.274286 0.475077i
\(646\) −2.16570 + 3.75111i −0.0852084 + 0.147585i
\(647\) 3.62208 0.142399 0.0711993 0.997462i \(-0.477317\pi\)
0.0711993 + 0.997462i \(0.477317\pi\)
\(648\) 4.15628 + 7.19888i 0.163274 + 0.282799i
\(649\) 0.0658161 0.00258351
\(650\) 11.5138 0.451609
\(651\) 0 0
\(652\) 7.06902 0.276844
\(653\) 26.4657 1.03568 0.517842 0.855476i \(-0.326735\pi\)
0.517842 + 0.855476i \(0.326735\pi\)
\(654\) −22.7421 39.3904i −0.889285 1.54029i
\(655\) −36.4032 −1.42239
\(656\) −2.06296 + 3.57316i −0.0805452 + 0.139508i
\(657\) −0.551157 0.954632i −0.0215027 0.0372438i
\(658\) −11.7961 20.4315i −0.459861 0.796503i
\(659\) 23.6447 0.921067 0.460534 0.887642i \(-0.347658\pi\)
0.460534 + 0.887642i \(0.347658\pi\)
\(660\) −0.167164 + 0.289536i −0.00650684 + 0.0112702i
\(661\) 5.59538 9.69149i 0.217635 0.376955i −0.736449 0.676493i \(-0.763499\pi\)
0.954085 + 0.299537i \(0.0968324\pi\)
\(662\) −3.47692 + 6.02221i −0.135134 + 0.234060i
\(663\) 1.91180 + 3.31133i 0.0742481 + 0.128602i
\(664\) −6.12518 + 10.6091i −0.237703 + 0.411714i
\(665\) −27.4963 47.6249i −1.06626 1.84682i
\(666\) 5.51551 0.213722
\(667\) 4.06640 0.157452
\(668\) 13.7930 + 23.8902i 0.533668 + 0.924341i
\(669\) 15.4193 26.7070i 0.596144 1.03255i
\(670\) −5.18730 8.98466i −0.200403 0.347108i
\(671\) −0.307770 + 0.533074i −0.0118813 + 0.0205791i
\(672\) 26.2923 45.5395i 1.01425 1.75673i
\(673\) −25.7442 + 44.5903i −0.992367 + 1.71883i −0.389389 + 0.921074i \(0.627314\pi\)
−0.602979 + 0.797757i \(0.706020\pi\)
\(674\) −22.0294 −0.848542
\(675\) 2.82677 + 4.89611i 0.108802 + 0.188451i
\(676\) −9.79889 16.9722i −0.376881 0.652776i
\(677\) −14.8627 + 25.7430i −0.571221 + 0.989383i 0.425220 + 0.905090i \(0.360197\pi\)
−0.996441 + 0.0842935i \(0.973137\pi\)
\(678\) 5.72339 0.219805
\(679\) 4.84715 + 8.39551i 0.186017 + 0.322190i
\(680\) 0.819530 0.0314276
\(681\) −0.745567 −0.0285702
\(682\) 0 0
\(683\) 23.6925 0.906569 0.453285 0.891366i \(-0.350252\pi\)
0.453285 + 0.891366i \(0.350252\pi\)
\(684\) −4.39566 −0.168072
\(685\) −26.9526 46.6832i −1.02980 1.78367i
\(686\) 9.01602 0.344233
\(687\) −24.0726 + 41.6949i −0.918426 + 1.59076i
\(688\) 6.99163 + 12.1099i 0.266553 + 0.461684i
\(689\) 13.0934 + 22.6785i 0.498820 + 0.863981i
\(690\) 6.25553 0.238144
\(691\) 8.44075 14.6198i 0.321101 0.556164i −0.659614 0.751604i \(-0.729280\pi\)
0.980716 + 0.195440i \(0.0626136\pi\)
\(692\) −8.94722 + 15.4970i −0.340122 + 0.589109i
\(693\) 0.0441214 0.0764205i 0.00167603 0.00290297i
\(694\) 31.5861 + 54.7086i 1.19899 + 2.07671i
\(695\) −0.171807 + 0.297578i −0.00651700 + 0.0112878i
\(696\) 4.34104 + 7.51890i 0.164547 + 0.285003i
\(697\) −0.357630 −0.0135462
\(698\) 14.1917 0.537163
\(699\) 9.92676 + 17.1936i 0.375464 + 0.650323i
\(700\) 3.69816 6.40540i 0.139777 0.242101i
\(701\) 10.9688 + 18.9985i 0.414286 + 0.717564i 0.995353 0.0962912i \(-0.0306980\pi\)
−0.581067 + 0.813856i \(0.697365\pi\)
\(702\) 22.3347 38.6848i 0.842967 1.46006i
\(703\) −16.6875 + 28.9036i −0.629381 + 1.09012i
\(704\) 0.0976617 0.169155i 0.00368076 0.00637527i
\(705\) 14.9046 0.561340
\(706\) −15.2009 26.3288i −0.572095 0.990897i
\(707\) −26.6689 46.1920i −1.00299 1.73723i
\(708\) −2.11349 + 3.66066i −0.0794297 + 0.137576i
\(709\) −21.7591 −0.817181 −0.408591 0.912718i \(-0.633980\pi\)
−0.408591 + 0.912718i \(0.633980\pi\)
\(710\) −21.2175 36.7497i −0.796277 1.37919i
\(711\) −1.55042 −0.0581453
\(712\) 6.42227 0.240685
\(713\) 0 0
\(714\) 5.58445 0.208993
\(715\) −0.574855 −0.0214983
\(716\) 3.92548 + 6.79913i 0.146702 + 0.254095i
\(717\) −20.9840 −0.783663
\(718\) −12.6920 + 21.9832i −0.473661 + 0.820406i
\(719\) 16.1068 + 27.8977i 0.600681 + 1.04041i 0.992718 + 0.120461i \(0.0384372\pi\)
−0.392037 + 0.919949i \(0.628230\pi\)
\(720\) 2.88127 + 4.99051i 0.107379 + 0.185985i
\(721\) −19.3613 −0.721052
\(722\) 12.2866 21.2810i 0.457260 0.791997i
\(723\) −12.7233 + 22.0374i −0.473185 + 0.819580i
\(724\) −3.71778 + 6.43938i −0.138170 + 0.239318i
\(725\) 3.45299 + 5.98075i 0.128241 + 0.222119i
\(726\) −19.4244 + 33.6440i −0.720906 + 1.24865i
\(727\) 0.842615 + 1.45945i 0.0312508 + 0.0541281i 0.881228 0.472692i \(-0.156718\pi\)
−0.849977 + 0.526820i \(0.823384\pi\)
\(728\) 15.9883 0.592564
\(729\) 21.1992 0.785156
\(730\) 5.24400 + 9.08288i 0.194089 + 0.336172i
\(731\) −0.606025 + 1.04967i −0.0224147 + 0.0388233i
\(732\) −19.7662 34.2361i −0.730581 1.26540i
\(733\) 5.94658 10.2998i 0.219642 0.380431i −0.735056 0.678006i \(-0.762844\pi\)
0.954699 + 0.297575i \(0.0961777\pi\)
\(734\) −8.07223 + 13.9815i −0.297951 + 0.516067i
\(735\) −19.1494 + 33.1677i −0.706335 + 1.22341i
\(736\) −5.12447 −0.188890
\(737\) 0.0503677 + 0.0872394i 0.00185532 + 0.00321351i
\(738\) −0.412583 0.714615i −0.0151874 0.0263053i
\(739\) −11.3806 + 19.7118i −0.418643 + 0.725112i −0.995803 0.0915195i \(-0.970828\pi\)
0.577160 + 0.816631i \(0.304161\pi\)
\(740\) −23.0814 −0.848488
\(741\) −26.6923 46.2324i −0.980565 1.69839i
\(742\) 38.2465 1.40407
\(743\) 30.8079 1.13023 0.565116 0.825011i \(-0.308831\pi\)
0.565116 + 0.825011i \(0.308831\pi\)
\(744\) 0 0
\(745\) 37.4182 1.37090
\(746\) 39.8222 1.45799
\(747\) −3.73320 6.46608i −0.136590 0.236582i
\(748\) 0.0290857 0.00106348
\(749\) −29.8290 + 51.6654i −1.08993 + 1.88781i
\(750\) −16.6897 28.9073i −0.609420 1.05555i
\(751\) 8.16603 + 14.1440i 0.297983 + 0.516121i 0.975674 0.219225i \(-0.0703530\pi\)
−0.677692 + 0.735346i \(0.737020\pi\)
\(752\) −14.9595 −0.545515
\(753\) −13.3405 + 23.1064i −0.486155 + 0.842044i
\(754\) 27.2825 47.2546i 0.993569 1.72091i
\(755\) 3.26561 5.65620i 0.118848 0.205850i
\(756\) −14.3475 24.8506i −0.521813 0.903807i
\(757\) 20.5817 35.6486i 0.748056 1.29567i −0.200698 0.979653i \(-0.564321\pi\)
0.948753 0.316017i \(-0.102346\pi\)
\(758\) 16.1510 + 27.9744i 0.586632 + 1.01608i
\(759\) −0.0607400 −0.00220472
\(760\) −11.4422 −0.415051
\(761\) −22.4539 38.8912i −0.813952 1.40981i −0.910078 0.414437i \(-0.863979\pi\)
0.0961262 0.995369i \(-0.469355\pi\)
\(762\) −32.4351 + 56.1793i −1.17500 + 2.03516i
\(763\) −25.1196 43.5084i −0.909390 1.57511i
\(764\) 11.4812 19.8860i 0.415376 0.719452i
\(765\) −0.249745 + 0.432571i −0.00902954 + 0.0156396i
\(766\) −1.31345 + 2.27496i −0.0474569 + 0.0821977i
\(767\) −7.26801 −0.262433
\(768\) −19.1940 33.2450i −0.692605 1.19963i
\(769\) −4.62630 8.01299i −0.166829 0.288956i 0.770474 0.637471i \(-0.220019\pi\)
−0.937303 + 0.348515i \(0.886686\pi\)
\(770\) −0.419794 + 0.727105i −0.0151283 + 0.0262030i
\(771\) 12.8733 0.463620
\(772\) 5.68207 + 9.84164i 0.204502 + 0.354208i
\(773\) −6.33144 −0.227726 −0.113863 0.993496i \(-0.536323\pi\)
−0.113863 + 0.993496i \(0.536323\pi\)
\(774\) −2.79659 −0.100521
\(775\) 0 0
\(776\) 2.01707 0.0724086
\(777\) 43.0302 1.54370
\(778\) −15.1534 26.2465i −0.543276 0.940982i
\(779\) 4.99318 0.178899
\(780\) 18.4597 31.9732i 0.660964 1.14482i
\(781\) 0.206018 + 0.356833i 0.00737189 + 0.0127685i
\(782\) −0.272108 0.471305i −0.00973057 0.0168538i
\(783\) 26.7926 0.957490
\(784\) 19.2198 33.2897i 0.686423 1.18892i
\(785\) −23.3917 + 40.5156i −0.834885 + 1.44606i
\(786\) −25.8066 + 44.6983i −0.920489 + 1.59433i
\(787\) 9.39873 + 16.2791i 0.335028 + 0.580286i 0.983490 0.180961i \(-0.0579207\pi\)
−0.648462 + 0.761247i \(0.724587\pi\)
\(788\) −6.53904 + 11.3260i −0.232944 + 0.403470i
\(789\) −18.2311 31.5771i −0.649043 1.12418i
\(790\) 14.7515 0.524835
\(791\) 6.32173 0.224775
\(792\) −0.00918023 0.0159006i −0.000326205 0.000565004i
\(793\) 33.9868 58.8669i 1.20691 2.09042i
\(794\) −17.4729 30.2639i −0.620090 1.07403i
\(795\) −12.0813 + 20.9254i −0.428478 + 0.742146i
\(796\) −6.31052 + 10.9301i −0.223671 + 0.387409i
\(797\) −8.60842 + 14.9102i −0.304926 + 0.528147i −0.977245 0.212115i \(-0.931965\pi\)
0.672319 + 0.740262i \(0.265298\pi\)
\(798\) −77.9693 −2.76008
\(799\) −0.648334 1.12295i −0.0229364 0.0397270i
\(800\) −4.35144 7.53692i −0.153847 0.266470i
\(801\) −1.95713 + 3.38985i −0.0691519 + 0.119775i
\(802\) −28.2994 −0.999287
\(803\) −0.0509183 0.0881931i −0.00179687 0.00311227i
\(804\) −6.46963 −0.228166
\(805\) 6.90950 0.243528
\(806\) 0 0
\(807\) −9.76991 −0.343917
\(808\) −11.0979 −0.390422
\(809\) 21.7255 + 37.6296i 0.763827 + 1.32299i 0.940864 + 0.338784i \(0.110015\pi\)
−0.177037 + 0.984204i \(0.556651\pi\)
\(810\) 48.2040 1.69372
\(811\) 16.0099 27.7299i 0.562182 0.973728i −0.435124 0.900371i \(-0.643295\pi\)
0.997306 0.0733571i \(-0.0233713\pi\)
\(812\) −17.5259 30.3557i −0.615038 1.06528i
\(813\) 19.7331 + 34.1788i 0.692071 + 1.19870i
\(814\) 0.509547 0.0178596
\(815\) −5.60756 + 9.71259i −0.196424 + 0.340217i
\(816\) 1.77050 3.06660i 0.0619800 0.107353i
\(817\) 8.46124 14.6553i 0.296021 0.512724i
\(818\) −7.58320 13.1345i −0.265140 0.459237i
\(819\) −4.87228 + 8.43904i −0.170251 + 0.294884i
\(820\) 1.72658 + 2.99053i 0.0602949 + 0.104434i
\(821\) 47.7531 1.66659 0.833297 0.552826i \(-0.186450\pi\)
0.833297 + 0.552826i \(0.186450\pi\)
\(822\) −76.4276 −2.66572
\(823\) 7.42985 + 12.8689i 0.258988 + 0.448581i 0.965971 0.258650i \(-0.0832776\pi\)
−0.706983 + 0.707231i \(0.749944\pi\)
\(824\) −2.01423 + 3.48874i −0.0701689 + 0.121536i
\(825\) −0.0515774 0.0893347i −0.00179569 0.00311023i
\(826\) −5.30755 + 9.19294i −0.184673 + 0.319863i
\(827\) 10.0139 17.3446i 0.348219 0.603132i −0.637715 0.770273i \(-0.720120\pi\)
0.985933 + 0.167141i \(0.0534534\pi\)
\(828\) 0.276145 0.478297i 0.00959671 0.0166220i
\(829\) −55.7361 −1.93580 −0.967898 0.251344i \(-0.919128\pi\)
−0.967898 + 0.251344i \(0.919128\pi\)
\(830\) 35.5196 + 61.5218i 1.23290 + 2.13545i
\(831\) 27.7278 + 48.0260i 0.961867 + 1.66600i
\(832\) −10.7847 + 18.6796i −0.373892 + 0.647600i
\(833\) 3.33190 0.115444
\(834\) 0.243590 + 0.421911i 0.00843484 + 0.0146096i
\(835\) −43.7658 −1.51458
\(836\) −0.406091 −0.0140449
\(837\) 0 0
\(838\) −2.75665 −0.0952268
\(839\) −12.6727 −0.437509 −0.218755 0.975780i \(-0.570199\pi\)
−0.218755 + 0.975780i \(0.570199\pi\)
\(840\) 7.37616 + 12.7759i 0.254502 + 0.440810i
\(841\) 3.72798 0.128551
\(842\) 12.0330 20.8418i 0.414685 0.718256i
\(843\) −22.8270 39.5376i −0.786205 1.36175i
\(844\) 12.4949 + 21.6419i 0.430094 + 0.744944i
\(845\) 31.0923 1.06961
\(846\) 1.49591 2.59099i 0.0514305 0.0890802i
\(847\) −21.4551 + 37.1612i −0.737204 + 1.27688i
\(848\) 12.1257 21.0024i 0.416399 0.721225i
\(849\) −16.6502 28.8389i −0.571432 0.989749i
\(850\) 0.462121 0.800418i 0.0158506 0.0274541i
\(851\) −2.09669 3.63157i −0.0718736 0.124489i
\(852\) −26.4626 −0.906592
\(853\) 5.65296 0.193554 0.0967768 0.995306i \(-0.469147\pi\)
0.0967768 + 0.995306i \(0.469147\pi\)
\(854\) −49.6385 85.9764i −1.69859 2.94205i
\(855\) 3.48690 6.03949i 0.119250 0.206546i
\(856\) 6.20646 + 10.7499i 0.212132 + 0.367424i
\(857\) 26.9489 46.6768i 0.920555 1.59445i 0.121998 0.992530i \(-0.461070\pi\)
0.798558 0.601918i \(-0.205597\pi\)
\(858\) −0.407519 + 0.705844i −0.0139125 + 0.0240971i
\(859\) 18.1130 31.3727i 0.618009 1.07042i −0.371840 0.928297i \(-0.621273\pi\)
0.989849 0.142126i \(-0.0453938\pi\)
\(860\) 11.7032 0.399075
\(861\) −3.21884 5.57519i −0.109698 0.190002i
\(862\) −33.2135 57.5274i −1.13125 1.95939i
\(863\) 21.2228 36.7590i 0.722432 1.25129i −0.237590 0.971366i \(-0.576357\pi\)
0.960022 0.279924i \(-0.0903092\pi\)
\(864\) −33.7640 −1.14867
\(865\) −14.1949 24.5864i −0.482642 0.835961i
\(866\) 55.8578 1.89813
\(867\) −31.4734 −1.06889
\(868\) 0 0
\(869\) −0.143235 −0.00485890
\(870\) 50.3469 1.70692
\(871\) −5.56206 9.63377i −0.188463 0.326428i
\(872\) −10.4531 −0.353988
\(873\) −0.614685 + 1.06467i −0.0208039 + 0.0360335i
\(874\) 3.79914 + 6.58030i 0.128508 + 0.222582i
\(875\) −18.4345 31.9294i −0.623198 1.07941i
\(876\) 6.54035 0.220978
\(877\) −6.95447 + 12.0455i −0.234836 + 0.406747i −0.959225 0.282644i \(-0.908789\pi\)
0.724389 + 0.689391i \(0.242122\pi\)
\(878\) 17.5375 30.3758i 0.591861 1.02513i
\(879\) 19.4315 33.6563i 0.655408 1.13520i
\(880\) 0.266184 + 0.461045i 0.00897307 + 0.0155418i
\(881\) −6.08660 + 10.5423i −0.205063 + 0.355179i −0.950153 0.311785i \(-0.899073\pi\)
0.745090 + 0.666964i \(0.232407\pi\)
\(882\) 3.84388 + 6.65779i 0.129430 + 0.224180i
\(883\) −37.7754 −1.27124 −0.635622 0.772000i \(-0.719256\pi\)
−0.635622 + 0.772000i \(0.719256\pi\)
\(884\) −3.21191 −0.108028
\(885\) −3.35309 5.80771i −0.112713 0.195224i
\(886\) 23.4546 40.6245i 0.787972 1.36481i
\(887\) 8.80309 + 15.2474i 0.295579 + 0.511958i 0.975119 0.221680i \(-0.0711541\pi\)
−0.679540 + 0.733638i \(0.737821\pi\)
\(888\) 4.47660 7.75369i 0.150225 0.260197i
\(889\) −35.8260 + 62.0525i −1.20157 + 2.08117i
\(890\) 18.6212 32.2529i 0.624184 1.08112i
\(891\) −0.468052 −0.0156803
\(892\) 12.9525 + 22.4345i 0.433683 + 0.751161i
\(893\) 9.05194 + 15.6784i 0.302912 + 0.524658i
\(894\) 26.5261 45.9446i 0.887166 1.53662i
\(895\) −12.4557 −0.416348
\(896\) −12.3773 21.4381i −0.413496 0.716196i
\(897\) 6.70747 0.223956
\(898\) −23.8397 −0.795541
\(899\) 0 0
\(900\) 0.937955 0.0312652
\(901\) 2.10209 0.0700306
\(902\) −0.0381162 0.0660193i −0.00126913 0.00219820i
\(903\) −21.8180 −0.726059
\(904\) 0.657674 1.13912i 0.0218739 0.0378867i
\(905\) −5.89833 10.2162i −0.196067 0.339598i
\(906\) −4.63003 8.01946i −0.153823 0.266429i
\(907\) −48.3230 −1.60454 −0.802269 0.596962i \(-0.796374\pi\)
−0.802269 + 0.596962i \(0.796374\pi\)
\(908\) 0.313147 0.542386i 0.0103921 0.0179997i
\(909\) 3.38199 5.85777i 0.112173 0.194290i
\(910\) 46.3575 80.2935i 1.53674 2.66170i
\(911\) 28.2126 + 48.8656i 0.934725 + 1.61899i 0.775124 + 0.631809i \(0.217687\pi\)
0.159601 + 0.987182i \(0.448979\pi\)
\(912\) −24.7195 + 42.8155i −0.818545 + 1.41776i
\(913\) −0.344889 0.597365i −0.0114142 0.0197699i
\(914\) −36.7313 −1.21496
\(915\) 62.7190 2.07343
\(916\) −20.2215 35.0247i −0.668137 1.15725i
\(917\) −28.5045 + 49.3712i −0.941300 + 1.63038i
\(918\) −1.79286 3.10532i −0.0591732 0.102491i
\(919\) −18.9698 + 32.8567i −0.625756 + 1.08384i 0.362638 + 0.931930i \(0.381876\pi\)
−0.988394 + 0.151911i \(0.951457\pi\)
\(920\) 0.718822 1.24504i 0.0236988 0.0410476i
\(921\) 11.2424 19.4725i 0.370451 0.641639i
\(922\) 65.5326 2.15820
\(923\) −22.7503 39.4048i −0.748837 1.29702i
\(924\) 0.261785 + 0.453425i 0.00861210 + 0.0149166i
\(925\) 3.56081 6.16750i 0.117079 0.202786i
\(926\) −23.2239 −0.763185
\(927\) −1.22764 2.12633i −0.0403209 0.0698378i
\(928\) −41.2437 −1.35389
\(929\) 18.3179 0.600990 0.300495 0.953783i \(-0.402848\pi\)
0.300495 + 0.953783i \(0.402848\pi\)
\(930\) 0 0
\(931\) −46.5196 −1.52462
\(932\) −16.6774 −0.546286
\(933\) 4.52849 + 7.84357i 0.148256 + 0.256787i
\(934\) 71.3934 2.33606
\(935\) −0.0230725 + 0.0399628i −0.000754552 + 0.00130692i
\(936\) 1.01376 + 1.75589i 0.0331359 + 0.0573931i
\(937\) −0.424607 0.735441i −0.0138713 0.0240258i 0.859006 0.511965i \(-0.171082\pi\)
−0.872878 + 0.487939i \(0.837749\pi\)
\(938\) −16.2470 −0.530484
\(939\) −25.4232 + 44.0342i −0.829654 + 1.43700i
\(940\) −6.26011 + 10.8428i −0.204182 + 0.353654i
\(941\) −2.18301 + 3.78108i −0.0711640 + 0.123260i −0.899412 0.437102i \(-0.856005\pi\)
0.828248 + 0.560362i \(0.189338\pi\)
\(942\) 33.1651 + 57.4437i 1.08058 + 1.87162i
\(943\) −0.313682 + 0.543314i −0.0102149 + 0.0176927i
\(944\) 3.36543 + 5.82909i 0.109535 + 0.189721i
\(945\) 45.5251 1.48093
\(946\) −0.258361 −0.00840004
\(947\) 13.1614 + 22.7962i 0.427688 + 0.740778i 0.996667 0.0815744i \(-0.0259948\pi\)
−0.568979 + 0.822352i \(0.692661\pi\)
\(948\) 4.59955 7.96665i 0.149386 0.258745i
\(949\) 5.62286 + 9.73909i 0.182526 + 0.316144i
\(950\) −6.45207 + 11.1753i −0.209333 + 0.362575i
\(951\) −20.2301 + 35.0395i −0.656005 + 1.13623i
\(952\) 0.641709 1.11147i 0.0207979 0.0360230i
\(953\) 24.0492 0.779031 0.389515 0.921020i \(-0.372642\pi\)
0.389515 + 0.921020i \(0.372642\pi\)
\(954\) 2.42509 + 4.20038i 0.0785152 + 0.135992i
\(955\) 18.2152 + 31.5496i 0.589429 + 1.02092i
\(956\) 8.81353 15.2655i 0.285050 0.493721i
\(957\) −0.488859 −0.0158026
\(958\) 6.04670 + 10.4732i 0.195360 + 0.338374i
\(959\) −84.4176 −2.72599
\(960\) −19.9020 −0.642334
\(961\) 0 0
\(962\) −56.2688 −1.81418
\(963\) −7.56546 −0.243794
\(964\) −10.6879 18.5119i −0.344233 0.596229i
\(965\) −18.0294 −0.580388
\(966\) 4.89820 8.48394i 0.157597 0.272966i
\(967\) −4.57150 7.91808i −0.147010 0.254628i 0.783111 0.621882i \(-0.213631\pi\)
−0.930121 + 0.367253i \(0.880298\pi\)
\(968\) 4.46410 + 7.73205i 0.143482 + 0.248518i
\(969\) −4.28531 −0.137664
\(970\) 5.84844 10.1298i 0.187782 0.325248i
\(971\) 8.59880 14.8936i 0.275949 0.477957i −0.694425 0.719565i \(-0.744341\pi\)
0.970374 + 0.241608i \(0.0776747\pi\)
\(972\) 3.99826 6.92519i 0.128244 0.222126i
\(973\) 0.269056 + 0.466019i 0.00862554 + 0.0149399i
\(974\) −0.0428044 + 0.0741393i −0.00137154 + 0.00237558i
\(975\) 5.69564 + 9.86515i 0.182407 + 0.315938i
\(976\) −62.9498 −2.01498
\(977\) −16.2134 −0.518712 −0.259356 0.965782i \(-0.583510\pi\)
−0.259356 + 0.965782i \(0.583510\pi\)
\(978\) 7.95050 + 13.7707i 0.254229 + 0.440337i
\(979\) −0.180809 + 0.313170i −0.00577867 + 0.0100089i
\(980\) −16.0859 27.8616i −0.513845 0.890006i
\(981\) 3.18551 5.51746i 0.101705 0.176159i
\(982\) −24.6324 + 42.6645i −0.786050 + 1.36148i
\(983\) −8.64267 + 14.9695i −0.275658 + 0.477454i −0.970301 0.241901i \(-0.922229\pi\)
0.694643 + 0.719355i \(0.255563\pi\)
\(984\) −1.33947 −0.0427008
\(985\) −10.3743 17.9688i −0.330553 0.572535i
\(986\) −2.19003 3.79325i −0.0697448 0.120802i
\(987\) 11.6706 20.2141i 0.371480 0.643422i
\(988\) 44.8442 1.42669
\(989\) 1.06311 + 1.84136i 0.0338048 + 0.0585517i
\(990\) −0.106471 −0.00338388
\(991\) −6.17867 −0.196272 −0.0981359 0.995173i \(-0.531288\pi\)
−0.0981359 + 0.995173i \(0.531288\pi\)
\(992\) 0 0
\(993\) −6.87985 −0.218325
\(994\) −66.4548 −2.10782
\(995\) −10.0118 17.3409i −0.317394 0.549743i
\(996\) 44.3003 1.40371
\(997\) 3.57139 6.18583i 0.113107 0.195907i −0.803914 0.594745i \(-0.797253\pi\)
0.917022 + 0.398838i \(0.130586\pi\)
\(998\) −14.9241 25.8493i −0.472414 0.818245i
\(999\) −13.8146 23.9276i −0.437075 0.757037i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.c.l.521.3 32
31.2 even 5 961.2.g.w.844.3 128
31.3 odd 30 961.2.d.s.628.3 64
31.4 even 5 961.2.g.w.338.13 128
31.5 even 3 inner 961.2.c.l.439.3 32
31.6 odd 6 961.2.a.l.1.3 16
31.7 even 15 961.2.d.s.388.13 64
31.8 even 5 961.2.g.w.732.14 128
31.9 even 15 961.2.g.w.816.13 128
31.10 even 15 961.2.g.w.547.4 128
31.11 odd 30 961.2.g.w.235.13 128
31.12 odd 30 961.2.d.s.531.3 64
31.13 odd 30 961.2.g.w.846.4 128
31.14 even 15 961.2.d.s.374.13 64
31.15 odd 10 961.2.g.w.448.3 128
31.16 even 5 961.2.g.w.448.4 128
31.17 odd 30 961.2.d.s.374.14 64
31.18 even 15 961.2.g.w.846.3 128
31.19 even 15 961.2.d.s.531.4 64
31.20 even 15 961.2.g.w.235.14 128
31.21 odd 30 961.2.g.w.547.3 128
31.22 odd 30 961.2.g.w.816.14 128
31.23 odd 10 961.2.g.w.732.13 128
31.24 odd 30 961.2.d.s.388.14 64
31.25 even 3 961.2.a.l.1.4 yes 16
31.26 odd 6 inner 961.2.c.l.439.4 32
31.27 odd 10 961.2.g.w.338.14 128
31.28 even 15 961.2.d.s.628.4 64
31.29 odd 10 961.2.g.w.844.4 128
31.30 odd 2 inner 961.2.c.l.521.4 32
93.56 odd 6 8649.2.a.bs.1.13 16
93.68 even 6 8649.2.a.bs.1.14 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.l.1.3 16 31.6 odd 6
961.2.a.l.1.4 yes 16 31.25 even 3
961.2.c.l.439.3 32 31.5 even 3 inner
961.2.c.l.439.4 32 31.26 odd 6 inner
961.2.c.l.521.3 32 1.1 even 1 trivial
961.2.c.l.521.4 32 31.30 odd 2 inner
961.2.d.s.374.13 64 31.14 even 15
961.2.d.s.374.14 64 31.17 odd 30
961.2.d.s.388.13 64 31.7 even 15
961.2.d.s.388.14 64 31.24 odd 30
961.2.d.s.531.3 64 31.12 odd 30
961.2.d.s.531.4 64 31.19 even 15
961.2.d.s.628.3 64 31.3 odd 30
961.2.d.s.628.4 64 31.28 even 15
961.2.g.w.235.13 128 31.11 odd 30
961.2.g.w.235.14 128 31.20 even 15
961.2.g.w.338.13 128 31.4 even 5
961.2.g.w.338.14 128 31.27 odd 10
961.2.g.w.448.3 128 31.15 odd 10
961.2.g.w.448.4 128 31.16 even 5
961.2.g.w.547.3 128 31.21 odd 30
961.2.g.w.547.4 128 31.10 even 15
961.2.g.w.732.13 128 31.23 odd 10
961.2.g.w.732.14 128 31.8 even 5
961.2.g.w.816.13 128 31.9 even 15
961.2.g.w.816.14 128 31.22 odd 30
961.2.g.w.844.3 128 31.2 even 5
961.2.g.w.844.4 128 31.29 odd 10
961.2.g.w.846.3 128 31.18 even 15
961.2.g.w.846.4 128 31.13 odd 30
8649.2.a.bs.1.13 16 93.56 odd 6
8649.2.a.bs.1.14 16 93.68 even 6