Properties

Label 952.2.cw.b.369.13
Level $952$
Weight $2$
Character 952.369
Analytic conductor $7.602$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [952,2,Mod(73,952)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("952.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(952, base_ring=CyclotomicField(48)) chi = DirichletCharacter(H, H._module([0, 0, 8, 15])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 952 = 2^{3} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 952.cw (of order \(48\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [288,0,0,0,0,0,0,0,0,0,0,0,0,0,32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.60175827243\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{48})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{48}]$

Embedding invariants

Embedding label 369.13
Character \(\chi\) \(=\) 952.369
Dual form 952.2.cw.b.129.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.487596 - 0.988748i) q^{3} +(-0.0798482 - 0.0700250i) q^{5} +(-2.19196 + 1.48165i) q^{7} +(1.08641 + 1.41584i) q^{9} +(-1.32947 - 0.0871378i) q^{11} +(4.43841 - 4.43841i) q^{13} +(-0.108171 + 0.0448058i) q^{15} +(1.86185 - 3.67879i) q^{17} +(-0.479438 + 3.64170i) q^{19} +(0.396185 + 2.88975i) q^{21} +(4.95786 - 2.44495i) q^{23} +(-0.651159 - 4.94604i) q^{25} +(5.17341 - 1.02905i) q^{27} +(-0.0401398 + 0.201796i) q^{29} +(8.79679 + 4.33810i) q^{31} +(-0.734400 + 1.27202i) q^{33} +(0.278777 + 0.0351851i) q^{35} +(-0.248002 - 3.78379i) q^{37} +(-2.22432 - 6.55263i) q^{39} +(1.35901 + 6.83218i) q^{41} +(2.37636 - 5.73704i) q^{43} +(0.0123961 - 0.189128i) q^{45} +(1.46587 + 5.47070i) q^{47} +(2.60942 - 6.49545i) q^{49} +(-2.72957 - 3.63466i) q^{51} +(4.61872 - 6.01924i) q^{53} +(0.100054 + 0.100054i) q^{55} +(3.36695 + 2.24972i) q^{57} +(-11.7775 + 1.55054i) q^{59} +(1.86127 - 5.48314i) q^{61} +(-4.47916 - 1.49379i) q^{63} +(-0.665199 + 0.0435995i) q^{65} +(-2.78463 + 1.60771i) q^{67} -6.09422i q^{69} +(-3.05696 + 2.04259i) q^{71} +(-10.8755 + 3.69175i) q^{73} +(-5.20789 - 1.76784i) q^{75} +(3.04325 - 1.77880i) q^{77} +(3.88723 + 7.88253i) q^{79} +(0.119373 - 0.445506i) q^{81} +(-6.53228 - 15.7703i) q^{83} +(-0.406272 + 0.163369i) q^{85} +(0.179954 + 0.138083i) q^{87} +(4.84791 - 1.29899i) q^{89} +(-3.15267 + 16.3050i) q^{91} +(8.57857 - 6.58257i) q^{93} +(0.293292 - 0.257210i) q^{95} +(7.45011 + 1.48192i) q^{97} +(-1.32097 - 1.97698i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q + 32 q^{15} + 48 q^{21} - 32 q^{29} - 72 q^{31} - 16 q^{37} - 32 q^{39} + 32 q^{43} + 24 q^{47} - 48 q^{49} - 16 q^{53} - 128 q^{57} - 72 q^{61} - 40 q^{63} + 32 q^{65} + 80 q^{71} + 96 q^{73} - 216 q^{75}+ \cdots + 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/952\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(409\) \(477\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{13}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.487596 0.988748i 0.281514 0.570854i −0.709485 0.704720i \(-0.751073\pi\)
0.990999 + 0.133866i \(0.0427393\pi\)
\(4\) 0 0
\(5\) −0.0798482 0.0700250i −0.0357092 0.0313161i 0.641305 0.767286i \(-0.278393\pi\)
−0.677014 + 0.735970i \(0.736727\pi\)
\(6\) 0 0
\(7\) −2.19196 + 1.48165i −0.828485 + 0.560011i
\(8\) 0 0
\(9\) 1.08641 + 1.41584i 0.362137 + 0.471947i
\(10\) 0 0
\(11\) −1.32947 0.0871378i −0.400849 0.0262730i −0.136354 0.990660i \(-0.543539\pi\)
−0.264495 + 0.964387i \(0.585205\pi\)
\(12\) 0 0
\(13\) 4.43841 4.43841i 1.23099 1.23099i 0.267413 0.963582i \(-0.413831\pi\)
0.963582 0.267413i \(-0.0861687\pi\)
\(14\) 0 0
\(15\) −0.108171 + 0.0448058i −0.0279296 + 0.0115688i
\(16\) 0 0
\(17\) 1.86185 3.67879i 0.451564 0.892239i
\(18\) 0 0
\(19\) −0.479438 + 3.64170i −0.109991 + 0.835462i 0.844151 + 0.536106i \(0.180105\pi\)
−0.954141 + 0.299356i \(0.903228\pi\)
\(20\) 0 0
\(21\) 0.396185 + 2.88975i 0.0864546 + 0.630595i
\(22\) 0 0
\(23\) 4.95786 2.44495i 1.03379 0.509807i 0.155446 0.987844i \(-0.450318\pi\)
0.878339 + 0.478038i \(0.158652\pi\)
\(24\) 0 0
\(25\) −0.651159 4.94604i −0.130232 0.989208i
\(26\) 0 0
\(27\) 5.17341 1.02905i 0.995623 0.198042i
\(28\) 0 0
\(29\) −0.0401398 + 0.201796i −0.00745378 + 0.0374727i −0.984333 0.176318i \(-0.943581\pi\)
0.976879 + 0.213791i \(0.0685812\pi\)
\(30\) 0 0
\(31\) 8.79679 + 4.33810i 1.57995 + 0.779145i 0.999385 0.0350686i \(-0.0111650\pi\)
0.580565 + 0.814214i \(0.302832\pi\)
\(32\) 0 0
\(33\) −0.734400 + 1.27202i −0.127843 + 0.221430i
\(34\) 0 0
\(35\) 0.278777 + 0.0351851i 0.0471219 + 0.00594738i
\(36\) 0 0
\(37\) −0.248002 3.78379i −0.0407713 0.622050i −0.968534 0.248880i \(-0.919937\pi\)
0.927763 0.373170i \(-0.121729\pi\)
\(38\) 0 0
\(39\) −2.22432 6.55263i −0.356176 1.04926i
\(40\) 0 0
\(41\) 1.35901 + 6.83218i 0.212241 + 1.06701i 0.929111 + 0.369801i \(0.120574\pi\)
−0.716870 + 0.697207i \(0.754426\pi\)
\(42\) 0 0
\(43\) 2.37636 5.73704i 0.362391 0.874890i −0.632558 0.774513i \(-0.717995\pi\)
0.994949 0.100377i \(-0.0320049\pi\)
\(44\) 0 0
\(45\) 0.0123961 0.189128i 0.00184790 0.0281936i
\(46\) 0 0
\(47\) 1.46587 + 5.47070i 0.213819 + 0.797983i 0.986579 + 0.163285i \(0.0522090\pi\)
−0.772760 + 0.634698i \(0.781124\pi\)
\(48\) 0 0
\(49\) 2.60942 6.49545i 0.372774 0.927922i
\(50\) 0 0
\(51\) −2.72957 3.63466i −0.382216 0.508955i
\(52\) 0 0
\(53\) 4.61872 6.01924i 0.634430 0.826806i −0.359917 0.932984i \(-0.617195\pi\)
0.994347 + 0.106179i \(0.0338616\pi\)
\(54\) 0 0
\(55\) 0.100054 + 0.100054i 0.0134912 + 0.0134912i
\(56\) 0 0
\(57\) 3.36695 + 2.24972i 0.445963 + 0.297983i
\(58\) 0 0
\(59\) −11.7775 + 1.55054i −1.53330 + 0.201863i −0.849414 0.527727i \(-0.823044\pi\)
−0.683885 + 0.729590i \(0.739711\pi\)
\(60\) 0 0
\(61\) 1.86127 5.48314i 0.238312 0.702044i −0.760310 0.649560i \(-0.774953\pi\)
0.998622 0.0524835i \(-0.0167137\pi\)
\(62\) 0 0
\(63\) −4.47916 1.49379i −0.564321 0.188200i
\(64\) 0 0
\(65\) −0.665199 + 0.0435995i −0.0825078 + 0.00540785i
\(66\) 0 0
\(67\) −2.78463 + 1.60771i −0.340196 + 0.196413i −0.660359 0.750950i \(-0.729596\pi\)
0.320162 + 0.947363i \(0.396263\pi\)
\(68\) 0 0
\(69\) 6.09422i 0.733658i
\(70\) 0 0
\(71\) −3.05696 + 2.04259i −0.362794 + 0.242411i −0.723585 0.690236i \(-0.757507\pi\)
0.360791 + 0.932647i \(0.382507\pi\)
\(72\) 0 0
\(73\) −10.8755 + 3.69175i −1.27289 + 0.432086i −0.874452 0.485111i \(-0.838779\pi\)
−0.398433 + 0.917198i \(0.630446\pi\)
\(74\) 0 0
\(75\) −5.20789 1.76784i −0.601355 0.204133i
\(76\) 0 0
\(77\) 3.04325 1.77880i 0.346810 0.202713i
\(78\) 0 0
\(79\) 3.88723 + 7.88253i 0.437348 + 0.886854i 0.998259 + 0.0589780i \(0.0187842\pi\)
−0.560911 + 0.827876i \(0.689549\pi\)
\(80\) 0 0
\(81\) 0.119373 0.445506i 0.0132637 0.0495007i
\(82\) 0 0
\(83\) −6.53228 15.7703i −0.717010 1.73102i −0.681691 0.731640i \(-0.738755\pi\)
−0.0353194 0.999376i \(-0.511245\pi\)
\(84\) 0 0
\(85\) −0.406272 + 0.163369i −0.0440664 + 0.0177199i
\(86\) 0 0
\(87\) 0.179954 + 0.138083i 0.0192931 + 0.0148041i
\(88\) 0 0
\(89\) 4.84791 1.29899i 0.513877 0.137693i 0.00744416 0.999972i \(-0.497630\pi\)
0.506433 + 0.862279i \(0.330964\pi\)
\(90\) 0 0
\(91\) −3.15267 + 16.3050i −0.330489 + 1.70923i
\(92\) 0 0
\(93\) 8.57857 6.58257i 0.889556 0.682580i
\(94\) 0 0
\(95\) 0.293292 0.257210i 0.0300911 0.0263892i
\(96\) 0 0
\(97\) 7.45011 + 1.48192i 0.756444 + 0.150466i 0.558223 0.829691i \(-0.311483\pi\)
0.198221 + 0.980157i \(0.436483\pi\)
\(98\) 0 0
\(99\) −1.32097 1.97698i −0.132763 0.198694i
\(100\) 0 0
\(101\) 0.587307 + 1.01725i 0.0584393 + 0.101220i 0.893765 0.448536i \(-0.148054\pi\)
−0.835326 + 0.549755i \(0.814721\pi\)
\(102\) 0 0
\(103\) 3.07882 + 1.77756i 0.303365 + 0.175148i 0.643954 0.765065i \(-0.277293\pi\)
−0.340589 + 0.940212i \(0.610626\pi\)
\(104\) 0 0
\(105\) 0.170720 0.258484i 0.0166606 0.0252255i
\(106\) 0 0
\(107\) 4.57877 5.22109i 0.442647 0.504742i −0.486894 0.873461i \(-0.661870\pi\)
0.929541 + 0.368719i \(0.120204\pi\)
\(108\) 0 0
\(109\) 10.1175 + 11.5368i 0.969084 + 1.10503i 0.994435 + 0.105349i \(0.0335961\pi\)
−0.0253517 + 0.999679i \(0.508071\pi\)
\(110\) 0 0
\(111\) −3.86213 1.59975i −0.366578 0.151841i
\(112\) 0 0
\(113\) −4.14307 + 6.20054i −0.389747 + 0.583298i −0.973515 0.228623i \(-0.926578\pi\)
0.583768 + 0.811921i \(0.301578\pi\)
\(114\) 0 0
\(115\) −0.567084 0.151950i −0.0528808 0.0141694i
\(116\) 0 0
\(117\) 11.1060 + 1.46214i 1.02675 + 0.135175i
\(118\) 0 0
\(119\) 1.36959 + 10.8224i 0.125550 + 0.992087i
\(120\) 0 0
\(121\) −9.14601 1.20409i −0.831455 0.109463i
\(122\) 0 0
\(123\) 7.41795 + 1.98763i 0.668854 + 0.179219i
\(124\) 0 0
\(125\) −0.589371 + 0.882056i −0.0527149 + 0.0788935i
\(126\) 0 0
\(127\) 12.1043 + 5.01376i 1.07408 + 0.444900i 0.848430 0.529308i \(-0.177548\pi\)
0.225653 + 0.974208i \(0.427548\pi\)
\(128\) 0 0
\(129\) −4.51378 5.14698i −0.397416 0.453166i
\(130\) 0 0
\(131\) −11.9871 + 13.6686i −1.04732 + 1.19423i −0.0668055 + 0.997766i \(0.521281\pi\)
−0.980510 + 0.196469i \(0.937053\pi\)
\(132\) 0 0
\(133\) −4.34481 8.69283i −0.376743 0.753764i
\(134\) 0 0
\(135\) −0.485147 0.280100i −0.0417548 0.0241071i
\(136\) 0 0
\(137\) −5.03020 8.71257i −0.429759 0.744365i 0.567092 0.823654i \(-0.308068\pi\)
−0.996852 + 0.0792892i \(0.974735\pi\)
\(138\) 0 0
\(139\) −2.78571 4.16911i −0.236281 0.353619i 0.694313 0.719674i \(-0.255709\pi\)
−0.930594 + 0.366054i \(0.880709\pi\)
\(140\) 0 0
\(141\) 6.12389 + 1.21812i 0.515725 + 0.102584i
\(142\) 0 0
\(143\) −6.28747 + 5.51397i −0.525785 + 0.461101i
\(144\) 0 0
\(145\) 0.0173359 0.0133023i 0.00143967 0.00110470i
\(146\) 0 0
\(147\) −5.15002 5.74722i −0.424767 0.474023i
\(148\) 0 0
\(149\) 8.90213 2.38532i 0.729291 0.195413i 0.124978 0.992160i \(-0.460114\pi\)
0.604314 + 0.796747i \(0.293447\pi\)
\(150\) 0 0
\(151\) −19.3290 14.8317i −1.57297 1.20699i −0.866406 0.499340i \(-0.833576\pi\)
−0.706568 0.707645i \(-0.749758\pi\)
\(152\) 0 0
\(153\) 7.23132 1.36061i 0.584617 0.109999i
\(154\) 0 0
\(155\) −0.398633 0.962384i −0.0320189 0.0773006i
\(156\) 0 0
\(157\) −4.57065 + 17.0579i −0.364777 + 1.36137i 0.502945 + 0.864318i \(0.332250\pi\)
−0.867723 + 0.497049i \(0.834417\pi\)
\(158\) 0 0
\(159\) −3.69943 7.50171i −0.293384 0.594924i
\(160\) 0 0
\(161\) −7.24490 + 12.7051i −0.570978 + 1.00130i
\(162\) 0 0
\(163\) 7.37101 + 2.50212i 0.577342 + 0.195981i 0.594810 0.803866i \(-0.297227\pi\)
−0.0174682 + 0.999847i \(0.505561\pi\)
\(164\) 0 0
\(165\) 0.147714 0.0501420i 0.0114995 0.00390355i
\(166\) 0 0
\(167\) −15.1382 + 10.1150i −1.17143 + 0.782726i −0.980042 0.198788i \(-0.936299\pi\)
−0.191390 + 0.981514i \(0.561299\pi\)
\(168\) 0 0
\(169\) 26.3990i 2.03070i
\(170\) 0 0
\(171\) −5.67693 + 3.27758i −0.434126 + 0.250643i
\(172\) 0 0
\(173\) 2.91856 0.191292i 0.221894 0.0145437i 0.0459494 0.998944i \(-0.485369\pi\)
0.175945 + 0.984400i \(0.443702\pi\)
\(174\) 0 0
\(175\) 8.75562 + 9.87676i 0.661863 + 0.746613i
\(176\) 0 0
\(177\) −4.20957 + 12.4010i −0.316411 + 0.932116i
\(178\) 0 0
\(179\) 4.28394 0.563991i 0.320197 0.0421547i 0.0312851 0.999511i \(-0.490040\pi\)
0.288911 + 0.957356i \(0.406707\pi\)
\(180\) 0 0
\(181\) 14.9715 + 10.0036i 1.11282 + 0.743562i 0.969250 0.246078i \(-0.0791419\pi\)
0.143570 + 0.989640i \(0.454142\pi\)
\(182\) 0 0
\(183\) −4.51389 4.51389i −0.333676 0.333676i
\(184\) 0 0
\(185\) −0.245157 + 0.319495i −0.0180243 + 0.0234897i
\(186\) 0 0
\(187\) −2.79582 + 4.72859i −0.204451 + 0.345789i
\(188\) 0 0
\(189\) −9.81523 + 9.92084i −0.713953 + 0.721635i
\(190\) 0 0
\(191\) 0.562910 + 2.10081i 0.0407307 + 0.152009i 0.983296 0.182012i \(-0.0582610\pi\)
−0.942566 + 0.334021i \(0.891594\pi\)
\(192\) 0 0
\(193\) −1.20917 + 18.4484i −0.0870383 + 1.32795i 0.701371 + 0.712796i \(0.252572\pi\)
−0.788409 + 0.615151i \(0.789095\pi\)
\(194\) 0 0
\(195\) −0.281240 + 0.678973i −0.0201400 + 0.0486223i
\(196\) 0 0
\(197\) 4.79192 + 24.0906i 0.341410 + 1.71638i 0.645518 + 0.763745i \(0.276642\pi\)
−0.304108 + 0.952638i \(0.598358\pi\)
\(198\) 0 0
\(199\) −7.88740 23.2355i −0.559123 1.64712i −0.746919 0.664915i \(-0.768468\pi\)
0.187796 0.982208i \(-0.439866\pi\)
\(200\) 0 0
\(201\) 0.231841 + 3.53721i 0.0163528 + 0.249495i
\(202\) 0 0
\(203\) −0.211007 0.501804i −0.0148098 0.0352197i
\(204\) 0 0
\(205\) 0.369909 0.640702i 0.0258356 0.0447485i
\(206\) 0 0
\(207\) 8.84794 + 4.36332i 0.614974 + 0.303272i
\(208\) 0 0
\(209\) 0.954726 4.79973i 0.0660398 0.332004i
\(210\) 0 0
\(211\) 16.1207 3.20661i 1.10979 0.220752i 0.394033 0.919096i \(-0.371080\pi\)
0.715762 + 0.698344i \(0.246080\pi\)
\(212\) 0 0
\(213\) 0.529048 + 4.01852i 0.0362498 + 0.275344i
\(214\) 0 0
\(215\) −0.591484 + 0.291688i −0.0403389 + 0.0198929i
\(216\) 0 0
\(217\) −25.7098 + 3.52482i −1.74529 + 0.239280i
\(218\) 0 0
\(219\) −1.65267 + 12.5532i −0.111677 + 0.848270i
\(220\) 0 0
\(221\) −8.06437 24.5917i −0.542468 1.65421i
\(222\) 0 0
\(223\) −12.0495 + 4.99105i −0.806892 + 0.334225i −0.747713 0.664022i \(-0.768848\pi\)
−0.0591785 + 0.998247i \(0.518848\pi\)
\(224\) 0 0
\(225\) 6.29538 6.29538i 0.419692 0.419692i
\(226\) 0 0
\(227\) −22.1555 1.45215i −1.47051 0.0963826i −0.691040 0.722817i \(-0.742847\pi\)
−0.779474 + 0.626434i \(0.784514\pi\)
\(228\) 0 0
\(229\) 0.177365 + 0.231146i 0.0117206 + 0.0152746i 0.799177 0.601096i \(-0.205269\pi\)
−0.787456 + 0.616371i \(0.788602\pi\)
\(230\) 0 0
\(231\) −0.274908 3.87634i −0.0180876 0.255045i
\(232\) 0 0
\(233\) −22.2968 19.5538i −1.46071 1.28101i −0.886850 0.462057i \(-0.847112\pi\)
−0.573861 0.818953i \(-0.694555\pi\)
\(234\) 0 0
\(235\) 0.266038 0.539473i 0.0173544 0.0351913i
\(236\) 0 0
\(237\) 9.68923 0.629383
\(238\) 0 0
\(239\) −3.43951 −0.222483 −0.111242 0.993793i \(-0.535483\pi\)
−0.111242 + 0.993793i \(0.535483\pi\)
\(240\) 0 0
\(241\) 1.44512 2.93041i 0.0930884 0.188765i −0.845349 0.534215i \(-0.820607\pi\)
0.938437 + 0.345451i \(0.112274\pi\)
\(242\) 0 0
\(243\) 11.5150 + 10.0984i 0.738690 + 0.647814i
\(244\) 0 0
\(245\) −0.663201 + 0.335926i −0.0423704 + 0.0214615i
\(246\) 0 0
\(247\) 14.0354 + 18.2913i 0.893052 + 1.16385i
\(248\) 0 0
\(249\) −18.7780 1.23077i −1.19001 0.0779971i
\(250\) 0 0
\(251\) −1.56568 + 1.56568i −0.0988249 + 0.0988249i −0.754791 0.655966i \(-0.772262\pi\)
0.655966 + 0.754791i \(0.272262\pi\)
\(252\) 0 0
\(253\) −6.80435 + 2.81846i −0.427786 + 0.177195i
\(254\) 0 0
\(255\) −0.0365659 + 0.481359i −0.00228985 + 0.0301439i
\(256\) 0 0
\(257\) −3.38603 + 25.7195i −0.211215 + 1.60434i 0.477049 + 0.878877i \(0.341707\pi\)
−0.688264 + 0.725461i \(0.741627\pi\)
\(258\) 0 0
\(259\) 6.14986 + 7.92647i 0.382134 + 0.492527i
\(260\) 0 0
\(261\) −0.329320 + 0.162403i −0.0203844 + 0.0100525i
\(262\) 0 0
\(263\) −1.22490 9.30402i −0.0755304 0.573710i −0.986805 0.161912i \(-0.948234\pi\)
0.911275 0.411799i \(-0.135099\pi\)
\(264\) 0 0
\(265\) −0.790294 + 0.157199i −0.0485473 + 0.00965667i
\(266\) 0 0
\(267\) 1.07945 5.42674i 0.0660610 0.332111i
\(268\) 0 0
\(269\) −8.11275 4.00077i −0.494643 0.243931i 0.177818 0.984063i \(-0.443096\pi\)
−0.672461 + 0.740132i \(0.734763\pi\)
\(270\) 0 0
\(271\) 2.02723 3.51127i 0.123146 0.213294i −0.797861 0.602842i \(-0.794035\pi\)
0.921007 + 0.389547i \(0.127368\pi\)
\(272\) 0 0
\(273\) 14.5843 + 11.0675i 0.882684 + 0.669834i
\(274\) 0 0
\(275\) 0.434706 + 6.63233i 0.0262138 + 0.399945i
\(276\) 0 0
\(277\) −5.80002 17.0863i −0.348489 1.02662i −0.969978 0.243193i \(-0.921805\pi\)
0.621488 0.783423i \(-0.286528\pi\)
\(278\) 0 0
\(279\) 3.41489 + 17.1678i 0.204444 + 1.02781i
\(280\) 0 0
\(281\) −11.7785 + 28.4358i −0.702647 + 1.69634i 0.0149557 + 0.999888i \(0.495239\pi\)
−0.717603 + 0.696452i \(0.754761\pi\)
\(282\) 0 0
\(283\) −0.222751 + 3.39853i −0.0132412 + 0.202021i 0.986113 + 0.166078i \(0.0531103\pi\)
−0.999354 + 0.0359436i \(0.988556\pi\)
\(284\) 0 0
\(285\) −0.111308 0.415407i −0.00659331 0.0246066i
\(286\) 0 0
\(287\) −13.1018 12.9623i −0.773375 0.765142i
\(288\) 0 0
\(289\) −10.0671 13.6987i −0.592180 0.805806i
\(290\) 0 0
\(291\) 5.09789 6.64370i 0.298844 0.389461i
\(292\) 0 0
\(293\) −5.30636 5.30636i −0.310001 0.310001i 0.534909 0.844910i \(-0.320346\pi\)
−0.844910 + 0.534909i \(0.820346\pi\)
\(294\) 0 0
\(295\) 1.04899 + 0.700911i 0.0610744 + 0.0408086i
\(296\) 0 0
\(297\) −6.96754 + 0.917294i −0.404298 + 0.0532268i
\(298\) 0 0
\(299\) 11.1534 32.8567i 0.645015 1.90015i
\(300\) 0 0
\(301\) 3.29139 + 16.0963i 0.189713 + 0.927776i
\(302\) 0 0
\(303\) 1.29217 0.0846932i 0.0742332 0.00486550i
\(304\) 0 0
\(305\) −0.532576 + 0.307483i −0.0304952 + 0.0176064i
\(306\) 0 0
\(307\) 8.00859i 0.457074i 0.973535 + 0.228537i \(0.0733942\pi\)
−0.973535 + 0.228537i \(0.926606\pi\)
\(308\) 0 0
\(309\) 3.25878 2.17744i 0.185385 0.123870i
\(310\) 0 0
\(311\) 8.62267 2.92700i 0.488947 0.165975i −0.0660689 0.997815i \(-0.521046\pi\)
0.555015 + 0.831840i \(0.312712\pi\)
\(312\) 0 0
\(313\) 20.8171 + 7.06647i 1.17665 + 0.399420i 0.840199 0.542279i \(-0.182438\pi\)
0.336456 + 0.941699i \(0.390772\pi\)
\(314\) 0 0
\(315\) 0.253050 + 0.432929i 0.0142578 + 0.0243928i
\(316\) 0 0
\(317\) −11.6551 23.6342i −0.654614 1.32743i −0.930520 0.366242i \(-0.880644\pi\)
0.275905 0.961185i \(-0.411022\pi\)
\(318\) 0 0
\(319\) 0.0709486 0.264784i 0.00397236 0.0148250i
\(320\) 0 0
\(321\) −2.92975 7.07303i −0.163523 0.394778i
\(322\) 0 0
\(323\) 12.5044 + 8.54403i 0.695764 + 0.475403i
\(324\) 0 0
\(325\) −24.8427 19.0625i −1.37802 1.05740i
\(326\) 0 0
\(327\) 16.3403 4.37837i 0.903620 0.242124i
\(328\) 0 0
\(329\) −11.3188 9.81967i −0.624026 0.541376i
\(330\) 0 0
\(331\) 12.1335 9.31034i 0.666916 0.511743i −0.218919 0.975743i \(-0.570253\pi\)
0.885835 + 0.464000i \(0.153586\pi\)
\(332\) 0 0
\(333\) 5.08780 4.46188i 0.278810 0.244510i
\(334\) 0 0
\(335\) 0.334927 + 0.0666211i 0.0182990 + 0.00363990i
\(336\) 0 0
\(337\) 13.0943 + 19.5970i 0.713290 + 1.06751i 0.994176 + 0.107773i \(0.0343719\pi\)
−0.280885 + 0.959741i \(0.590628\pi\)
\(338\) 0 0
\(339\) 4.11063 + 7.11982i 0.223259 + 0.386695i
\(340\) 0 0
\(341\) −11.3170 6.53388i −0.612851 0.353830i
\(342\) 0 0
\(343\) 3.90424 + 18.1041i 0.210809 + 0.977527i
\(344\) 0 0
\(345\) −0.426748 + 0.486612i −0.0229753 + 0.0261983i
\(346\) 0 0
\(347\) −17.2258 19.6423i −0.924732 1.05445i −0.998365 0.0571688i \(-0.981793\pi\)
0.0736330 0.997285i \(-0.476541\pi\)
\(348\) 0 0
\(349\) 1.56167 + 0.646865i 0.0835943 + 0.0346259i 0.424089 0.905621i \(-0.360594\pi\)
−0.340494 + 0.940247i \(0.610594\pi\)
\(350\) 0 0
\(351\) 18.3944 27.5291i 0.981818 1.46939i
\(352\) 0 0
\(353\) −19.5886 5.24875i −1.04260 0.279363i −0.303407 0.952861i \(-0.598124\pi\)
−0.739189 + 0.673498i \(0.764791\pi\)
\(354\) 0 0
\(355\) 0.387125 + 0.0509660i 0.0205465 + 0.00270499i
\(356\) 0 0
\(357\) 11.3684 + 3.92278i 0.601681 + 0.207616i
\(358\) 0 0
\(359\) −26.1478 3.44242i −1.38003 0.181684i −0.596286 0.802772i \(-0.703358\pi\)
−0.783741 + 0.621088i \(0.786691\pi\)
\(360\) 0 0
\(361\) 5.32050 + 1.42562i 0.280026 + 0.0750328i
\(362\) 0 0
\(363\) −5.65011 + 8.45598i −0.296554 + 0.443824i
\(364\) 0 0
\(365\) 1.12691 + 0.466780i 0.0589850 + 0.0244324i
\(366\) 0 0
\(367\) 7.25447 + 8.27214i 0.378680 + 0.431802i 0.909514 0.415674i \(-0.136454\pi\)
−0.530833 + 0.847476i \(0.678121\pi\)
\(368\) 0 0
\(369\) −8.19684 + 9.34670i −0.426710 + 0.486570i
\(370\) 0 0
\(371\) −1.20567 + 20.0373i −0.0625953 + 1.04028i
\(372\) 0 0
\(373\) 16.8343 + 9.71932i 0.871650 + 0.503247i 0.867896 0.496746i \(-0.165472\pi\)
0.00375349 + 0.999993i \(0.498805\pi\)
\(374\) 0 0
\(375\) 0.584755 + 1.01283i 0.0301966 + 0.0523021i
\(376\) 0 0
\(377\) 0.717499 + 1.07381i 0.0369531 + 0.0553042i
\(378\) 0 0
\(379\) 0.401823 + 0.0799275i 0.0206402 + 0.00410560i 0.205400 0.978678i \(-0.434151\pi\)
−0.184759 + 0.982784i \(0.559151\pi\)
\(380\) 0 0
\(381\) 10.8594 9.52340i 0.556342 0.487899i
\(382\) 0 0
\(383\) 5.67784 4.35676i 0.290124 0.222620i −0.453436 0.891289i \(-0.649802\pi\)
0.743561 + 0.668668i \(0.233135\pi\)
\(384\) 0 0
\(385\) −0.367558 0.0710695i −0.0187325 0.00362203i
\(386\) 0 0
\(387\) 10.7044 2.86824i 0.544137 0.145801i
\(388\) 0 0
\(389\) −15.2120 11.6726i −0.771279 0.591823i 0.146363 0.989231i \(-0.453243\pi\)
−0.917642 + 0.397408i \(0.869910\pi\)
\(390\) 0 0
\(391\) 0.236315 22.7911i 0.0119510 1.15259i
\(392\) 0 0
\(393\) 7.66998 + 18.5170i 0.386899 + 0.934058i
\(394\) 0 0
\(395\) 0.241585 0.901609i 0.0121555 0.0453649i
\(396\) 0 0
\(397\) 2.10167 + 4.26177i 0.105480 + 0.213892i 0.943214 0.332187i \(-0.107787\pi\)
−0.837734 + 0.546079i \(0.816120\pi\)
\(398\) 0 0
\(399\) −10.7135 + 0.0573286i −0.536347 + 0.00287002i
\(400\) 0 0
\(401\) 6.52043 + 2.21339i 0.325615 + 0.110531i 0.479460 0.877564i \(-0.340833\pi\)
−0.153846 + 0.988095i \(0.549166\pi\)
\(402\) 0 0
\(403\) 58.2981 19.7895i 2.90403 0.985787i
\(404\) 0 0
\(405\) −0.0407283 + 0.0272138i −0.00202380 + 0.00135226i
\(406\) 0 0
\(407\) 5.05202i 0.250419i
\(408\) 0 0
\(409\) −23.0746 + 13.3221i −1.14097 + 0.658737i −0.946669 0.322206i \(-0.895576\pi\)
−0.194296 + 0.980943i \(0.562242\pi\)
\(410\) 0 0
\(411\) −11.0672 + 0.725385i −0.545907 + 0.0357806i
\(412\) 0 0
\(413\) 23.5185 20.8488i 1.15727 1.02590i
\(414\) 0 0
\(415\) −0.582725 + 1.71665i −0.0286049 + 0.0842672i
\(416\) 0 0
\(417\) −5.48050 + 0.721522i −0.268381 + 0.0353331i
\(418\) 0 0
\(419\) −14.1928 9.48332i −0.693363 0.463290i 0.158293 0.987392i \(-0.449401\pi\)
−0.851656 + 0.524102i \(0.824401\pi\)
\(420\) 0 0
\(421\) 19.8696 + 19.8696i 0.968386 + 0.968386i 0.999515 0.0311292i \(-0.00991033\pi\)
−0.0311292 + 0.999515i \(0.509910\pi\)
\(422\) 0 0
\(423\) −6.15310 + 8.01887i −0.299174 + 0.389891i
\(424\) 0 0
\(425\) −19.4078 6.81329i −0.941418 0.330493i
\(426\) 0 0
\(427\) 4.04425 + 14.7766i 0.195715 + 0.715090i
\(428\) 0 0
\(429\) 2.38617 + 8.90532i 0.115205 + 0.429953i
\(430\) 0 0
\(431\) −0.309093 + 4.71585i −0.0148885 + 0.227155i 0.983930 + 0.178555i \(0.0571424\pi\)
−0.998818 + 0.0485992i \(0.984524\pi\)
\(432\) 0 0
\(433\) −0.788886 + 1.90454i −0.0379115 + 0.0915264i −0.941701 0.336450i \(-0.890774\pi\)
0.903790 + 0.427977i \(0.140774\pi\)
\(434\) 0 0
\(435\) −0.00469970 0.0236270i −0.000225333 0.00113283i
\(436\) 0 0
\(437\) 6.52676 + 19.2272i 0.312217 + 0.919763i
\(438\) 0 0
\(439\) 0.467074 + 7.12617i 0.0222922 + 0.340114i 0.994408 + 0.105610i \(0.0336796\pi\)
−0.972115 + 0.234503i \(0.924654\pi\)
\(440\) 0 0
\(441\) 12.0314 3.36222i 0.572925 0.160106i
\(442\) 0 0
\(443\) 7.45460 12.9117i 0.354179 0.613456i −0.632798 0.774317i \(-0.718094\pi\)
0.986977 + 0.160861i \(0.0514271\pi\)
\(444\) 0 0
\(445\) −0.478059 0.235752i −0.0226621 0.0111757i
\(446\) 0 0
\(447\) 1.98217 9.96504i 0.0937534 0.471330i
\(448\) 0 0
\(449\) 2.87539 0.571951i 0.135698 0.0269921i −0.126774 0.991932i \(-0.540462\pi\)
0.262472 + 0.964940i \(0.415462\pi\)
\(450\) 0 0
\(451\) −1.21141 9.20157i −0.0570431 0.433285i
\(452\) 0 0
\(453\) −24.0896 + 11.8797i −1.13183 + 0.558155i
\(454\) 0 0
\(455\) 1.39349 1.08116i 0.0653280 0.0506856i
\(456\) 0 0
\(457\) 4.73133 35.9380i 0.221322 1.68111i −0.415107 0.909773i \(-0.636256\pi\)
0.636429 0.771335i \(-0.280411\pi\)
\(458\) 0 0
\(459\) 5.84641 20.9478i 0.272887 0.977762i
\(460\) 0 0
\(461\) 11.0626 4.58229i 0.515238 0.213418i −0.109886 0.993944i \(-0.535049\pi\)
0.625124 + 0.780526i \(0.285049\pi\)
\(462\) 0 0
\(463\) 3.48279 3.48279i 0.161859 0.161859i −0.621531 0.783390i \(-0.713489\pi\)
0.783390 + 0.621531i \(0.213489\pi\)
\(464\) 0 0
\(465\) −1.14593 0.0751080i −0.0531411 0.00348305i
\(466\) 0 0
\(467\) −16.2660 21.1982i −0.752700 0.980938i −0.999928 0.0119805i \(-0.996186\pi\)
0.247228 0.968957i \(-0.420480\pi\)
\(468\) 0 0
\(469\) 3.72175 7.64988i 0.171854 0.353239i
\(470\) 0 0
\(471\) 14.6373 + 12.8366i 0.674452 + 0.591478i
\(472\) 0 0
\(473\) −3.65920 + 7.42012i −0.168250 + 0.341178i
\(474\) 0 0
\(475\) 18.3242 0.840771
\(476\) 0 0
\(477\) 13.5401 0.619959
\(478\) 0 0
\(479\) −1.78535 + 3.62034i −0.0815748 + 0.165417i −0.933838 0.357695i \(-0.883563\pi\)
0.852264 + 0.523113i \(0.175229\pi\)
\(480\) 0 0
\(481\) −17.8947 15.6933i −0.815930 0.715552i
\(482\) 0 0
\(483\) 9.02951 + 13.3583i 0.410857 + 0.607825i
\(484\) 0 0
\(485\) −0.491106 0.640022i −0.0223000 0.0290619i
\(486\) 0 0
\(487\) 9.94879 + 0.652078i 0.450823 + 0.0295485i 0.289124 0.957292i \(-0.406636\pi\)
0.161699 + 0.986840i \(0.448303\pi\)
\(488\) 0 0
\(489\) 6.06804 6.06804i 0.274406 0.274406i
\(490\) 0 0
\(491\) −16.7169 + 6.92437i −0.754424 + 0.312492i −0.726545 0.687119i \(-0.758875\pi\)
−0.0278785 + 0.999611i \(0.508875\pi\)
\(492\) 0 0
\(493\) 0.667634 + 0.523380i 0.0300687 + 0.0235718i
\(494\) 0 0
\(495\) −0.0329604 + 0.250359i −0.00148146 + 0.0112528i
\(496\) 0 0
\(497\) 3.67433 9.00663i 0.164816 0.404003i
\(498\) 0 0
\(499\) 10.6461 5.25007i 0.476585 0.235025i −0.188100 0.982150i \(-0.560233\pi\)
0.664684 + 0.747124i \(0.268566\pi\)
\(500\) 0 0
\(501\) 2.61988 + 19.9000i 0.117048 + 0.889065i
\(502\) 0 0
\(503\) 14.9914 2.98198i 0.668434 0.132960i 0.150803 0.988564i \(-0.451814\pi\)
0.517631 + 0.855604i \(0.326814\pi\)
\(504\) 0 0
\(505\) 0.0243372 0.122351i 0.00108299 0.00544457i
\(506\) 0 0
\(507\) −26.1020 12.8721i −1.15923 0.571669i
\(508\) 0 0
\(509\) 12.2938 21.2934i 0.544911 0.943814i −0.453701 0.891154i \(-0.649897\pi\)
0.998613 0.0526599i \(-0.0167699\pi\)
\(510\) 0 0
\(511\) 18.3689 24.2059i 0.812593 1.07081i
\(512\) 0 0
\(513\) 1.26717 + 19.3334i 0.0559471 + 0.853588i
\(514\) 0 0
\(515\) −0.121365 0.357529i −0.00534797 0.0157546i
\(516\) 0 0
\(517\) −1.47212 7.40084i −0.0647437 0.325488i
\(518\) 0 0
\(519\) 1.23394 2.97899i 0.0541639 0.130763i
\(520\) 0 0
\(521\) −1.14939 + 17.5363i −0.0503558 + 0.768281i 0.895777 + 0.444503i \(0.146620\pi\)
−0.946133 + 0.323778i \(0.895047\pi\)
\(522\) 0 0
\(523\) 8.69895 + 32.4649i 0.380379 + 1.41959i 0.845324 + 0.534253i \(0.179407\pi\)
−0.464946 + 0.885339i \(0.653926\pi\)
\(524\) 0 0
\(525\) 14.0348 3.84123i 0.612530 0.167645i
\(526\) 0 0
\(527\) 32.3372 24.2847i 1.40863 1.05786i
\(528\) 0 0
\(529\) 4.60111 5.99628i 0.200048 0.260708i
\(530\) 0 0
\(531\) −14.9905 14.9905i −0.650533 0.650533i
\(532\) 0 0
\(533\) 36.3559 + 24.2922i 1.57475 + 1.05221i
\(534\) 0 0
\(535\) −0.731213 + 0.0962660i −0.0316131 + 0.00416194i
\(536\) 0 0
\(537\) 1.53119 4.51073i 0.0660756 0.194653i
\(538\) 0 0
\(539\) −4.03513 + 8.40810i −0.173806 + 0.362163i
\(540\) 0 0
\(541\) 7.53839 0.494092i 0.324101 0.0212427i 0.0975155 0.995234i \(-0.468910\pi\)
0.226585 + 0.973991i \(0.427244\pi\)
\(542\) 0 0
\(543\) 17.1911 9.92527i 0.737740 0.425934i
\(544\) 0 0
\(545\) 1.62967i 0.0698076i
\(546\) 0 0
\(547\) 21.8915 14.6275i 0.936015 0.625425i 0.00880229 0.999961i \(-0.497198\pi\)
0.927212 + 0.374536i \(0.122198\pi\)
\(548\) 0 0
\(549\) 9.78536 3.32168i 0.417629 0.141766i
\(550\) 0 0
\(551\) −0.715637 0.242926i −0.0304872 0.0103490i
\(552\) 0 0
\(553\) −20.1998 11.5187i −0.858984 0.489825i
\(554\) 0 0
\(555\) 0.196362 + 0.398183i 0.00833511 + 0.0169019i
\(556\) 0 0
\(557\) 5.02982 18.7716i 0.213120 0.795376i −0.773699 0.633553i \(-0.781596\pi\)
0.986820 0.161823i \(-0.0517375\pi\)
\(558\) 0 0
\(559\) −14.9161 36.0106i −0.630883 1.52309i
\(560\) 0 0
\(561\) 3.31215 + 5.07001i 0.139839 + 0.214056i
\(562\) 0 0
\(563\) 19.6376 + 15.0685i 0.827628 + 0.635061i 0.933203 0.359350i \(-0.117002\pi\)
−0.105575 + 0.994411i \(0.533668\pi\)
\(564\) 0 0
\(565\) 0.765010 0.204984i 0.0321842 0.00862373i
\(566\) 0 0
\(567\) 0.398423 + 1.15340i 0.0167322 + 0.0484384i
\(568\) 0 0
\(569\) 21.5840 16.5620i 0.904847 0.694313i −0.0476495 0.998864i \(-0.515173\pi\)
0.952496 + 0.304551i \(0.0985064\pi\)
\(570\) 0 0
\(571\) −6.42183 + 5.63180i −0.268745 + 0.235683i −0.783102 0.621893i \(-0.786364\pi\)
0.514357 + 0.857576i \(0.328031\pi\)
\(572\) 0 0
\(573\) 2.35164 + 0.467771i 0.0982412 + 0.0195414i
\(574\) 0 0
\(575\) −15.3212 22.9297i −0.638937 0.956236i
\(576\) 0 0
\(577\) 7.30896 + 12.6595i 0.304276 + 0.527022i 0.977100 0.212781i \(-0.0682521\pi\)
−0.672824 + 0.739803i \(0.734919\pi\)
\(578\) 0 0
\(579\) 17.6513 + 10.1910i 0.733561 + 0.423522i
\(580\) 0 0
\(581\) 37.6846 + 24.8894i 1.56342 + 1.03259i
\(582\) 0 0
\(583\) −6.66494 + 7.59990i −0.276033 + 0.314756i
\(584\) 0 0
\(585\) −0.784411 0.894449i −0.0324314 0.0369809i
\(586\) 0 0
\(587\) 18.8298 + 7.79956i 0.777189 + 0.321922i 0.735781 0.677220i \(-0.236815\pi\)
0.0414086 + 0.999142i \(0.486815\pi\)
\(588\) 0 0
\(589\) −20.0156 + 29.9554i −0.824726 + 1.23429i
\(590\) 0 0
\(591\) 26.1560 + 7.00849i 1.07592 + 0.288291i
\(592\) 0 0
\(593\) −3.27743 0.431482i −0.134588 0.0177188i 0.0629312 0.998018i \(-0.479955\pi\)
−0.197519 + 0.980299i \(0.563288\pi\)
\(594\) 0 0
\(595\) 0.648479 0.960054i 0.0265850 0.0393584i
\(596\) 0 0
\(597\) −26.8199 3.53091i −1.09767 0.144511i
\(598\) 0 0
\(599\) 11.3776 + 3.04861i 0.464875 + 0.124563i 0.483651 0.875261i \(-0.339310\pi\)
−0.0187761 + 0.999824i \(0.505977\pi\)
\(600\) 0 0
\(601\) −23.8253 + 35.6571i −0.971855 + 1.45448i −0.0828626 + 0.996561i \(0.526406\pi\)
−0.888992 + 0.457922i \(0.848594\pi\)
\(602\) 0 0
\(603\) −5.30151 2.19596i −0.215894 0.0894263i
\(604\) 0 0
\(605\) 0.645975 + 0.736594i 0.0262626 + 0.0299468i
\(606\) 0 0
\(607\) 5.17096 5.89635i 0.209883 0.239326i −0.637314 0.770604i \(-0.719955\pi\)
0.847197 + 0.531278i \(0.178288\pi\)
\(608\) 0 0
\(609\) −0.599044 0.0360452i −0.0242745 0.00146063i
\(610\) 0 0
\(611\) 30.7874 + 17.7751i 1.24552 + 0.719103i
\(612\) 0 0
\(613\) −23.1545 40.1048i −0.935202 1.61982i −0.774273 0.632851i \(-0.781884\pi\)
−0.160928 0.986966i \(-0.551449\pi\)
\(614\) 0 0
\(615\) −0.453126 0.678151i −0.0182718 0.0273457i
\(616\) 0 0
\(617\) −38.2011 7.59868i −1.53792 0.305911i −0.647862 0.761758i \(-0.724337\pi\)
−0.890058 + 0.455846i \(0.849337\pi\)
\(618\) 0 0
\(619\) −17.0575 + 14.9591i −0.685600 + 0.601255i −0.929622 0.368515i \(-0.879866\pi\)
0.244022 + 0.969770i \(0.421533\pi\)
\(620\) 0 0
\(621\) 23.1331 17.7506i 0.928298 0.712308i
\(622\) 0 0
\(623\) −8.70179 + 10.0303i −0.348630 + 0.401854i
\(624\) 0 0
\(625\) −23.9848 + 6.42672i −0.959394 + 0.257069i
\(626\) 0 0
\(627\) −4.28020 3.28432i −0.170935 0.131163i
\(628\) 0 0
\(629\) −14.3815 6.13247i −0.573428 0.244518i
\(630\) 0 0
\(631\) −9.93277 23.9798i −0.395417 0.954622i −0.988738 0.149656i \(-0.952183\pi\)
0.593321 0.804966i \(-0.297817\pi\)
\(632\) 0 0
\(633\) 4.68987 17.5028i 0.186406 0.695675i
\(634\) 0 0
\(635\) −0.615417 1.24794i −0.0244221 0.0495231i
\(636\) 0 0
\(637\) −17.2478 40.4112i −0.683384 1.60115i
\(638\) 0 0
\(639\) −6.21310 2.10906i −0.245786 0.0834332i
\(640\) 0 0
\(641\) −35.3623 + 12.0039i −1.39673 + 0.474125i −0.915446 0.402441i \(-0.868162\pi\)
−0.481281 + 0.876566i \(0.659828\pi\)
\(642\) 0 0
\(643\) −14.5483 + 9.72087i −0.573729 + 0.383354i −0.808322 0.588740i \(-0.799624\pi\)
0.234593 + 0.972094i \(0.424624\pi\)
\(644\) 0 0
\(645\) 0.727054i 0.0286277i
\(646\) 0 0
\(647\) −23.8966 + 13.7967i −0.939473 + 0.542405i −0.889795 0.456361i \(-0.849153\pi\)
−0.0496776 + 0.998765i \(0.515819\pi\)
\(648\) 0 0
\(649\) 15.7929 1.03512i 0.619925 0.0406320i
\(650\) 0 0
\(651\) −9.05085 + 27.1392i −0.354731 + 1.06367i
\(652\) 0 0
\(653\) −5.11048 + 15.0550i −0.199988 + 0.589147i −0.999940 0.0109172i \(-0.996525\pi\)
0.799952 + 0.600064i \(0.204858\pi\)
\(654\) 0 0
\(655\) 1.91429 0.252021i 0.0747976 0.00984729i
\(656\) 0 0
\(657\) −17.0422 11.3873i −0.664881 0.444259i
\(658\) 0 0
\(659\) −0.291923 0.291923i −0.0113717 0.0113717i 0.701398 0.712770i \(-0.252560\pi\)
−0.712770 + 0.701398i \(0.752560\pi\)
\(660\) 0 0
\(661\) 13.6701 17.8152i 0.531704 0.692930i −0.447851 0.894108i \(-0.647811\pi\)
0.979555 + 0.201179i \(0.0644772\pi\)
\(662\) 0 0
\(663\) −28.2471 4.01717i −1.09703 0.156014i
\(664\) 0 0
\(665\) −0.261790 + 0.998352i −0.0101518 + 0.0387144i
\(666\) 0 0
\(667\) 0.294374 + 1.09862i 0.0113982 + 0.0425387i
\(668\) 0 0
\(669\) −0.940385 + 14.3475i −0.0363574 + 0.554706i
\(670\) 0 0
\(671\) −2.95229 + 7.12746i −0.113972 + 0.275152i
\(672\) 0 0
\(673\) −1.97794 9.94379i −0.0762441 0.383305i −1.00000 0.000323056i \(-0.999897\pi\)
0.923756 0.382982i \(-0.125103\pi\)
\(674\) 0 0
\(675\) −8.45846 24.9178i −0.325566 0.959087i
\(676\) 0 0
\(677\) 2.11852 + 32.3224i 0.0814213 + 1.24225i 0.821688 + 0.569937i \(0.193032\pi\)
−0.740267 + 0.672313i \(0.765301\pi\)
\(678\) 0 0
\(679\) −18.5261 + 7.79015i −0.710965 + 0.298958i
\(680\) 0 0
\(681\) −12.2388 + 21.1982i −0.468991 + 0.812316i
\(682\) 0 0
\(683\) −31.5572 15.5623i −1.20750 0.595475i −0.276687 0.960960i \(-0.589236\pi\)
−0.930817 + 0.365485i \(0.880903\pi\)
\(684\) 0 0
\(685\) −0.208445 + 1.04792i −0.00796427 + 0.0400391i
\(686\) 0 0
\(687\) 0.315027 0.0626629i 0.0120190 0.00239074i
\(688\) 0 0
\(689\) −6.21606 47.2157i −0.236813 1.79877i
\(690\) 0 0
\(691\) 12.2396 6.03588i 0.465614 0.229616i −0.194321 0.980938i \(-0.562250\pi\)
0.659935 + 0.751322i \(0.270584\pi\)
\(692\) 0 0
\(693\) 5.82472 + 2.37624i 0.221263 + 0.0902660i
\(694\) 0 0
\(695\) −0.0695080 + 0.527965i −0.00263659 + 0.0200269i
\(696\) 0 0
\(697\) 27.6645 + 7.72097i 1.04787 + 0.292452i
\(698\) 0 0
\(699\) −30.2056 + 12.5116i −1.14248 + 0.473231i
\(700\) 0 0
\(701\) −32.2128 + 32.2128i −1.21666 + 1.21666i −0.247868 + 0.968794i \(0.579730\pi\)
−0.968794 + 0.247868i \(0.920270\pi\)
\(702\) 0 0
\(703\) 13.8983 + 0.910943i 0.524184 + 0.0343569i
\(704\) 0 0
\(705\) −0.403683 0.526090i −0.0152036 0.0198137i
\(706\) 0 0
\(707\) −2.79456 1.35958i −0.105100 0.0511324i
\(708\) 0 0
\(709\) 1.72766 + 1.51512i 0.0648838 + 0.0569015i 0.691174 0.722689i \(-0.257094\pi\)
−0.626290 + 0.779590i \(0.715427\pi\)
\(710\) 0 0
\(711\) −6.93726 + 14.0674i −0.260168 + 0.527568i
\(712\) 0 0
\(713\) 54.2197 2.03054
\(714\) 0 0
\(715\) 0.888159 0.0332152
\(716\) 0 0
\(717\) −1.67709 + 3.40081i −0.0626321 + 0.127005i
\(718\) 0 0
\(719\) 16.9166 + 14.8354i 0.630881 + 0.553268i 0.913948 0.405832i \(-0.133018\pi\)
−0.283066 + 0.959100i \(0.591352\pi\)
\(720\) 0 0
\(721\) −9.38238 + 0.665393i −0.349418 + 0.0247805i
\(722\) 0 0
\(723\) −2.19280 2.85772i −0.0815513 0.106280i
\(724\) 0 0
\(725\) 1.02423 + 0.0671316i 0.0380390 + 0.00249321i
\(726\) 0 0
\(727\) −24.1821 + 24.1821i −0.896864 + 0.896864i −0.995157 0.0982935i \(-0.968662\pi\)
0.0982935 + 0.995157i \(0.468662\pi\)
\(728\) 0 0
\(729\) 16.8778 6.99102i 0.625105 0.258927i
\(730\) 0 0
\(731\) −16.6810 19.4236i −0.616968 0.718408i
\(732\) 0 0
\(733\) 1.25547 9.53627i 0.0463720 0.352230i −0.952491 0.304565i \(-0.901489\pi\)
0.998863 0.0476648i \(-0.0151779\pi\)
\(734\) 0 0
\(735\) 0.00877100 + 0.819535i 0.000323523 + 0.0302290i
\(736\) 0 0
\(737\) 3.84216 1.89474i 0.141528 0.0697938i
\(738\) 0 0
\(739\) −3.30360 25.0933i −0.121525 0.923073i −0.938229 0.346016i \(-0.887534\pi\)
0.816704 0.577057i \(-0.195799\pi\)
\(740\) 0 0
\(741\) 24.9291 4.95871i 0.915794 0.182163i
\(742\) 0 0
\(743\) 0.878210 4.41506i 0.0322184 0.161973i −0.961327 0.275410i \(-0.911186\pi\)
0.993545 + 0.113438i \(0.0361862\pi\)
\(744\) 0 0
\(745\) −0.877851 0.432908i −0.0321620 0.0158605i
\(746\) 0 0
\(747\) 15.2315 26.3817i 0.557291 0.965257i
\(748\) 0 0
\(749\) −2.30068 + 18.2286i −0.0840649 + 0.666058i
\(750\) 0 0
\(751\) −0.0651670 0.994256i −0.00237798 0.0362809i 0.996505 0.0835328i \(-0.0266203\pi\)
−0.998883 + 0.0472519i \(0.984954\pi\)
\(752\) 0 0
\(753\) 0.784643 + 2.31148i 0.0285940 + 0.0842352i
\(754\) 0 0
\(755\) 0.504799 + 2.53780i 0.0183715 + 0.0923599i
\(756\) 0 0
\(757\) 8.69911 21.0015i 0.316175 0.763313i −0.683276 0.730161i \(-0.739445\pi\)
0.999450 0.0331526i \(-0.0105547\pi\)
\(758\) 0 0
\(759\) −0.531037 + 8.10206i −0.0192754 + 0.294086i
\(760\) 0 0
\(761\) 4.00113 + 14.9324i 0.145041 + 0.541300i 0.999754 + 0.0221984i \(0.00706656\pi\)
−0.854713 + 0.519101i \(0.826267\pi\)
\(762\) 0 0
\(763\) −39.2708 10.2977i −1.42170 0.372801i
\(764\) 0 0
\(765\) −0.672684 0.397730i −0.0243210 0.0143800i
\(766\) 0 0
\(767\) −45.3915 + 59.1553i −1.63899 + 2.13597i
\(768\) 0 0
\(769\) 28.7142 + 28.7142i 1.03546 + 1.03546i 0.999348 + 0.0361130i \(0.0114976\pi\)
0.0361130 + 0.999348i \(0.488502\pi\)
\(770\) 0 0
\(771\) 23.7791 + 15.8887i 0.856382 + 0.572216i
\(772\) 0 0
\(773\) 27.2977 3.59381i 0.981830 0.129260i 0.377513 0.926004i \(-0.376779\pi\)
0.604317 + 0.796744i \(0.293446\pi\)
\(774\) 0 0
\(775\) 15.7283 46.3341i 0.564977 1.66437i
\(776\) 0 0
\(777\) 10.8359 2.21574i 0.388737 0.0794893i
\(778\) 0 0
\(779\) −25.5323 + 1.67347i −0.914789 + 0.0599585i
\(780\) 0 0
\(781\) 4.24210 2.44918i 0.151794 0.0876386i
\(782\) 0 0
\(783\) 1.08528i 0.0387848i
\(784\) 0 0
\(785\) 1.55944 1.04198i 0.0556586 0.0371899i
\(786\) 0 0
\(787\) 11.5557 3.92265i 0.411918 0.139827i −0.107785 0.994174i \(-0.534376\pi\)
0.519703 + 0.854347i \(0.326043\pi\)
\(788\) 0 0
\(789\) −9.79658 3.32549i −0.348768 0.118391i
\(790\) 0 0
\(791\) −0.105576 19.7300i −0.00375385 0.701517i
\(792\) 0 0
\(793\) −16.0753 32.5975i −0.570852 1.15757i
\(794\) 0 0
\(795\) −0.229914 + 0.858051i −0.00815421 + 0.0304319i
\(796\) 0 0
\(797\) 8.13758 + 19.6459i 0.288248 + 0.695892i 0.999978 0.00656064i \(-0.00208833\pi\)
−0.711731 + 0.702452i \(0.752088\pi\)
\(798\) 0 0
\(799\) 22.8548 + 4.79296i 0.808545 + 0.169563i
\(800\) 0 0
\(801\) 7.10599 + 5.45262i 0.251078 + 0.192659i
\(802\) 0 0
\(803\) 14.7803 3.96038i 0.521587 0.139759i
\(804\) 0 0
\(805\) 1.46816 0.507152i 0.0517460 0.0178748i
\(806\) 0 0
\(807\) −7.91150 + 6.07071i −0.278498 + 0.213699i
\(808\) 0 0
\(809\) 3.57202 3.13258i 0.125586 0.110136i −0.594249 0.804281i \(-0.702551\pi\)
0.719835 + 0.694145i \(0.244217\pi\)
\(810\) 0 0
\(811\) 5.88089 + 1.16978i 0.206506 + 0.0410766i 0.297259 0.954797i \(-0.403927\pi\)
−0.0907532 + 0.995873i \(0.528927\pi\)
\(812\) 0 0
\(813\) −2.48329 3.71650i −0.0870927 0.130343i
\(814\) 0 0
\(815\) −0.413351 0.715944i −0.0144790 0.0250784i
\(816\) 0 0
\(817\) 19.7532 + 11.4045i 0.691078 + 0.398994i
\(818\) 0 0
\(819\) −26.5104 + 13.2503i −0.926349 + 0.463003i
\(820\) 0 0
\(821\) −27.2519 + 31.0748i −0.951098 + 1.08452i 0.0452368 + 0.998976i \(0.485596\pi\)
−0.996335 + 0.0855427i \(0.972738\pi\)
\(822\) 0 0
\(823\) 9.48280 + 10.8131i 0.330550 + 0.376920i 0.893111 0.449836i \(-0.148517\pi\)
−0.562562 + 0.826755i \(0.690184\pi\)
\(824\) 0 0
\(825\) 6.76967 + 2.80409i 0.235689 + 0.0976258i
\(826\) 0 0
\(827\) −2.91213 + 4.35831i −0.101265 + 0.151553i −0.878642 0.477482i \(-0.841550\pi\)
0.777377 + 0.629035i \(0.216550\pi\)
\(828\) 0 0
\(829\) −52.6236 14.1004i −1.82769 0.489729i −0.830009 0.557750i \(-0.811665\pi\)
−0.997684 + 0.0680214i \(0.978331\pi\)
\(830\) 0 0
\(831\) −19.7221 2.59647i −0.684153 0.0900704i
\(832\) 0 0
\(833\) −19.0371 21.6931i −0.659597 0.751620i
\(834\) 0 0
\(835\) 1.91707 + 0.252387i 0.0663428 + 0.00873420i
\(836\) 0 0
\(837\) 49.9735 + 13.3904i 1.72734 + 0.462839i
\(838\) 0 0
\(839\) −11.1168 + 16.6375i −0.383796 + 0.574391i −0.972193 0.234181i \(-0.924759\pi\)
0.588397 + 0.808572i \(0.299759\pi\)
\(840\) 0 0
\(841\) 26.7534 + 11.0816i 0.922531 + 0.382125i
\(842\) 0 0
\(843\) 22.3727 + 25.5112i 0.770557 + 0.878652i
\(844\) 0 0
\(845\) −1.84859 + 2.10792i −0.0635935 + 0.0725145i
\(846\) 0 0
\(847\) 21.8318 10.9119i 0.750149 0.374936i
\(848\) 0 0
\(849\) 3.25167 + 1.87735i 0.111597 + 0.0644306i
\(850\) 0 0
\(851\) −10.4807 18.1531i −0.359274 0.622281i
\(852\) 0 0
\(853\) −6.92031 10.3570i −0.236947 0.354616i 0.693871 0.720099i \(-0.255904\pi\)
−0.930818 + 0.365483i \(0.880904\pi\)
\(854\) 0 0
\(855\) 0.682805 + 0.135818i 0.0233514 + 0.00464489i
\(856\) 0 0
\(857\) −0.601860 + 0.527817i −0.0205591 + 0.0180299i −0.669564 0.742755i \(-0.733519\pi\)
0.649005 + 0.760784i \(0.275186\pi\)
\(858\) 0 0
\(859\) −42.5997 + 32.6879i −1.45348 + 1.11530i −0.482570 + 0.875857i \(0.660297\pi\)
−0.970912 + 0.239438i \(0.923037\pi\)
\(860\) 0 0
\(861\) −19.2049 + 6.63399i −0.654500 + 0.226086i
\(862\) 0 0
\(863\) 11.7249 3.14168i 0.399120 0.106944i −0.0536751 0.998558i \(-0.517094\pi\)
0.452795 + 0.891615i \(0.350427\pi\)
\(864\) 0 0
\(865\) −0.246437 0.189098i −0.00837911 0.00642951i
\(866\) 0 0
\(867\) −18.4532 + 3.27435i −0.626704 + 0.111203i
\(868\) 0 0
\(869\) −4.48108 10.8183i −0.152010 0.366985i
\(870\) 0 0
\(871\) −5.22367 + 19.4950i −0.176997 + 0.660563i
\(872\) 0 0
\(873\) 5.99573 + 12.1581i 0.202925 + 0.411491i
\(874\) 0 0
\(875\) −0.0150187 2.80668i −0.000507724 0.0948830i
\(876\) 0 0
\(877\) −6.97049 2.36616i −0.235377 0.0798996i 0.201259 0.979538i \(-0.435497\pi\)
−0.436636 + 0.899638i \(0.643830\pi\)
\(878\) 0 0
\(879\) −7.83402 + 2.65929i −0.264235 + 0.0896957i
\(880\) 0 0
\(881\) −6.61380 + 4.41920i −0.222825 + 0.148887i −0.661973 0.749528i \(-0.730280\pi\)
0.439148 + 0.898415i \(0.355280\pi\)
\(882\) 0 0
\(883\) 39.6083i 1.33293i 0.745538 + 0.666463i \(0.232192\pi\)
−0.745538 + 0.666463i \(0.767808\pi\)
\(884\) 0 0
\(885\) 1.20451 0.695422i 0.0404890 0.0233764i
\(886\) 0 0
\(887\) −43.9138 + 2.87826i −1.47448 + 0.0966426i −0.781316 0.624136i \(-0.785451\pi\)
−0.693165 + 0.720779i \(0.743784\pi\)
\(888\) 0 0
\(889\) −33.9608 + 6.94435i −1.13901 + 0.232906i
\(890\) 0 0
\(891\) −0.197523 + 0.581883i −0.00661726 + 0.0194938i
\(892\) 0 0
\(893\) −20.6254 + 2.71539i −0.690203 + 0.0908670i
\(894\) 0 0
\(895\) −0.381558 0.254949i −0.0127541 0.00852200i
\(896\) 0 0
\(897\) −27.0487 27.0487i −0.903129 0.903129i
\(898\) 0 0
\(899\) −1.22851 + 1.60103i −0.0409732 + 0.0533974i
\(900\) 0 0
\(901\) −13.5442 28.1982i −0.451222 0.939419i
\(902\) 0 0
\(903\) 17.5201 + 4.59415i 0.583031 + 0.152884i
\(904\) 0 0
\(905\) −0.494941 1.84715i −0.0164524 0.0614012i
\(906\) 0 0
\(907\) −1.81378 + 27.6730i −0.0602256 + 0.918865i 0.855689 + 0.517491i \(0.173134\pi\)
−0.915914 + 0.401374i \(0.868533\pi\)
\(908\) 0 0
\(909\) −0.802200 + 1.93668i −0.0266073 + 0.0642357i
\(910\) 0 0
\(911\) −7.52096 37.8104i −0.249180 1.25271i −0.879320 0.476232i \(-0.842002\pi\)
0.630139 0.776482i \(-0.282998\pi\)
\(912\) 0 0
\(913\) 7.31025 + 21.5353i 0.241934 + 0.712714i
\(914\) 0 0
\(915\) 0.0443409 + 0.676511i 0.00146586 + 0.0223648i
\(916\) 0 0
\(917\) 6.02309 47.7218i 0.198900 1.57591i
\(918\) 0 0
\(919\) −0.273051 + 0.472938i −0.00900712 + 0.0156008i −0.870494 0.492179i \(-0.836200\pi\)
0.861487 + 0.507780i \(0.169534\pi\)
\(920\) 0 0
\(921\) 7.91847 + 3.90496i 0.260923 + 0.128673i
\(922\) 0 0
\(923\) −4.50216 + 22.6339i −0.148191 + 0.745004i
\(924\) 0 0
\(925\) −18.5533 + 3.69047i −0.610028 + 0.121342i
\(926\) 0 0
\(927\) 0.828130 + 6.29027i 0.0271994 + 0.206600i
\(928\) 0 0
\(929\) −8.10760 + 3.99822i −0.266002 + 0.131177i −0.570399 0.821368i \(-0.693212\pi\)
0.304398 + 0.952545i \(0.401545\pi\)
\(930\) 0 0
\(931\) 22.4034 + 12.6169i 0.734242 + 0.413502i
\(932\) 0 0
\(933\) 1.31032 9.95284i 0.0428978 0.325841i
\(934\) 0 0
\(935\) 0.554361 0.181792i 0.0181295 0.00594524i
\(936\) 0 0
\(937\) 14.9994 6.21294i 0.490008 0.202968i −0.123978 0.992285i \(-0.539565\pi\)
0.613986 + 0.789317i \(0.289565\pi\)
\(938\) 0 0
\(939\) 17.1373 17.1373i 0.559255 0.559255i
\(940\) 0 0
\(941\) −22.3416 1.46434i −0.728315 0.0477363i −0.303265 0.952906i \(-0.598077\pi\)
−0.425050 + 0.905170i \(0.639743\pi\)
\(942\) 0 0
\(943\) 23.4421 + 30.5503i 0.763379 + 0.994855i
\(944\) 0 0
\(945\) 1.47843 0.104850i 0.0480935 0.00341076i
\(946\) 0 0
\(947\) −1.38321 1.21304i −0.0449483 0.0394186i 0.636577 0.771213i \(-0.280350\pi\)
−0.681525 + 0.731795i \(0.738683\pi\)
\(948\) 0 0
\(949\) −31.8846 + 64.6556i −1.03502 + 2.09881i
\(950\) 0 0
\(951\) −29.0512 −0.942050
\(952\) 0 0
\(953\) 36.8614 1.19406 0.597029 0.802220i \(-0.296348\pi\)
0.597029 + 0.802220i \(0.296348\pi\)
\(954\) 0 0
\(955\) 0.102162 0.207163i 0.00330587 0.00670365i
\(956\) 0 0
\(957\) −0.227210 0.199258i −0.00734466 0.00644109i
\(958\) 0 0
\(959\) 23.9350 + 11.6446i 0.772902 + 0.376025i
\(960\) 0 0
\(961\) 39.6928 + 51.7287i 1.28041 + 1.66867i
\(962\) 0 0
\(963\) 12.3667 + 0.810554i 0.398510 + 0.0261197i
\(964\) 0 0
\(965\) 1.38840 1.38840i 0.0446942 0.0446942i
\(966\) 0 0
\(967\) −37.7950 + 15.6552i −1.21540 + 0.503437i −0.895946 0.444163i \(-0.853501\pi\)
−0.319458 + 0.947600i \(0.603501\pi\)
\(968\) 0 0
\(969\) 14.5450 8.19767i 0.467253 0.263347i
\(970\) 0 0
\(971\) 1.60457 12.1879i 0.0514932 0.391130i −0.946219 0.323527i \(-0.895131\pi\)
0.997712 0.0676032i \(-0.0215352\pi\)
\(972\) 0 0
\(973\) 12.2834 + 5.01110i 0.393786 + 0.160648i
\(974\) 0 0
\(975\) −30.9612 + 15.2684i −0.991551 + 0.488979i
\(976\) 0 0
\(977\) −0.0392278 0.297965i −0.00125501 0.00953274i 0.990806 0.135291i \(-0.0431969\pi\)
−0.992061 + 0.125758i \(0.959864\pi\)
\(978\) 0 0
\(979\) −6.55832 + 1.30453i −0.209605 + 0.0416930i
\(980\) 0 0
\(981\) −5.34250 + 26.8586i −0.170573 + 0.857528i
\(982\) 0 0
\(983\) 18.7251 + 9.23420i 0.597238 + 0.294525i 0.715672 0.698437i \(-0.246121\pi\)
−0.118434 + 0.992962i \(0.537787\pi\)
\(984\) 0 0
\(985\) 1.30432 2.25914i 0.0415590 0.0719823i
\(986\) 0 0
\(987\) −15.2282 + 6.40340i −0.484718 + 0.203822i
\(988\) 0 0
\(989\) −2.24509 34.2535i −0.0713898 1.08920i
\(990\) 0 0
\(991\) 16.2514 + 47.8751i 0.516243 + 1.52080i 0.822450 + 0.568838i \(0.192607\pi\)
−0.306206 + 0.951965i \(0.599060\pi\)
\(992\) 0 0
\(993\) −3.28934 16.5366i −0.104384 0.524774i
\(994\) 0 0
\(995\) −0.997273 + 2.40763i −0.0316157 + 0.0763270i
\(996\) 0 0
\(997\) 2.04888 31.2598i 0.0648886 0.990009i −0.833981 0.551793i \(-0.813944\pi\)
0.898870 0.438216i \(-0.144390\pi\)
\(998\) 0 0
\(999\) −5.17674 19.3199i −0.163785 0.611253i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 952.2.cw.b.369.13 yes 288
7.3 odd 6 inner 952.2.cw.b.913.13 yes 288
17.10 odd 16 inner 952.2.cw.b.537.13 yes 288
119.10 even 48 inner 952.2.cw.b.129.13 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.cw.b.129.13 288 119.10 even 48 inner
952.2.cw.b.369.13 yes 288 1.1 even 1 trivial
952.2.cw.b.537.13 yes 288 17.10 odd 16 inner
952.2.cw.b.913.13 yes 288 7.3 odd 6 inner