Properties

Label 952.2
Level 952
Weight 2
Dimension 14500
Nonzero newspaces 30
Newform subspaces 74
Sturm bound 110592
Trace bound 17

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 952 = 2^{3} \cdot 7 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 30 \)
Newform subspaces: \( 74 \)
Sturm bound: \(110592\)
Trace bound: \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(952))\).

Total New Old
Modular forms 28800 15100 13700
Cusp forms 26497 14500 11997
Eisenstein series 2303 600 1703

Trace form

\( 14500 q - 52 q^{2} - 52 q^{3} - 52 q^{4} - 52 q^{6} - 68 q^{7} - 136 q^{8} - 92 q^{9} - 52 q^{10} - 40 q^{11} - 52 q^{12} + 12 q^{13} - 68 q^{14} - 112 q^{15} - 52 q^{16} - 110 q^{17} - 152 q^{18} - 52 q^{19}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(952))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
952.2.a \(\chi_{952}(1, \cdot)\) 952.2.a.a 2 1
952.2.a.b 2
952.2.a.c 3
952.2.a.d 3
952.2.a.e 3
952.2.a.f 3
952.2.a.g 4
952.2.a.h 4
952.2.b \(\chi_{952}(477, \cdot)\) 952.2.b.a 2 1
952.2.b.b 2
952.2.b.c 2
952.2.b.d 16
952.2.b.e 16
952.2.b.f 28
952.2.b.g 30
952.2.c \(\chi_{952}(169, \cdot)\) 952.2.c.a 2 1
952.2.c.b 4
952.2.c.c 4
952.2.c.d 8
952.2.c.e 10
952.2.h \(\chi_{952}(951, \cdot)\) None 0 1
952.2.i \(\chi_{952}(307, \cdot)\) 952.2.i.a 128 1
952.2.j \(\chi_{952}(783, \cdot)\) None 0 1
952.2.k \(\chi_{952}(475, \cdot)\) 952.2.k.a 8 1
952.2.k.b 20
952.2.k.c 112
952.2.p \(\chi_{952}(645, \cdot)\) 952.2.p.a 108 1
952.2.q \(\chi_{952}(137, \cdot)\) 952.2.q.a 2 2
952.2.q.b 2
952.2.q.c 12
952.2.q.d 14
952.2.q.e 14
952.2.q.f 20
952.2.s \(\chi_{952}(421, \cdot)\) 952.2.s.a 216 2
952.2.t \(\chi_{952}(55, \cdot)\) None 0 2
952.2.w \(\chi_{952}(225, \cdot)\) 952.2.w.a 24 2
952.2.w.b 32
952.2.x \(\chi_{952}(251, \cdot)\) 952.2.x.a 280 2
952.2.z \(\chi_{952}(373, \cdot)\) 952.2.z.a 4 2
952.2.z.b 4
952.2.z.c 272
952.2.be \(\chi_{952}(103, \cdot)\) None 0 2
952.2.bf \(\chi_{952}(339, \cdot)\) 952.2.bf.a 16 2
952.2.bf.b 264
952.2.bg \(\chi_{952}(271, \cdot)\) None 0 2
952.2.bh \(\chi_{952}(171, \cdot)\) 952.2.bh.a 256 2
952.2.bm \(\chi_{952}(205, \cdot)\) 952.2.bm.a 4 2
952.2.bm.b 4
952.2.bm.c 120
952.2.bm.d 128
952.2.bn \(\chi_{952}(305, \cdot)\) 952.2.bn.a 4 2
952.2.bn.b 12
952.2.bn.c 20
952.2.bn.d 36
952.2.bo \(\chi_{952}(83, \cdot)\) 952.2.bo.a 560 4
952.2.bq \(\chi_{952}(281, \cdot)\) 952.2.bq.a 48 4
952.2.bq.b 56
952.2.bs \(\chi_{952}(111, \cdot)\) None 0 4
952.2.bu \(\chi_{952}(253, \cdot)\) 952.2.bu.a 432 4
952.2.bw \(\chi_{952}(149, \cdot)\) 952.2.bw.a 4 4
952.2.bw.b 4
952.2.bw.c 4
952.2.bw.d 4
952.2.bw.e 544
952.2.bz \(\chi_{952}(47, \cdot)\) None 0 4
952.2.ca \(\chi_{952}(81, \cdot)\) 952.2.ca.a 8 4
952.2.ca.b 64
952.2.ca.c 72
952.2.cd \(\chi_{952}(115, \cdot)\) 952.2.cd.a 560 4
952.2.ce \(\chi_{952}(99, \cdot)\) 952.2.ce.a 864 8
952.2.ch \(\chi_{952}(71, \cdot)\) None 0 8
952.2.ci \(\chi_{952}(41, \cdot)\) 952.2.ci.a 144 8
952.2.ci.b 144
952.2.cl \(\chi_{952}(125, \cdot)\) 952.2.cl.a 1120 8
952.2.cn \(\chi_{952}(9, \cdot)\) 952.2.cn.a 144 8
952.2.cn.b 144
952.2.cp \(\chi_{952}(19, \cdot)\) 952.2.cp.a 1120 8
952.2.cr \(\chi_{952}(53, \cdot)\) 952.2.cr.a 1120 8
952.2.ct \(\chi_{952}(87, \cdot)\) None 0 8
952.2.cv \(\chi_{952}(5, \cdot)\) 952.2.cv.a 2240 16
952.2.cw \(\chi_{952}(73, \cdot)\) 952.2.cw.a 288 16
952.2.cw.b 288
952.2.cz \(\chi_{952}(23, \cdot)\) None 0 16
952.2.da \(\chi_{952}(11, \cdot)\) 952.2.da.a 2240 16

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(952))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(952)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(68))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(119))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(136))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(238))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(476))\)\(^{\oplus 2}\)