Defining parameters
Level: | \( N \) | = | \( 952 = 2^{3} \cdot 7 \cdot 17 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 30 \) | ||
Newform subspaces: | \( 74 \) | ||
Sturm bound: | \(110592\) | ||
Trace bound: | \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(952))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 28800 | 15100 | 13700 |
Cusp forms | 26497 | 14500 | 11997 |
Eisenstein series | 2303 | 600 | 1703 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(952))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(952))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(952)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(68))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(119))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(136))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(238))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(476))\)\(^{\oplus 2}\)