Properties

Label 952.2.cw.b.129.13
Level $952$
Weight $2$
Character 952.129
Analytic conductor $7.602$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [952,2,Mod(73,952)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("952.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(952, base_ring=CyclotomicField(48)) chi = DirichletCharacter(H, H._module([0, 0, 8, 15])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 952 = 2^{3} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 952.cw (of order \(48\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [288,0,0,0,0,0,0,0,0,0,0,0,0,0,32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.60175827243\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{48})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{48}]$

Embedding invariants

Embedding label 129.13
Character \(\chi\) \(=\) 952.129
Dual form 952.2.cw.b.369.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.487596 + 0.988748i) q^{3} +(-0.0798482 + 0.0700250i) q^{5} +(-2.19196 - 1.48165i) q^{7} +(1.08641 - 1.41584i) q^{9} +(-1.32947 + 0.0871378i) q^{11} +(4.43841 + 4.43841i) q^{13} +(-0.108171 - 0.0448058i) q^{15} +(1.86185 + 3.67879i) q^{17} +(-0.479438 - 3.64170i) q^{19} +(0.396185 - 2.88975i) q^{21} +(4.95786 + 2.44495i) q^{23} +(-0.651159 + 4.94604i) q^{25} +(5.17341 + 1.02905i) q^{27} +(-0.0401398 - 0.201796i) q^{29} +(8.79679 - 4.33810i) q^{31} +(-0.734400 - 1.27202i) q^{33} +(0.278777 - 0.0351851i) q^{35} +(-0.248002 + 3.78379i) q^{37} +(-2.22432 + 6.55263i) q^{39} +(1.35901 - 6.83218i) q^{41} +(2.37636 + 5.73704i) q^{43} +(0.0123961 + 0.189128i) q^{45} +(1.46587 - 5.47070i) q^{47} +(2.60942 + 6.49545i) q^{49} +(-2.72957 + 3.63466i) q^{51} +(4.61872 + 6.01924i) q^{53} +(0.100054 - 0.100054i) q^{55} +(3.36695 - 2.24972i) q^{57} +(-11.7775 - 1.55054i) q^{59} +(1.86127 + 5.48314i) q^{61} +(-4.47916 + 1.49379i) q^{63} +(-0.665199 - 0.0435995i) q^{65} +(-2.78463 - 1.60771i) q^{67} +6.09422i q^{69} +(-3.05696 - 2.04259i) q^{71} +(-10.8755 - 3.69175i) q^{73} +(-5.20789 + 1.76784i) q^{75} +(3.04325 + 1.77880i) q^{77} +(3.88723 - 7.88253i) q^{79} +(0.119373 + 0.445506i) q^{81} +(-6.53228 + 15.7703i) q^{83} +(-0.406272 - 0.163369i) q^{85} +(0.179954 - 0.138083i) q^{87} +(4.84791 + 1.29899i) q^{89} +(-3.15267 - 16.3050i) q^{91} +(8.57857 + 6.58257i) q^{93} +(0.293292 + 0.257210i) q^{95} +(7.45011 - 1.48192i) q^{97} +(-1.32097 + 1.97698i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q + 32 q^{15} + 48 q^{21} - 32 q^{29} - 72 q^{31} - 16 q^{37} - 32 q^{39} + 32 q^{43} + 24 q^{47} - 48 q^{49} - 16 q^{53} - 128 q^{57} - 72 q^{61} - 40 q^{63} + 32 q^{65} + 80 q^{71} + 96 q^{73} - 216 q^{75}+ \cdots + 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/952\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(409\) \(477\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.487596 + 0.988748i 0.281514 + 0.570854i 0.990999 0.133866i \(-0.0427393\pi\)
−0.709485 + 0.704720i \(0.751073\pi\)
\(4\) 0 0
\(5\) −0.0798482 + 0.0700250i −0.0357092 + 0.0313161i −0.677014 0.735970i \(-0.736727\pi\)
0.641305 + 0.767286i \(0.278393\pi\)
\(6\) 0 0
\(7\) −2.19196 1.48165i −0.828485 0.560011i
\(8\) 0 0
\(9\) 1.08641 1.41584i 0.362137 0.471947i
\(10\) 0 0
\(11\) −1.32947 + 0.0871378i −0.400849 + 0.0262730i −0.264495 0.964387i \(-0.585205\pi\)
−0.136354 + 0.990660i \(0.543539\pi\)
\(12\) 0 0
\(13\) 4.43841 + 4.43841i 1.23099 + 1.23099i 0.963582 + 0.267413i \(0.0861687\pi\)
0.267413 + 0.963582i \(0.413831\pi\)
\(14\) 0 0
\(15\) −0.108171 0.0448058i −0.0279296 0.0115688i
\(16\) 0 0
\(17\) 1.86185 + 3.67879i 0.451564 + 0.892239i
\(18\) 0 0
\(19\) −0.479438 3.64170i −0.109991 0.835462i −0.954141 0.299356i \(-0.903228\pi\)
0.844151 0.536106i \(-0.180105\pi\)
\(20\) 0 0
\(21\) 0.396185 2.88975i 0.0864546 0.630595i
\(22\) 0 0
\(23\) 4.95786 + 2.44495i 1.03379 + 0.509807i 0.878339 0.478038i \(-0.158652\pi\)
0.155446 + 0.987844i \(0.450318\pi\)
\(24\) 0 0
\(25\) −0.651159 + 4.94604i −0.130232 + 0.989208i
\(26\) 0 0
\(27\) 5.17341 + 1.02905i 0.995623 + 0.198042i
\(28\) 0 0
\(29\) −0.0401398 0.201796i −0.00745378 0.0374727i 0.976879 0.213791i \(-0.0685812\pi\)
−0.984333 + 0.176318i \(0.943581\pi\)
\(30\) 0 0
\(31\) 8.79679 4.33810i 1.57995 0.779145i 0.580565 0.814214i \(-0.302832\pi\)
0.999385 + 0.0350686i \(0.0111650\pi\)
\(32\) 0 0
\(33\) −0.734400 1.27202i −0.127843 0.221430i
\(34\) 0 0
\(35\) 0.278777 0.0351851i 0.0471219 0.00594738i
\(36\) 0 0
\(37\) −0.248002 + 3.78379i −0.0407713 + 0.622050i 0.927763 + 0.373170i \(0.121729\pi\)
−0.968534 + 0.248880i \(0.919937\pi\)
\(38\) 0 0
\(39\) −2.22432 + 6.55263i −0.356176 + 1.04926i
\(40\) 0 0
\(41\) 1.35901 6.83218i 0.212241 1.06701i −0.716870 0.697207i \(-0.754426\pi\)
0.929111 0.369801i \(-0.120574\pi\)
\(42\) 0 0
\(43\) 2.37636 + 5.73704i 0.362391 + 0.874890i 0.994949 + 0.100377i \(0.0320049\pi\)
−0.632558 + 0.774513i \(0.717995\pi\)
\(44\) 0 0
\(45\) 0.0123961 + 0.189128i 0.00184790 + 0.0281936i
\(46\) 0 0
\(47\) 1.46587 5.47070i 0.213819 0.797983i −0.772760 0.634698i \(-0.781124\pi\)
0.986579 0.163285i \(-0.0522090\pi\)
\(48\) 0 0
\(49\) 2.60942 + 6.49545i 0.372774 + 0.927922i
\(50\) 0 0
\(51\) −2.72957 + 3.63466i −0.382216 + 0.508955i
\(52\) 0 0
\(53\) 4.61872 + 6.01924i 0.634430 + 0.826806i 0.994347 0.106179i \(-0.0338616\pi\)
−0.359917 + 0.932984i \(0.617195\pi\)
\(54\) 0 0
\(55\) 0.100054 0.100054i 0.0134912 0.0134912i
\(56\) 0 0
\(57\) 3.36695 2.24972i 0.445963 0.297983i
\(58\) 0 0
\(59\) −11.7775 1.55054i −1.53330 0.201863i −0.683885 0.729590i \(-0.739711\pi\)
−0.849414 + 0.527727i \(0.823044\pi\)
\(60\) 0 0
\(61\) 1.86127 + 5.48314i 0.238312 + 0.702044i 0.998622 + 0.0524835i \(0.0167137\pi\)
−0.760310 + 0.649560i \(0.774953\pi\)
\(62\) 0 0
\(63\) −4.47916 + 1.49379i −0.564321 + 0.188200i
\(64\) 0 0
\(65\) −0.665199 0.0435995i −0.0825078 0.00540785i
\(66\) 0 0
\(67\) −2.78463 1.60771i −0.340196 0.196413i 0.320162 0.947363i \(-0.396263\pi\)
−0.660359 + 0.750950i \(0.729596\pi\)
\(68\) 0 0
\(69\) 6.09422i 0.733658i
\(70\) 0 0
\(71\) −3.05696 2.04259i −0.362794 0.242411i 0.360791 0.932647i \(-0.382507\pi\)
−0.723585 + 0.690236i \(0.757507\pi\)
\(72\) 0 0
\(73\) −10.8755 3.69175i −1.27289 0.432086i −0.398433 0.917198i \(-0.630446\pi\)
−0.874452 + 0.485111i \(0.838779\pi\)
\(74\) 0 0
\(75\) −5.20789 + 1.76784i −0.601355 + 0.204133i
\(76\) 0 0
\(77\) 3.04325 + 1.77880i 0.346810 + 0.202713i
\(78\) 0 0
\(79\) 3.88723 7.88253i 0.437348 0.886854i −0.560911 0.827876i \(-0.689549\pi\)
0.998259 0.0589780i \(-0.0187842\pi\)
\(80\) 0 0
\(81\) 0.119373 + 0.445506i 0.0132637 + 0.0495007i
\(82\) 0 0
\(83\) −6.53228 + 15.7703i −0.717010 + 1.73102i −0.0353194 + 0.999376i \(0.511245\pi\)
−0.681691 + 0.731640i \(0.738755\pi\)
\(84\) 0 0
\(85\) −0.406272 0.163369i −0.0440664 0.0177199i
\(86\) 0 0
\(87\) 0.179954 0.138083i 0.0192931 0.0148041i
\(88\) 0 0
\(89\) 4.84791 + 1.29899i 0.513877 + 0.137693i 0.506433 0.862279i \(-0.330964\pi\)
0.00744416 + 0.999972i \(0.497630\pi\)
\(90\) 0 0
\(91\) −3.15267 16.3050i −0.330489 1.70923i
\(92\) 0 0
\(93\) 8.57857 + 6.58257i 0.889556 + 0.682580i
\(94\) 0 0
\(95\) 0.293292 + 0.257210i 0.0300911 + 0.0263892i
\(96\) 0 0
\(97\) 7.45011 1.48192i 0.756444 0.150466i 0.198221 0.980157i \(-0.436483\pi\)
0.558223 + 0.829691i \(0.311483\pi\)
\(98\) 0 0
\(99\) −1.32097 + 1.97698i −0.132763 + 0.198694i
\(100\) 0 0
\(101\) 0.587307 1.01725i 0.0584393 0.101220i −0.835326 0.549755i \(-0.814721\pi\)
0.893765 + 0.448536i \(0.148054\pi\)
\(102\) 0 0
\(103\) 3.07882 1.77756i 0.303365 0.175148i −0.340589 0.940212i \(-0.610626\pi\)
0.643954 + 0.765065i \(0.277293\pi\)
\(104\) 0 0
\(105\) 0.170720 + 0.258484i 0.0166606 + 0.0252255i
\(106\) 0 0
\(107\) 4.57877 + 5.22109i 0.442647 + 0.504742i 0.929541 0.368719i \(-0.120204\pi\)
−0.486894 + 0.873461i \(0.661870\pi\)
\(108\) 0 0
\(109\) 10.1175 11.5368i 0.969084 1.10503i −0.0253517 0.999679i \(-0.508071\pi\)
0.994435 0.105349i \(-0.0335961\pi\)
\(110\) 0 0
\(111\) −3.86213 + 1.59975i −0.366578 + 0.151841i
\(112\) 0 0
\(113\) −4.14307 6.20054i −0.389747 0.583298i 0.583768 0.811921i \(-0.301578\pi\)
−0.973515 + 0.228623i \(0.926578\pi\)
\(114\) 0 0
\(115\) −0.567084 + 0.151950i −0.0528808 + 0.0141694i
\(116\) 0 0
\(117\) 11.1060 1.46214i 1.02675 0.135175i
\(118\) 0 0
\(119\) 1.36959 10.8224i 0.125550 0.992087i
\(120\) 0 0
\(121\) −9.14601 + 1.20409i −0.831455 + 0.109463i
\(122\) 0 0
\(123\) 7.41795 1.98763i 0.668854 0.179219i
\(124\) 0 0
\(125\) −0.589371 0.882056i −0.0527149 0.0788935i
\(126\) 0 0
\(127\) 12.1043 5.01376i 1.07408 0.444900i 0.225653 0.974208i \(-0.427548\pi\)
0.848430 + 0.529308i \(0.177548\pi\)
\(128\) 0 0
\(129\) −4.51378 + 5.14698i −0.397416 + 0.453166i
\(130\) 0 0
\(131\) −11.9871 13.6686i −1.04732 1.19423i −0.980510 0.196469i \(-0.937053\pi\)
−0.0668055 0.997766i \(-0.521281\pi\)
\(132\) 0 0
\(133\) −4.34481 + 8.69283i −0.376743 + 0.753764i
\(134\) 0 0
\(135\) −0.485147 + 0.280100i −0.0417548 + 0.0241071i
\(136\) 0 0
\(137\) −5.03020 + 8.71257i −0.429759 + 0.744365i −0.996852 0.0792892i \(-0.974735\pi\)
0.567092 + 0.823654i \(0.308068\pi\)
\(138\) 0 0
\(139\) −2.78571 + 4.16911i −0.236281 + 0.353619i −0.930594 0.366054i \(-0.880709\pi\)
0.694313 + 0.719674i \(0.255709\pi\)
\(140\) 0 0
\(141\) 6.12389 1.21812i 0.515725 0.102584i
\(142\) 0 0
\(143\) −6.28747 5.51397i −0.525785 0.461101i
\(144\) 0 0
\(145\) 0.0173359 + 0.0133023i 0.00143967 + 0.00110470i
\(146\) 0 0
\(147\) −5.15002 + 5.74722i −0.424767 + 0.474023i
\(148\) 0 0
\(149\) 8.90213 + 2.38532i 0.729291 + 0.195413i 0.604314 0.796747i \(-0.293447\pi\)
0.124978 + 0.992160i \(0.460114\pi\)
\(150\) 0 0
\(151\) −19.3290 + 14.8317i −1.57297 + 1.20699i −0.706568 + 0.707645i \(0.749758\pi\)
−0.866406 + 0.499340i \(0.833576\pi\)
\(152\) 0 0
\(153\) 7.23132 + 1.36061i 0.584617 + 0.109999i
\(154\) 0 0
\(155\) −0.398633 + 0.962384i −0.0320189 + 0.0773006i
\(156\) 0 0
\(157\) −4.57065 17.0579i −0.364777 1.36137i −0.867723 0.497049i \(-0.834417\pi\)
0.502945 0.864318i \(-0.332250\pi\)
\(158\) 0 0
\(159\) −3.69943 + 7.50171i −0.293384 + 0.594924i
\(160\) 0 0
\(161\) −7.24490 12.7051i −0.570978 1.00130i
\(162\) 0 0
\(163\) 7.37101 2.50212i 0.577342 0.195981i −0.0174682 0.999847i \(-0.505561\pi\)
0.594810 + 0.803866i \(0.297227\pi\)
\(164\) 0 0
\(165\) 0.147714 + 0.0501420i 0.0114995 + 0.00390355i
\(166\) 0 0
\(167\) −15.1382 10.1150i −1.17143 0.782726i −0.191390 0.981514i \(-0.561299\pi\)
−0.980042 + 0.198788i \(0.936299\pi\)
\(168\) 0 0
\(169\) 26.3990i 2.03070i
\(170\) 0 0
\(171\) −5.67693 3.27758i −0.434126 0.250643i
\(172\) 0 0
\(173\) 2.91856 + 0.191292i 0.221894 + 0.0145437i 0.175945 0.984400i \(-0.443702\pi\)
0.0459494 + 0.998944i \(0.485369\pi\)
\(174\) 0 0
\(175\) 8.75562 9.87676i 0.661863 0.746613i
\(176\) 0 0
\(177\) −4.20957 12.4010i −0.316411 0.932116i
\(178\) 0 0
\(179\) 4.28394 + 0.563991i 0.320197 + 0.0421547i 0.288911 0.957356i \(-0.406707\pi\)
0.0312851 + 0.999511i \(0.490040\pi\)
\(180\) 0 0
\(181\) 14.9715 10.0036i 1.11282 0.743562i 0.143570 0.989640i \(-0.454142\pi\)
0.969250 + 0.246078i \(0.0791419\pi\)
\(182\) 0 0
\(183\) −4.51389 + 4.51389i −0.333676 + 0.333676i
\(184\) 0 0
\(185\) −0.245157 0.319495i −0.0180243 0.0234897i
\(186\) 0 0
\(187\) −2.79582 4.72859i −0.204451 0.345789i
\(188\) 0 0
\(189\) −9.81523 9.92084i −0.713953 0.721635i
\(190\) 0 0
\(191\) 0.562910 2.10081i 0.0407307 0.152009i −0.942566 0.334021i \(-0.891594\pi\)
0.983296 + 0.182012i \(0.0582610\pi\)
\(192\) 0 0
\(193\) −1.20917 18.4484i −0.0870383 1.32795i −0.788409 0.615151i \(-0.789095\pi\)
0.701371 0.712796i \(-0.252572\pi\)
\(194\) 0 0
\(195\) −0.281240 0.678973i −0.0201400 0.0486223i
\(196\) 0 0
\(197\) 4.79192 24.0906i 0.341410 1.71638i −0.304108 0.952638i \(-0.598358\pi\)
0.645518 0.763745i \(-0.276642\pi\)
\(198\) 0 0
\(199\) −7.88740 + 23.2355i −0.559123 + 1.64712i 0.187796 + 0.982208i \(0.439866\pi\)
−0.746919 + 0.664915i \(0.768468\pi\)
\(200\) 0 0
\(201\) 0.231841 3.53721i 0.0163528 0.249495i
\(202\) 0 0
\(203\) −0.211007 + 0.501804i −0.0148098 + 0.0352197i
\(204\) 0 0
\(205\) 0.369909 + 0.640702i 0.0258356 + 0.0447485i
\(206\) 0 0
\(207\) 8.84794 4.36332i 0.614974 0.303272i
\(208\) 0 0
\(209\) 0.954726 + 4.79973i 0.0660398 + 0.332004i
\(210\) 0 0
\(211\) 16.1207 + 3.20661i 1.10979 + 0.220752i 0.715762 0.698344i \(-0.246080\pi\)
0.394033 + 0.919096i \(0.371080\pi\)
\(212\) 0 0
\(213\) 0.529048 4.01852i 0.0362498 0.275344i
\(214\) 0 0
\(215\) −0.591484 0.291688i −0.0403389 0.0198929i
\(216\) 0 0
\(217\) −25.7098 3.52482i −1.74529 0.239280i
\(218\) 0 0
\(219\) −1.65267 12.5532i −0.111677 0.848270i
\(220\) 0 0
\(221\) −8.06437 + 24.5917i −0.542468 + 1.65421i
\(222\) 0 0
\(223\) −12.0495 4.99105i −0.806892 0.334225i −0.0591785 0.998247i \(-0.518848\pi\)
−0.747713 + 0.664022i \(0.768848\pi\)
\(224\) 0 0
\(225\) 6.29538 + 6.29538i 0.419692 + 0.419692i
\(226\) 0 0
\(227\) −22.1555 + 1.45215i −1.47051 + 0.0963826i −0.779474 0.626434i \(-0.784514\pi\)
−0.691040 + 0.722817i \(0.742847\pi\)
\(228\) 0 0
\(229\) 0.177365 0.231146i 0.0117206 0.0152746i −0.787456 0.616371i \(-0.788602\pi\)
0.799177 + 0.601096i \(0.205269\pi\)
\(230\) 0 0
\(231\) −0.274908 + 3.87634i −0.0180876 + 0.255045i
\(232\) 0 0
\(233\) −22.2968 + 19.5538i −1.46071 + 1.28101i −0.573861 + 0.818953i \(0.694555\pi\)
−0.886850 + 0.462057i \(0.847112\pi\)
\(234\) 0 0
\(235\) 0.266038 + 0.539473i 0.0173544 + 0.0351913i
\(236\) 0 0
\(237\) 9.68923 0.629383
\(238\) 0 0
\(239\) −3.43951 −0.222483 −0.111242 0.993793i \(-0.535483\pi\)
−0.111242 + 0.993793i \(0.535483\pi\)
\(240\) 0 0
\(241\) 1.44512 + 2.93041i 0.0930884 + 0.188765i 0.938437 0.345451i \(-0.112274\pi\)
−0.845349 + 0.534215i \(0.820607\pi\)
\(242\) 0 0
\(243\) 11.5150 10.0984i 0.738690 0.647814i
\(244\) 0 0
\(245\) −0.663201 0.335926i −0.0423704 0.0214615i
\(246\) 0 0
\(247\) 14.0354 18.2913i 0.893052 1.16385i
\(248\) 0 0
\(249\) −18.7780 + 1.23077i −1.19001 + 0.0779971i
\(250\) 0 0
\(251\) −1.56568 1.56568i −0.0988249 0.0988249i 0.655966 0.754791i \(-0.272262\pi\)
−0.754791 + 0.655966i \(0.772262\pi\)
\(252\) 0 0
\(253\) −6.80435 2.81846i −0.427786 0.177195i
\(254\) 0 0
\(255\) −0.0365659 0.481359i −0.00228985 0.0301439i
\(256\) 0 0
\(257\) −3.38603 25.7195i −0.211215 1.60434i −0.688264 0.725461i \(-0.741627\pi\)
0.477049 0.878877i \(-0.341707\pi\)
\(258\) 0 0
\(259\) 6.14986 7.92647i 0.382134 0.492527i
\(260\) 0 0
\(261\) −0.329320 0.162403i −0.0203844 0.0100525i
\(262\) 0 0
\(263\) −1.22490 + 9.30402i −0.0755304 + 0.573710i 0.911275 + 0.411799i \(0.135099\pi\)
−0.986805 + 0.161912i \(0.948234\pi\)
\(264\) 0 0
\(265\) −0.790294 0.157199i −0.0485473 0.00965667i
\(266\) 0 0
\(267\) 1.07945 + 5.42674i 0.0660610 + 0.332111i
\(268\) 0 0
\(269\) −8.11275 + 4.00077i −0.494643 + 0.243931i −0.672461 0.740132i \(-0.734763\pi\)
0.177818 + 0.984063i \(0.443096\pi\)
\(270\) 0 0
\(271\) 2.02723 + 3.51127i 0.123146 + 0.213294i 0.921007 0.389547i \(-0.127368\pi\)
−0.797861 + 0.602842i \(0.794035\pi\)
\(272\) 0 0
\(273\) 14.5843 11.0675i 0.882684 0.669834i
\(274\) 0 0
\(275\) 0.434706 6.63233i 0.0262138 0.399945i
\(276\) 0 0
\(277\) −5.80002 + 17.0863i −0.348489 + 1.02662i 0.621488 + 0.783423i \(0.286528\pi\)
−0.969978 + 0.243193i \(0.921805\pi\)
\(278\) 0 0
\(279\) 3.41489 17.1678i 0.204444 1.02781i
\(280\) 0 0
\(281\) −11.7785 28.4358i −0.702647 1.69634i −0.717603 0.696452i \(-0.754761\pi\)
0.0149557 0.999888i \(-0.495239\pi\)
\(282\) 0 0
\(283\) −0.222751 3.39853i −0.0132412 0.202021i −0.999354 0.0359436i \(-0.988556\pi\)
0.986113 0.166078i \(-0.0531103\pi\)
\(284\) 0 0
\(285\) −0.111308 + 0.415407i −0.00659331 + 0.0246066i
\(286\) 0 0
\(287\) −13.1018 + 12.9623i −0.773375 + 0.765142i
\(288\) 0 0
\(289\) −10.0671 + 13.6987i −0.592180 + 0.805806i
\(290\) 0 0
\(291\) 5.09789 + 6.64370i 0.298844 + 0.389461i
\(292\) 0 0
\(293\) −5.30636 + 5.30636i −0.310001 + 0.310001i −0.844910 0.534909i \(-0.820346\pi\)
0.534909 + 0.844910i \(0.320346\pi\)
\(294\) 0 0
\(295\) 1.04899 0.700911i 0.0610744 0.0408086i
\(296\) 0 0
\(297\) −6.96754 0.917294i −0.404298 0.0532268i
\(298\) 0 0
\(299\) 11.1534 + 32.8567i 0.645015 + 1.90015i
\(300\) 0 0
\(301\) 3.29139 16.0963i 0.189713 0.927776i
\(302\) 0 0
\(303\) 1.29217 + 0.0846932i 0.0742332 + 0.00486550i
\(304\) 0 0
\(305\) −0.532576 0.307483i −0.0304952 0.0176064i
\(306\) 0 0
\(307\) 8.00859i 0.457074i −0.973535 0.228537i \(-0.926606\pi\)
0.973535 0.228537i \(-0.0733942\pi\)
\(308\) 0 0
\(309\) 3.25878 + 2.17744i 0.185385 + 0.123870i
\(310\) 0 0
\(311\) 8.62267 + 2.92700i 0.488947 + 0.165975i 0.555015 0.831840i \(-0.312712\pi\)
−0.0660689 + 0.997815i \(0.521046\pi\)
\(312\) 0 0
\(313\) 20.8171 7.06647i 1.17665 0.399420i 0.336456 0.941699i \(-0.390772\pi\)
0.840199 + 0.542279i \(0.182438\pi\)
\(314\) 0 0
\(315\) 0.253050 0.432929i 0.0142578 0.0243928i
\(316\) 0 0
\(317\) −11.6551 + 23.6342i −0.654614 + 1.32743i 0.275905 + 0.961185i \(0.411022\pi\)
−0.930520 + 0.366242i \(0.880644\pi\)
\(318\) 0 0
\(319\) 0.0709486 + 0.264784i 0.00397236 + 0.0148250i
\(320\) 0 0
\(321\) −2.92975 + 7.07303i −0.163523 + 0.394778i
\(322\) 0 0
\(323\) 12.5044 8.54403i 0.695764 0.475403i
\(324\) 0 0
\(325\) −24.8427 + 19.0625i −1.37802 + 1.05740i
\(326\) 0 0
\(327\) 16.3403 + 4.37837i 0.903620 + 0.242124i
\(328\) 0 0
\(329\) −11.3188 + 9.81967i −0.624026 + 0.541376i
\(330\) 0 0
\(331\) 12.1335 + 9.31034i 0.666916 + 0.511743i 0.885835 0.464000i \(-0.153586\pi\)
−0.218919 + 0.975743i \(0.570253\pi\)
\(332\) 0 0
\(333\) 5.08780 + 4.46188i 0.278810 + 0.244510i
\(334\) 0 0
\(335\) 0.334927 0.0666211i 0.0182990 0.00363990i
\(336\) 0 0
\(337\) 13.0943 19.5970i 0.713290 1.06751i −0.280885 0.959741i \(-0.590628\pi\)
0.994176 0.107773i \(-0.0343719\pi\)
\(338\) 0 0
\(339\) 4.11063 7.11982i 0.223259 0.386695i
\(340\) 0 0
\(341\) −11.3170 + 6.53388i −0.612851 + 0.353830i
\(342\) 0 0
\(343\) 3.90424 18.1041i 0.210809 0.977527i
\(344\) 0 0
\(345\) −0.426748 0.486612i −0.0229753 0.0261983i
\(346\) 0 0
\(347\) −17.2258 + 19.6423i −0.924732 + 1.05445i 0.0736330 + 0.997285i \(0.476541\pi\)
−0.998365 + 0.0571688i \(0.981793\pi\)
\(348\) 0 0
\(349\) 1.56167 0.646865i 0.0835943 0.0346259i −0.340494 0.940247i \(-0.610594\pi\)
0.424089 + 0.905621i \(0.360594\pi\)
\(350\) 0 0
\(351\) 18.3944 + 27.5291i 0.981818 + 1.46939i
\(352\) 0 0
\(353\) −19.5886 + 5.24875i −1.04260 + 0.279363i −0.739189 0.673498i \(-0.764791\pi\)
−0.303407 + 0.952861i \(0.598124\pi\)
\(354\) 0 0
\(355\) 0.387125 0.0509660i 0.0205465 0.00270499i
\(356\) 0 0
\(357\) 11.3684 3.92278i 0.601681 0.207616i
\(358\) 0 0
\(359\) −26.1478 + 3.44242i −1.38003 + 0.181684i −0.783741 0.621088i \(-0.786691\pi\)
−0.596286 + 0.802772i \(0.703358\pi\)
\(360\) 0 0
\(361\) 5.32050 1.42562i 0.280026 0.0750328i
\(362\) 0 0
\(363\) −5.65011 8.45598i −0.296554 0.443824i
\(364\) 0 0
\(365\) 1.12691 0.466780i 0.0589850 0.0244324i
\(366\) 0 0
\(367\) 7.25447 8.27214i 0.378680 0.431802i −0.530833 0.847476i \(-0.678121\pi\)
0.909514 + 0.415674i \(0.136454\pi\)
\(368\) 0 0
\(369\) −8.19684 9.34670i −0.426710 0.486570i
\(370\) 0 0
\(371\) −1.20567 20.0373i −0.0625953 1.04028i
\(372\) 0 0
\(373\) 16.8343 9.71932i 0.871650 0.503247i 0.00375349 0.999993i \(-0.498805\pi\)
0.867896 + 0.496746i \(0.165472\pi\)
\(374\) 0 0
\(375\) 0.584755 1.01283i 0.0301966 0.0523021i
\(376\) 0 0
\(377\) 0.717499 1.07381i 0.0369531 0.0553042i
\(378\) 0 0
\(379\) 0.401823 0.0799275i 0.0206402 0.00410560i −0.184759 0.982784i \(-0.559151\pi\)
0.205400 + 0.978678i \(0.434151\pi\)
\(380\) 0 0
\(381\) 10.8594 + 9.52340i 0.556342 + 0.487899i
\(382\) 0 0
\(383\) 5.67784 + 4.35676i 0.290124 + 0.222620i 0.743561 0.668668i \(-0.233135\pi\)
−0.453436 + 0.891289i \(0.649802\pi\)
\(384\) 0 0
\(385\) −0.367558 + 0.0710695i −0.0187325 + 0.00362203i
\(386\) 0 0
\(387\) 10.7044 + 2.86824i 0.544137 + 0.145801i
\(388\) 0 0
\(389\) −15.2120 + 11.6726i −0.771279 + 0.591823i −0.917642 0.397408i \(-0.869910\pi\)
0.146363 + 0.989231i \(0.453243\pi\)
\(390\) 0 0
\(391\) 0.236315 + 22.7911i 0.0119510 + 1.15259i
\(392\) 0 0
\(393\) 7.66998 18.5170i 0.386899 0.934058i
\(394\) 0 0
\(395\) 0.241585 + 0.901609i 0.0121555 + 0.0453649i
\(396\) 0 0
\(397\) 2.10167 4.26177i 0.105480 0.213892i −0.837734 0.546079i \(-0.816120\pi\)
0.943214 + 0.332187i \(0.107787\pi\)
\(398\) 0 0
\(399\) −10.7135 0.0573286i −0.536347 0.00287002i
\(400\) 0 0
\(401\) 6.52043 2.21339i 0.325615 0.110531i −0.153846 0.988095i \(-0.549166\pi\)
0.479460 + 0.877564i \(0.340833\pi\)
\(402\) 0 0
\(403\) 58.2981 + 19.7895i 2.90403 + 0.985787i
\(404\) 0 0
\(405\) −0.0407283 0.0272138i −0.00202380 0.00135226i
\(406\) 0 0
\(407\) 5.05202i 0.250419i
\(408\) 0 0
\(409\) −23.0746 13.3221i −1.14097 0.658737i −0.194296 0.980943i \(-0.562242\pi\)
−0.946669 + 0.322206i \(0.895576\pi\)
\(410\) 0 0
\(411\) −11.0672 0.725385i −0.545907 0.0357806i
\(412\) 0 0
\(413\) 23.5185 + 20.8488i 1.15727 + 1.02590i
\(414\) 0 0
\(415\) −0.582725 1.71665i −0.0286049 0.0842672i
\(416\) 0 0
\(417\) −5.48050 0.721522i −0.268381 0.0353331i
\(418\) 0 0
\(419\) −14.1928 + 9.48332i −0.693363 + 0.463290i −0.851656 0.524102i \(-0.824401\pi\)
0.158293 + 0.987392i \(0.449401\pi\)
\(420\) 0 0
\(421\) 19.8696 19.8696i 0.968386 0.968386i −0.0311292 0.999515i \(-0.509910\pi\)
0.999515 + 0.0311292i \(0.00991033\pi\)
\(422\) 0 0
\(423\) −6.15310 8.01887i −0.299174 0.389891i
\(424\) 0 0
\(425\) −19.4078 + 6.81329i −0.941418 + 0.330493i
\(426\) 0 0
\(427\) 4.04425 14.7766i 0.195715 0.715090i
\(428\) 0 0
\(429\) 2.38617 8.90532i 0.115205 0.429953i
\(430\) 0 0
\(431\) −0.309093 4.71585i −0.0148885 0.227155i −0.998818 0.0485992i \(-0.984524\pi\)
0.983930 0.178555i \(-0.0571424\pi\)
\(432\) 0 0
\(433\) −0.788886 1.90454i −0.0379115 0.0915264i 0.903790 0.427977i \(-0.140774\pi\)
−0.941701 + 0.336450i \(0.890774\pi\)
\(434\) 0 0
\(435\) −0.00469970 + 0.0236270i −0.000225333 + 0.00113283i
\(436\) 0 0
\(437\) 6.52676 19.2272i 0.312217 0.919763i
\(438\) 0 0
\(439\) 0.467074 7.12617i 0.0222922 0.340114i −0.972115 0.234503i \(-0.924654\pi\)
0.994408 0.105610i \(-0.0336796\pi\)
\(440\) 0 0
\(441\) 12.0314 + 3.36222i 0.572925 + 0.160106i
\(442\) 0 0
\(443\) 7.45460 + 12.9117i 0.354179 + 0.613456i 0.986977 0.160861i \(-0.0514271\pi\)
−0.632798 + 0.774317i \(0.718094\pi\)
\(444\) 0 0
\(445\) −0.478059 + 0.235752i −0.0226621 + 0.0111757i
\(446\) 0 0
\(447\) 1.98217 + 9.96504i 0.0937534 + 0.471330i
\(448\) 0 0
\(449\) 2.87539 + 0.571951i 0.135698 + 0.0269921i 0.262472 0.964940i \(-0.415462\pi\)
−0.126774 + 0.991932i \(0.540462\pi\)
\(450\) 0 0
\(451\) −1.21141 + 9.20157i −0.0570431 + 0.433285i
\(452\) 0 0
\(453\) −24.0896 11.8797i −1.13183 0.558155i
\(454\) 0 0
\(455\) 1.39349 + 1.08116i 0.0653280 + 0.0506856i
\(456\) 0 0
\(457\) 4.73133 + 35.9380i 0.221322 + 1.68111i 0.636429 + 0.771335i \(0.280411\pi\)
−0.415107 + 0.909773i \(0.636256\pi\)
\(458\) 0 0
\(459\) 5.84641 + 20.9478i 0.272887 + 0.977762i
\(460\) 0 0
\(461\) 11.0626 + 4.58229i 0.515238 + 0.213418i 0.625124 0.780526i \(-0.285049\pi\)
−0.109886 + 0.993944i \(0.535049\pi\)
\(462\) 0 0
\(463\) 3.48279 + 3.48279i 0.161859 + 0.161859i 0.783390 0.621531i \(-0.213489\pi\)
−0.621531 + 0.783390i \(0.713489\pi\)
\(464\) 0 0
\(465\) −1.14593 + 0.0751080i −0.0531411 + 0.00348305i
\(466\) 0 0
\(467\) −16.2660 + 21.1982i −0.752700 + 0.980938i 0.247228 + 0.968957i \(0.420480\pi\)
−0.999928 + 0.0119805i \(0.996186\pi\)
\(468\) 0 0
\(469\) 3.72175 + 7.64988i 0.171854 + 0.353239i
\(470\) 0 0
\(471\) 14.6373 12.8366i 0.674452 0.591478i
\(472\) 0 0
\(473\) −3.65920 7.42012i −0.168250 0.341178i
\(474\) 0 0
\(475\) 18.3242 0.840771
\(476\) 0 0
\(477\) 13.5401 0.619959
\(478\) 0 0
\(479\) −1.78535 3.62034i −0.0815748 0.165417i 0.852264 0.523113i \(-0.175229\pi\)
−0.933838 + 0.357695i \(0.883563\pi\)
\(480\) 0 0
\(481\) −17.8947 + 15.6933i −0.815930 + 0.715552i
\(482\) 0 0
\(483\) 9.02951 13.3583i 0.410857 0.607825i
\(484\) 0 0
\(485\) −0.491106 + 0.640022i −0.0223000 + 0.0290619i
\(486\) 0 0
\(487\) 9.94879 0.652078i 0.450823 0.0295485i 0.161699 0.986840i \(-0.448303\pi\)
0.289124 + 0.957292i \(0.406636\pi\)
\(488\) 0 0
\(489\) 6.06804 + 6.06804i 0.274406 + 0.274406i
\(490\) 0 0
\(491\) −16.7169 6.92437i −0.754424 0.312492i −0.0278785 0.999611i \(-0.508875\pi\)
−0.726545 + 0.687119i \(0.758875\pi\)
\(492\) 0 0
\(493\) 0.667634 0.523380i 0.0300687 0.0235718i
\(494\) 0 0
\(495\) −0.0329604 0.250359i −0.00148146 0.0112528i
\(496\) 0 0
\(497\) 3.67433 + 9.00663i 0.164816 + 0.404003i
\(498\) 0 0
\(499\) 10.6461 + 5.25007i 0.476585 + 0.235025i 0.664684 0.747124i \(-0.268566\pi\)
−0.188100 + 0.982150i \(0.560233\pi\)
\(500\) 0 0
\(501\) 2.61988 19.9000i 0.117048 0.889065i
\(502\) 0 0
\(503\) 14.9914 + 2.98198i 0.668434 + 0.132960i 0.517631 0.855604i \(-0.326814\pi\)
0.150803 + 0.988564i \(0.451814\pi\)
\(504\) 0 0
\(505\) 0.0243372 + 0.122351i 0.00108299 + 0.00544457i
\(506\) 0 0
\(507\) −26.1020 + 12.8721i −1.15923 + 0.571669i
\(508\) 0 0
\(509\) 12.2938 + 21.2934i 0.544911 + 0.943814i 0.998613 + 0.0526599i \(0.0167699\pi\)
−0.453701 + 0.891154i \(0.649897\pi\)
\(510\) 0 0
\(511\) 18.3689 + 24.2059i 0.812593 + 1.07081i
\(512\) 0 0
\(513\) 1.26717 19.3334i 0.0559471 0.853588i
\(514\) 0 0
\(515\) −0.121365 + 0.357529i −0.00534797 + 0.0157546i
\(516\) 0 0
\(517\) −1.47212 + 7.40084i −0.0647437 + 0.325488i
\(518\) 0 0
\(519\) 1.23394 + 2.97899i 0.0541639 + 0.130763i
\(520\) 0 0
\(521\) −1.14939 17.5363i −0.0503558 0.768281i −0.946133 0.323778i \(-0.895047\pi\)
0.895777 0.444503i \(-0.146620\pi\)
\(522\) 0 0
\(523\) 8.69895 32.4649i 0.380379 1.41959i −0.464946 0.885339i \(-0.653926\pi\)
0.845324 0.534253i \(-0.179407\pi\)
\(524\) 0 0
\(525\) 14.0348 + 3.84123i 0.612530 + 0.167645i
\(526\) 0 0
\(527\) 32.3372 + 24.2847i 1.40863 + 1.05786i
\(528\) 0 0
\(529\) 4.60111 + 5.99628i 0.200048 + 0.260708i
\(530\) 0 0
\(531\) −14.9905 + 14.9905i −0.650533 + 0.650533i
\(532\) 0 0
\(533\) 36.3559 24.2922i 1.57475 1.05221i
\(534\) 0 0
\(535\) −0.731213 0.0962660i −0.0316131 0.00416194i
\(536\) 0 0
\(537\) 1.53119 + 4.51073i 0.0660756 + 0.194653i
\(538\) 0 0
\(539\) −4.03513 8.40810i −0.173806 0.362163i
\(540\) 0 0
\(541\) 7.53839 + 0.494092i 0.324101 + 0.0212427i 0.226585 0.973991i \(-0.427244\pi\)
0.0975155 + 0.995234i \(0.468910\pi\)
\(542\) 0 0
\(543\) 17.1911 + 9.92527i 0.737740 + 0.425934i
\(544\) 0 0
\(545\) 1.62967i 0.0698076i
\(546\) 0 0
\(547\) 21.8915 + 14.6275i 0.936015 + 0.625425i 0.927212 0.374536i \(-0.122198\pi\)
0.00880229 + 0.999961i \(0.497198\pi\)
\(548\) 0 0
\(549\) 9.78536 + 3.32168i 0.417629 + 0.141766i
\(550\) 0 0
\(551\) −0.715637 + 0.242926i −0.0304872 + 0.0103490i
\(552\) 0 0
\(553\) −20.1998 + 11.5187i −0.858984 + 0.489825i
\(554\) 0 0
\(555\) 0.196362 0.398183i 0.00833511 0.0169019i
\(556\) 0 0
\(557\) 5.02982 + 18.7716i 0.213120 + 0.795376i 0.986820 + 0.161823i \(0.0517375\pi\)
−0.773699 + 0.633553i \(0.781596\pi\)
\(558\) 0 0
\(559\) −14.9161 + 36.0106i −0.630883 + 1.52309i
\(560\) 0 0
\(561\) 3.31215 5.07001i 0.139839 0.214056i
\(562\) 0 0
\(563\) 19.6376 15.0685i 0.827628 0.635061i −0.105575 0.994411i \(-0.533668\pi\)
0.933203 + 0.359350i \(0.117002\pi\)
\(564\) 0 0
\(565\) 0.765010 + 0.204984i 0.0321842 + 0.00862373i
\(566\) 0 0
\(567\) 0.398423 1.15340i 0.0167322 0.0484384i
\(568\) 0 0
\(569\) 21.5840 + 16.5620i 0.904847 + 0.694313i 0.952496 0.304551i \(-0.0985064\pi\)
−0.0476495 + 0.998864i \(0.515173\pi\)
\(570\) 0 0
\(571\) −6.42183 5.63180i −0.268745 0.235683i 0.514357 0.857576i \(-0.328031\pi\)
−0.783102 + 0.621893i \(0.786364\pi\)
\(572\) 0 0
\(573\) 2.35164 0.467771i 0.0982412 0.0195414i
\(574\) 0 0
\(575\) −15.3212 + 22.9297i −0.638937 + 0.956236i
\(576\) 0 0
\(577\) 7.30896 12.6595i 0.304276 0.527022i −0.672824 0.739803i \(-0.734919\pi\)
0.977100 + 0.212781i \(0.0682521\pi\)
\(578\) 0 0
\(579\) 17.6513 10.1910i 0.733561 0.423522i
\(580\) 0 0
\(581\) 37.6846 24.8894i 1.56342 1.03259i
\(582\) 0 0
\(583\) −6.66494 7.59990i −0.276033 0.314756i
\(584\) 0 0
\(585\) −0.784411 + 0.894449i −0.0324314 + 0.0369809i
\(586\) 0 0
\(587\) 18.8298 7.79956i 0.777189 0.321922i 0.0414086 0.999142i \(-0.486815\pi\)
0.735781 + 0.677220i \(0.236815\pi\)
\(588\) 0 0
\(589\) −20.0156 29.9554i −0.824726 1.23429i
\(590\) 0 0
\(591\) 26.1560 7.00849i 1.07592 0.288291i
\(592\) 0 0
\(593\) −3.27743 + 0.431482i −0.134588 + 0.0177188i −0.197519 0.980299i \(-0.563288\pi\)
0.0629312 + 0.998018i \(0.479955\pi\)
\(594\) 0 0
\(595\) 0.648479 + 0.960054i 0.0265850 + 0.0393584i
\(596\) 0 0
\(597\) −26.8199 + 3.53091i −1.09767 + 0.144511i
\(598\) 0 0
\(599\) 11.3776 3.04861i 0.464875 0.124563i −0.0187761 0.999824i \(-0.505977\pi\)
0.483651 + 0.875261i \(0.339310\pi\)
\(600\) 0 0
\(601\) −23.8253 35.6571i −0.971855 1.45448i −0.888992 0.457922i \(-0.848594\pi\)
−0.0828626 0.996561i \(-0.526406\pi\)
\(602\) 0 0
\(603\) −5.30151 + 2.19596i −0.215894 + 0.0894263i
\(604\) 0 0
\(605\) 0.645975 0.736594i 0.0262626 0.0299468i
\(606\) 0 0
\(607\) 5.17096 + 5.89635i 0.209883 + 0.239326i 0.847197 0.531278i \(-0.178288\pi\)
−0.637314 + 0.770604i \(0.719955\pi\)
\(608\) 0 0
\(609\) −0.599044 + 0.0360452i −0.0242745 + 0.00146063i
\(610\) 0 0
\(611\) 30.7874 17.7751i 1.24552 0.719103i
\(612\) 0 0
\(613\) −23.1545 + 40.1048i −0.935202 + 1.61982i −0.160928 + 0.986966i \(0.551449\pi\)
−0.774273 + 0.632851i \(0.781884\pi\)
\(614\) 0 0
\(615\) −0.453126 + 0.678151i −0.0182718 + 0.0273457i
\(616\) 0 0
\(617\) −38.2011 + 7.59868i −1.53792 + 0.305911i −0.890058 0.455846i \(-0.849337\pi\)
−0.647862 + 0.761758i \(0.724337\pi\)
\(618\) 0 0
\(619\) −17.0575 14.9591i −0.685600 0.601255i 0.244022 0.969770i \(-0.421533\pi\)
−0.929622 + 0.368515i \(0.879866\pi\)
\(620\) 0 0
\(621\) 23.1331 + 17.7506i 0.928298 + 0.712308i
\(622\) 0 0
\(623\) −8.70179 10.0303i −0.348630 0.401854i
\(624\) 0 0
\(625\) −23.9848 6.42672i −0.959394 0.257069i
\(626\) 0 0
\(627\) −4.28020 + 3.28432i −0.170935 + 0.131163i
\(628\) 0 0
\(629\) −14.3815 + 6.13247i −0.573428 + 0.244518i
\(630\) 0 0
\(631\) −9.93277 + 23.9798i −0.395417 + 0.954622i 0.593321 + 0.804966i \(0.297817\pi\)
−0.988738 + 0.149656i \(0.952183\pi\)
\(632\) 0 0
\(633\) 4.68987 + 17.5028i 0.186406 + 0.695675i
\(634\) 0 0
\(635\) −0.615417 + 1.24794i −0.0244221 + 0.0495231i
\(636\) 0 0
\(637\) −17.2478 + 40.4112i −0.683384 + 1.60115i
\(638\) 0 0
\(639\) −6.21310 + 2.10906i −0.245786 + 0.0834332i
\(640\) 0 0
\(641\) −35.3623 12.0039i −1.39673 0.474125i −0.481281 0.876566i \(-0.659828\pi\)
−0.915446 + 0.402441i \(0.868162\pi\)
\(642\) 0 0
\(643\) −14.5483 9.72087i −0.573729 0.383354i 0.234593 0.972094i \(-0.424624\pi\)
−0.808322 + 0.588740i \(0.799624\pi\)
\(644\) 0 0
\(645\) 0.727054i 0.0286277i
\(646\) 0 0
\(647\) −23.8966 13.7967i −0.939473 0.542405i −0.0496776 0.998765i \(-0.515819\pi\)
−0.889795 + 0.456361i \(0.849153\pi\)
\(648\) 0 0
\(649\) 15.7929 + 1.03512i 0.619925 + 0.0406320i
\(650\) 0 0
\(651\) −9.05085 27.1392i −0.354731 1.06367i
\(652\) 0 0
\(653\) −5.11048 15.0550i −0.199988 0.589147i 0.799952 0.600064i \(-0.204858\pi\)
−0.999940 + 0.0109172i \(0.996525\pi\)
\(654\) 0 0
\(655\) 1.91429 + 0.252021i 0.0747976 + 0.00984729i
\(656\) 0 0
\(657\) −17.0422 + 11.3873i −0.664881 + 0.444259i
\(658\) 0 0
\(659\) −0.291923 + 0.291923i −0.0113717 + 0.0113717i −0.712770 0.701398i \(-0.752560\pi\)
0.701398 + 0.712770i \(0.252560\pi\)
\(660\) 0 0
\(661\) 13.6701 + 17.8152i 0.531704 + 0.692930i 0.979555 0.201179i \(-0.0644772\pi\)
−0.447851 + 0.894108i \(0.647811\pi\)
\(662\) 0 0
\(663\) −28.2471 + 4.01717i −1.09703 + 0.156014i
\(664\) 0 0
\(665\) −0.261790 0.998352i −0.0101518 0.0387144i
\(666\) 0 0
\(667\) 0.294374 1.09862i 0.0113982 0.0425387i
\(668\) 0 0
\(669\) −0.940385 14.3475i −0.0363574 0.554706i
\(670\) 0 0
\(671\) −2.95229 7.12746i −0.113972 0.275152i
\(672\) 0 0
\(673\) −1.97794 + 9.94379i −0.0762441 + 0.383305i 0.923756 + 0.382982i \(0.125103\pi\)
−1.00000 0.000323056i \(0.999897\pi\)
\(674\) 0 0
\(675\) −8.45846 + 24.9178i −0.325566 + 0.959087i
\(676\) 0 0
\(677\) 2.11852 32.3224i 0.0814213 1.24225i −0.740267 0.672313i \(-0.765301\pi\)
0.821688 0.569937i \(-0.193032\pi\)
\(678\) 0 0
\(679\) −18.5261 7.79015i −0.710965 0.298958i
\(680\) 0 0
\(681\) −12.2388 21.1982i −0.468991 0.812316i
\(682\) 0 0
\(683\) −31.5572 + 15.5623i −1.20750 + 0.595475i −0.930817 0.365485i \(-0.880903\pi\)
−0.276687 + 0.960960i \(0.589236\pi\)
\(684\) 0 0
\(685\) −0.208445 1.04792i −0.00796427 0.0400391i
\(686\) 0 0
\(687\) 0.315027 + 0.0626629i 0.0120190 + 0.00239074i
\(688\) 0 0
\(689\) −6.21606 + 47.2157i −0.236813 + 1.79877i
\(690\) 0 0
\(691\) 12.2396 + 6.03588i 0.465614 + 0.229616i 0.659935 0.751322i \(-0.270584\pi\)
−0.194321 + 0.980938i \(0.562250\pi\)
\(692\) 0 0
\(693\) 5.82472 2.37624i 0.221263 0.0902660i
\(694\) 0 0
\(695\) −0.0695080 0.527965i −0.00263659 0.0200269i
\(696\) 0 0
\(697\) 27.6645 7.72097i 1.04787 0.292452i
\(698\) 0 0
\(699\) −30.2056 12.5116i −1.14248 0.473231i
\(700\) 0 0
\(701\) −32.2128 32.2128i −1.21666 1.21666i −0.968794 0.247868i \(-0.920270\pi\)
−0.247868 0.968794i \(-0.579730\pi\)
\(702\) 0 0
\(703\) 13.8983 0.910943i 0.524184 0.0343569i
\(704\) 0 0
\(705\) −0.403683 + 0.526090i −0.0152036 + 0.0198137i
\(706\) 0 0
\(707\) −2.79456 + 1.35958i −0.105100 + 0.0511324i
\(708\) 0 0
\(709\) 1.72766 1.51512i 0.0648838 0.0569015i −0.626290 0.779590i \(-0.715427\pi\)
0.691174 + 0.722689i \(0.257094\pi\)
\(710\) 0 0
\(711\) −6.93726 14.0674i −0.260168 0.527568i
\(712\) 0 0
\(713\) 54.2197 2.03054
\(714\) 0 0
\(715\) 0.888159 0.0332152
\(716\) 0 0
\(717\) −1.67709 3.40081i −0.0626321 0.127005i
\(718\) 0 0
\(719\) 16.9166 14.8354i 0.630881 0.553268i −0.283066 0.959100i \(-0.591352\pi\)
0.913948 + 0.405832i \(0.133018\pi\)
\(720\) 0 0
\(721\) −9.38238 0.665393i −0.349418 0.0247805i
\(722\) 0 0
\(723\) −2.19280 + 2.85772i −0.0815513 + 0.106280i
\(724\) 0 0
\(725\) 1.02423 0.0671316i 0.0380390 0.00249321i
\(726\) 0 0
\(727\) −24.1821 24.1821i −0.896864 0.896864i 0.0982935 0.995157i \(-0.468662\pi\)
−0.995157 + 0.0982935i \(0.968662\pi\)
\(728\) 0 0
\(729\) 16.8778 + 6.99102i 0.625105 + 0.258927i
\(730\) 0 0
\(731\) −16.6810 + 19.4236i −0.616968 + 0.718408i
\(732\) 0 0
\(733\) 1.25547 + 9.53627i 0.0463720 + 0.352230i 0.998863 + 0.0476648i \(0.0151779\pi\)
−0.952491 + 0.304565i \(0.901489\pi\)
\(734\) 0 0
\(735\) 0.00877100 0.819535i 0.000323523 0.0302290i
\(736\) 0 0
\(737\) 3.84216 + 1.89474i 0.141528 + 0.0697938i
\(738\) 0 0
\(739\) −3.30360 + 25.0933i −0.121525 + 0.923073i 0.816704 + 0.577057i \(0.195799\pi\)
−0.938229 + 0.346016i \(0.887534\pi\)
\(740\) 0 0
\(741\) 24.9291 + 4.95871i 0.915794 + 0.182163i
\(742\) 0 0
\(743\) 0.878210 + 4.41506i 0.0322184 + 0.161973i 0.993545 0.113438i \(-0.0361862\pi\)
−0.961327 + 0.275410i \(0.911186\pi\)
\(744\) 0 0
\(745\) −0.877851 + 0.432908i −0.0321620 + 0.0158605i
\(746\) 0 0
\(747\) 15.2315 + 26.3817i 0.557291 + 0.965257i
\(748\) 0 0
\(749\) −2.30068 18.2286i −0.0840649 0.666058i
\(750\) 0 0
\(751\) −0.0651670 + 0.994256i −0.00237798 + 0.0362809i −0.998883 0.0472519i \(-0.984954\pi\)
0.996505 + 0.0835328i \(0.0266203\pi\)
\(752\) 0 0
\(753\) 0.784643 2.31148i 0.0285940 0.0842352i
\(754\) 0 0
\(755\) 0.504799 2.53780i 0.0183715 0.0923599i
\(756\) 0 0
\(757\) 8.69911 + 21.0015i 0.316175 + 0.763313i 0.999450 + 0.0331526i \(0.0105547\pi\)
−0.683276 + 0.730161i \(0.739445\pi\)
\(758\) 0 0
\(759\) −0.531037 8.10206i −0.0192754 0.294086i
\(760\) 0 0
\(761\) 4.00113 14.9324i 0.145041 0.541300i −0.854713 0.519101i \(-0.826267\pi\)
0.999754 0.0221984i \(-0.00706656\pi\)
\(762\) 0 0
\(763\) −39.2708 + 10.2977i −1.42170 + 0.372801i
\(764\) 0 0
\(765\) −0.672684 + 0.397730i −0.0243210 + 0.0143800i
\(766\) 0 0
\(767\) −45.3915 59.1553i −1.63899 2.13597i
\(768\) 0 0
\(769\) 28.7142 28.7142i 1.03546 1.03546i 0.0361130 0.999348i \(-0.488502\pi\)
0.999348 0.0361130i \(-0.0114976\pi\)
\(770\) 0 0
\(771\) 23.7791 15.8887i 0.856382 0.572216i
\(772\) 0 0
\(773\) 27.2977 + 3.59381i 0.981830 + 0.129260i 0.604317 0.796744i \(-0.293446\pi\)
0.377513 + 0.926004i \(0.376779\pi\)
\(774\) 0 0
\(775\) 15.7283 + 46.3341i 0.564977 + 1.66437i
\(776\) 0 0
\(777\) 10.8359 + 2.21574i 0.388737 + 0.0794893i
\(778\) 0 0
\(779\) −25.5323 1.67347i −0.914789 0.0599585i
\(780\) 0 0
\(781\) 4.24210 + 2.44918i 0.151794 + 0.0876386i
\(782\) 0 0
\(783\) 1.08528i 0.0387848i
\(784\) 0 0
\(785\) 1.55944 + 1.04198i 0.0556586 + 0.0371899i
\(786\) 0 0
\(787\) 11.5557 + 3.92265i 0.411918 + 0.139827i 0.519703 0.854347i \(-0.326043\pi\)
−0.107785 + 0.994174i \(0.534376\pi\)
\(788\) 0 0
\(789\) −9.79658 + 3.32549i −0.348768 + 0.118391i
\(790\) 0 0
\(791\) −0.105576 + 19.7300i −0.00375385 + 0.701517i
\(792\) 0 0
\(793\) −16.0753 + 32.5975i −0.570852 + 1.15757i
\(794\) 0 0
\(795\) −0.229914 0.858051i −0.00815421 0.0304319i
\(796\) 0 0
\(797\) 8.13758 19.6459i 0.288248 0.695892i −0.711731 0.702452i \(-0.752088\pi\)
0.999978 + 0.00656064i \(0.00208833\pi\)
\(798\) 0 0
\(799\) 22.8548 4.79296i 0.808545 0.169563i
\(800\) 0 0
\(801\) 7.10599 5.45262i 0.251078 0.192659i
\(802\) 0 0
\(803\) 14.7803 + 3.96038i 0.521587 + 0.139759i
\(804\) 0 0
\(805\) 1.46816 + 0.507152i 0.0517460 + 0.0178748i
\(806\) 0 0
\(807\) −7.91150 6.07071i −0.278498 0.213699i
\(808\) 0 0
\(809\) 3.57202 + 3.13258i 0.125586 + 0.110136i 0.719835 0.694145i \(-0.244217\pi\)
−0.594249 + 0.804281i \(0.702551\pi\)
\(810\) 0 0
\(811\) 5.88089 1.16978i 0.206506 0.0410766i −0.0907532 0.995873i \(-0.528927\pi\)
0.297259 + 0.954797i \(0.403927\pi\)
\(812\) 0 0
\(813\) −2.48329 + 3.71650i −0.0870927 + 0.130343i
\(814\) 0 0
\(815\) −0.413351 + 0.715944i −0.0144790 + 0.0250784i
\(816\) 0 0
\(817\) 19.7532 11.4045i 0.691078 0.398994i
\(818\) 0 0
\(819\) −26.5104 13.2503i −0.926349 0.463003i
\(820\) 0 0
\(821\) −27.2519 31.0748i −0.951098 1.08452i −0.996335 0.0855427i \(-0.972738\pi\)
0.0452368 0.998976i \(-0.485596\pi\)
\(822\) 0 0
\(823\) 9.48280 10.8131i 0.330550 0.376920i −0.562562 0.826755i \(-0.690184\pi\)
0.893111 + 0.449836i \(0.148517\pi\)
\(824\) 0 0
\(825\) 6.76967 2.80409i 0.235689 0.0976258i
\(826\) 0 0
\(827\) −2.91213 4.35831i −0.101265 0.151553i 0.777377 0.629035i \(-0.216550\pi\)
−0.878642 + 0.477482i \(0.841550\pi\)
\(828\) 0 0
\(829\) −52.6236 + 14.1004i −1.82769 + 0.489729i −0.997684 0.0680214i \(-0.978331\pi\)
−0.830009 + 0.557750i \(0.811665\pi\)
\(830\) 0 0
\(831\) −19.7221 + 2.59647i −0.684153 + 0.0900704i
\(832\) 0 0
\(833\) −19.0371 + 21.6931i −0.659597 + 0.751620i
\(834\) 0 0
\(835\) 1.91707 0.252387i 0.0663428 0.00873420i
\(836\) 0 0
\(837\) 49.9735 13.3904i 1.72734 0.462839i
\(838\) 0 0
\(839\) −11.1168 16.6375i −0.383796 0.574391i 0.588397 0.808572i \(-0.299759\pi\)
−0.972193 + 0.234181i \(0.924759\pi\)
\(840\) 0 0
\(841\) 26.7534 11.0816i 0.922531 0.382125i
\(842\) 0 0
\(843\) 22.3727 25.5112i 0.770557 0.878652i
\(844\) 0 0
\(845\) −1.84859 2.10792i −0.0635935 0.0725145i
\(846\) 0 0
\(847\) 21.8318 + 10.9119i 0.750149 + 0.374936i
\(848\) 0 0
\(849\) 3.25167 1.87735i 0.111597 0.0644306i
\(850\) 0 0
\(851\) −10.4807 + 18.1531i −0.359274 + 0.622281i
\(852\) 0 0
\(853\) −6.92031 + 10.3570i −0.236947 + 0.354616i −0.930818 0.365483i \(-0.880904\pi\)
0.693871 + 0.720099i \(0.255904\pi\)
\(854\) 0 0
\(855\) 0.682805 0.135818i 0.0233514 0.00464489i
\(856\) 0 0
\(857\) −0.601860 0.527817i −0.0205591 0.0180299i 0.649005 0.760784i \(-0.275186\pi\)
−0.669564 + 0.742755i \(0.733519\pi\)
\(858\) 0 0
\(859\) −42.5997 32.6879i −1.45348 1.11530i −0.970912 0.239438i \(-0.923037\pi\)
−0.482570 0.875857i \(-0.660297\pi\)
\(860\) 0 0
\(861\) −19.2049 6.63399i −0.654500 0.226086i
\(862\) 0 0
\(863\) 11.7249 + 3.14168i 0.399120 + 0.106944i 0.452795 0.891615i \(-0.350427\pi\)
−0.0536751 + 0.998558i \(0.517094\pi\)
\(864\) 0 0
\(865\) −0.246437 + 0.189098i −0.00837911 + 0.00642951i
\(866\) 0 0
\(867\) −18.4532 3.27435i −0.626704 0.111203i
\(868\) 0 0
\(869\) −4.48108 + 10.8183i −0.152010 + 0.366985i
\(870\) 0 0
\(871\) −5.22367 19.4950i −0.176997 0.660563i
\(872\) 0 0
\(873\) 5.99573 12.1581i 0.202925 0.411491i
\(874\) 0 0
\(875\) −0.0150187 + 2.80668i −0.000507724 + 0.0948830i
\(876\) 0 0
\(877\) −6.97049 + 2.36616i −0.235377 + 0.0798996i −0.436636 0.899638i \(-0.643830\pi\)
0.201259 + 0.979538i \(0.435497\pi\)
\(878\) 0 0
\(879\) −7.83402 2.65929i −0.264235 0.0896957i
\(880\) 0 0
\(881\) −6.61380 4.41920i −0.222825 0.148887i 0.439148 0.898415i \(-0.355280\pi\)
−0.661973 + 0.749528i \(0.730280\pi\)
\(882\) 0 0
\(883\) 39.6083i 1.33293i −0.745538 0.666463i \(-0.767808\pi\)
0.745538 0.666463i \(-0.232192\pi\)
\(884\) 0 0
\(885\) 1.20451 + 0.695422i 0.0404890 + 0.0233764i
\(886\) 0 0
\(887\) −43.9138 2.87826i −1.47448 0.0966426i −0.693165 0.720779i \(-0.743784\pi\)
−0.781316 + 0.624136i \(0.785451\pi\)
\(888\) 0 0
\(889\) −33.9608 6.94435i −1.13901 0.232906i
\(890\) 0 0
\(891\) −0.197523 0.581883i −0.00661726 0.0194938i
\(892\) 0 0
\(893\) −20.6254 2.71539i −0.690203 0.0908670i
\(894\) 0 0
\(895\) −0.381558 + 0.254949i −0.0127541 + 0.00852200i
\(896\) 0 0
\(897\) −27.0487 + 27.0487i −0.903129 + 0.903129i
\(898\) 0 0
\(899\) −1.22851 1.60103i −0.0409732 0.0533974i
\(900\) 0 0
\(901\) −13.5442 + 28.1982i −0.451222 + 0.939419i
\(902\) 0 0
\(903\) 17.5201 4.59415i 0.583031 0.152884i
\(904\) 0 0
\(905\) −0.494941 + 1.84715i −0.0164524 + 0.0614012i
\(906\) 0 0
\(907\) −1.81378 27.6730i −0.0602256 0.918865i −0.915914 0.401374i \(-0.868533\pi\)
0.855689 0.517491i \(-0.173134\pi\)
\(908\) 0 0
\(909\) −0.802200 1.93668i −0.0266073 0.0642357i
\(910\) 0 0
\(911\) −7.52096 + 37.8104i −0.249180 + 1.25271i 0.630139 + 0.776482i \(0.282998\pi\)
−0.879320 + 0.476232i \(0.842002\pi\)
\(912\) 0 0
\(913\) 7.31025 21.5353i 0.241934 0.712714i
\(914\) 0 0
\(915\) 0.0443409 0.676511i 0.00146586 0.0223648i
\(916\) 0 0
\(917\) 6.02309 + 47.7218i 0.198900 + 1.57591i
\(918\) 0 0
\(919\) −0.273051 0.472938i −0.00900712 0.0156008i 0.861487 0.507780i \(-0.169534\pi\)
−0.870494 + 0.492179i \(0.836200\pi\)
\(920\) 0 0
\(921\) 7.91847 3.90496i 0.260923 0.128673i
\(922\) 0 0
\(923\) −4.50216 22.6339i −0.148191 0.745004i
\(924\) 0 0
\(925\) −18.5533 3.69047i −0.610028 0.121342i
\(926\) 0 0
\(927\) 0.828130 6.29027i 0.0271994 0.206600i
\(928\) 0 0
\(929\) −8.10760 3.99822i −0.266002 0.131177i 0.304398 0.952545i \(-0.401545\pi\)
−0.570399 + 0.821368i \(0.693212\pi\)
\(930\) 0 0
\(931\) 22.4034 12.6169i 0.734242 0.413502i
\(932\) 0 0
\(933\) 1.31032 + 9.95284i 0.0428978 + 0.325841i
\(934\) 0 0
\(935\) 0.554361 + 0.181792i 0.0181295 + 0.00594524i
\(936\) 0 0
\(937\) 14.9994 + 6.21294i 0.490008 + 0.202968i 0.613986 0.789317i \(-0.289565\pi\)
−0.123978 + 0.992285i \(0.539565\pi\)
\(938\) 0 0
\(939\) 17.1373 + 17.1373i 0.559255 + 0.559255i
\(940\) 0 0
\(941\) −22.3416 + 1.46434i −0.728315 + 0.0477363i −0.425050 0.905170i \(-0.639743\pi\)
−0.303265 + 0.952906i \(0.598077\pi\)
\(942\) 0 0
\(943\) 23.4421 30.5503i 0.763379 0.994855i
\(944\) 0 0
\(945\) 1.47843 + 0.104850i 0.0480935 + 0.00341076i
\(946\) 0 0
\(947\) −1.38321 + 1.21304i −0.0449483 + 0.0394186i −0.681525 0.731795i \(-0.738683\pi\)
0.636577 + 0.771213i \(0.280350\pi\)
\(948\) 0 0
\(949\) −31.8846 64.6556i −1.03502 2.09881i
\(950\) 0 0
\(951\) −29.0512 −0.942050
\(952\) 0 0
\(953\) 36.8614 1.19406 0.597029 0.802220i \(-0.296348\pi\)
0.597029 + 0.802220i \(0.296348\pi\)
\(954\) 0 0
\(955\) 0.102162 + 0.207163i 0.00330587 + 0.00670365i
\(956\) 0 0
\(957\) −0.227210 + 0.199258i −0.00734466 + 0.00644109i
\(958\) 0 0
\(959\) 23.9350 11.6446i 0.772902 0.376025i
\(960\) 0 0
\(961\) 39.6928 51.7287i 1.28041 1.66867i
\(962\) 0 0
\(963\) 12.3667 0.810554i 0.398510 0.0261197i
\(964\) 0 0
\(965\) 1.38840 + 1.38840i 0.0446942 + 0.0446942i
\(966\) 0 0
\(967\) −37.7950 15.6552i −1.21540 0.503437i −0.319458 0.947600i \(-0.603501\pi\)
−0.895946 + 0.444163i \(0.853501\pi\)
\(968\) 0 0
\(969\) 14.5450 + 8.19767i 0.467253 + 0.263347i
\(970\) 0 0
\(971\) 1.60457 + 12.1879i 0.0514932 + 0.391130i 0.997712 + 0.0676032i \(0.0215352\pi\)
−0.946219 + 0.323527i \(0.895131\pi\)
\(972\) 0 0
\(973\) 12.2834 5.01110i 0.393786 0.160648i
\(974\) 0 0
\(975\) −30.9612 15.2684i −0.991551 0.488979i
\(976\) 0 0
\(977\) −0.0392278 + 0.297965i −0.00125501 + 0.00953274i −0.992061 0.125758i \(-0.959864\pi\)
0.990806 + 0.135291i \(0.0431969\pi\)
\(978\) 0 0
\(979\) −6.55832 1.30453i −0.209605 0.0416930i
\(980\) 0 0
\(981\) −5.34250 26.8586i −0.170573 0.857528i
\(982\) 0 0
\(983\) 18.7251 9.23420i 0.597238 0.294525i −0.118434 0.992962i \(-0.537787\pi\)
0.715672 + 0.698437i \(0.246121\pi\)
\(984\) 0 0
\(985\) 1.30432 + 2.25914i 0.0415590 + 0.0719823i
\(986\) 0 0
\(987\) −15.2282 6.40340i −0.484718 0.203822i
\(988\) 0 0
\(989\) −2.24509 + 34.2535i −0.0713898 + 1.08920i
\(990\) 0 0
\(991\) 16.2514 47.8751i 0.516243 1.52080i −0.306206 0.951965i \(-0.599060\pi\)
0.822450 0.568838i \(-0.192607\pi\)
\(992\) 0 0
\(993\) −3.28934 + 16.5366i −0.104384 + 0.524774i
\(994\) 0 0
\(995\) −0.997273 2.40763i −0.0316157 0.0763270i
\(996\) 0 0
\(997\) 2.04888 + 31.2598i 0.0648886 + 0.990009i 0.898870 + 0.438216i \(0.144390\pi\)
−0.833981 + 0.551793i \(0.813944\pi\)
\(998\) 0 0
\(999\) −5.17674 + 19.3199i −0.163785 + 0.611253i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 952.2.cw.b.129.13 288
7.5 odd 6 inner 952.2.cw.b.537.13 yes 288
17.12 odd 16 inner 952.2.cw.b.913.13 yes 288
119.12 even 48 inner 952.2.cw.b.369.13 yes 288
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.cw.b.129.13 288 1.1 even 1 trivial
952.2.cw.b.369.13 yes 288 119.12 even 48 inner
952.2.cw.b.537.13 yes 288 7.5 odd 6 inner
952.2.cw.b.913.13 yes 288 17.12 odd 16 inner