Properties

Label 95.3.d.c.94.3
Level $95$
Weight $3$
Character 95.94
Self dual yes
Analytic conductor $2.589$
Analytic rank $0$
Dimension $4$
CM discriminant -95
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [95,3,Mod(94,95)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(95, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("95.94"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 95.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,16,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.58856251142\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.7600.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} + 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 94.3
Root \(-1.83901\) of defining polynomial
Character \(\chi\) \(=\) 95.94

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.13657 q^{2} +3.67802 q^{3} -2.70820 q^{4} +5.00000 q^{5} +4.18034 q^{6} -7.62436 q^{8} +4.52786 q^{9} +5.68286 q^{10} +13.4164 q^{11} -9.96084 q^{12} -20.1266 q^{13} +18.3901 q^{15} +2.16718 q^{16} +5.14624 q^{18} -19.0000 q^{19} -13.5410 q^{20} +15.2487 q^{22} -28.0426 q^{24} +25.0000 q^{25} -22.8754 q^{26} -16.4486 q^{27} +20.9017 q^{30} +32.9606 q^{32} +49.3459 q^{33} -12.2624 q^{36} -73.3555 q^{37} -21.5949 q^{38} -74.0263 q^{39} -38.1218 q^{40} -36.3344 q^{44} +22.6393 q^{45} +7.97096 q^{48} +49.0000 q^{49} +28.4143 q^{50} +54.5071 q^{52} +69.4725 q^{53} -18.6950 q^{54} +67.0820 q^{55} -69.8825 q^{57} -49.8042 q^{60} +120.748 q^{61} +28.7933 q^{64} -100.633 q^{65} +56.0851 q^{66} +122.701 q^{67} -34.5221 q^{72} -83.3738 q^{74} +91.9506 q^{75} +51.4559 q^{76} -84.1362 q^{78} +10.8359 q^{80} -101.249 q^{81} -102.291 q^{88} +25.7312 q^{90} -95.0000 q^{95} +121.230 q^{96} +185.023 q^{97} +55.6920 q^{98} +60.7477 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{4} + 20 q^{5} - 28 q^{6} + 36 q^{9} + 116 q^{16} - 76 q^{19} + 80 q^{20} - 300 q^{24} + 100 q^{25} - 172 q^{26} - 140 q^{30} + 264 q^{36} + 8 q^{39} - 360 q^{44} + 180 q^{45} + 196 q^{49} - 200 q^{54}+ \cdots - 240 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.13657 0.568286 0.284143 0.958782i \(-0.408291\pi\)
0.284143 + 0.958782i \(0.408291\pi\)
\(3\) 3.67802 1.22601 0.613004 0.790080i \(-0.289961\pi\)
0.613004 + 0.790080i \(0.289961\pi\)
\(4\) −2.70820 −0.677051
\(5\) 5.00000 1.00000
\(6\) 4.18034 0.696723
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) −7.62436 −0.953045
\(9\) 4.52786 0.503096
\(10\) 5.68286 0.568286
\(11\) 13.4164 1.21967 0.609837 0.792527i \(-0.291235\pi\)
0.609837 + 0.792527i \(0.291235\pi\)
\(12\) −9.96084 −0.830070
\(13\) −20.1266 −1.54820 −0.774102 0.633061i \(-0.781798\pi\)
−0.774102 + 0.633061i \(0.781798\pi\)
\(14\) 0 0
\(15\) 18.3901 1.22601
\(16\) 2.16718 0.135449
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 5.14624 0.285902
\(19\) −19.0000 −1.00000
\(20\) −13.5410 −0.677051
\(21\) 0 0
\(22\) 15.2487 0.693123
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) −28.0426 −1.16844
\(25\) 25.0000 1.00000
\(26\) −22.8754 −0.879823
\(27\) −16.4486 −0.609208
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 20.9017 0.696723
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 32.9606 1.03002
\(33\) 49.3459 1.49533
\(34\) 0 0
\(35\) 0 0
\(36\) −12.2624 −0.340622
\(37\) −73.3555 −1.98258 −0.991291 0.131691i \(-0.957959\pi\)
−0.991291 + 0.131691i \(0.957959\pi\)
\(38\) −21.5949 −0.568286
\(39\) −74.0263 −1.89811
\(40\) −38.1218 −0.953045
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) −36.3344 −0.825781
\(45\) 22.6393 0.503096
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 7.97096 0.166062
\(49\) 49.0000 1.00000
\(50\) 28.4143 0.568286
\(51\) 0 0
\(52\) 54.5071 1.04821
\(53\) 69.4725 1.31080 0.655401 0.755281i \(-0.272500\pi\)
0.655401 + 0.755281i \(0.272500\pi\)
\(54\) −18.6950 −0.346205
\(55\) 67.0820 1.21967
\(56\) 0 0
\(57\) −69.8825 −1.22601
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) −49.8042 −0.830070
\(61\) 120.748 1.97947 0.989735 0.142915i \(-0.0456475\pi\)
0.989735 + 0.142915i \(0.0456475\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 28.7933 0.449896
\(65\) −100.633 −1.54820
\(66\) 56.0851 0.849775
\(67\) 122.701 1.83136 0.915682 0.401903i \(-0.131651\pi\)
0.915682 + 0.401903i \(0.131651\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −34.5221 −0.479473
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) −83.3738 −1.12667
\(75\) 91.9506 1.22601
\(76\) 51.4559 0.677051
\(77\) 0 0
\(78\) −84.1362 −1.07867
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 10.8359 0.135449
\(81\) −101.249 −1.24999
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) −102.291 −1.16240
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 25.7312 0.285902
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −95.0000 −1.00000
\(96\) 121.230 1.26281
\(97\) 185.023 1.90745 0.953726 0.300677i \(-0.0972126\pi\)
0.953726 + 0.300677i \(0.0972126\pi\)
\(98\) 55.6920 0.568286
\(99\) 60.7477 0.613613
\(100\) −67.7051 −0.677051
\(101\) −201.246 −1.99254 −0.996268 0.0863148i \(-0.972491\pi\)
−0.996268 + 0.0863148i \(0.972491\pi\)
\(102\) 0 0
\(103\) −81.1215 −0.787587 −0.393794 0.919199i \(-0.628838\pi\)
−0.393794 + 0.919199i \(0.628838\pi\)
\(104\) 153.453 1.47551
\(105\) 0 0
\(106\) 78.9605 0.744911
\(107\) −74.6821 −0.697964 −0.348982 0.937129i \(-0.613473\pi\)
−0.348982 + 0.937129i \(0.613473\pi\)
\(108\) 44.5462 0.412465
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 76.2436 0.693123
\(111\) −269.803 −2.43066
\(112\) 0 0
\(113\) 40.8682 0.361666 0.180833 0.983514i \(-0.442121\pi\)
0.180833 + 0.983514i \(0.442121\pi\)
\(114\) −79.4265 −0.696723
\(115\) 0 0
\(116\) 0 0
\(117\) −91.1307 −0.778895
\(118\) 0 0
\(119\) 0 0
\(120\) −140.213 −1.16844
\(121\) 59.0000 0.487603
\(122\) 137.238 1.12491
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000 1.00000
\(126\) 0 0
\(127\) −134.350 −1.05788 −0.528938 0.848660i \(-0.677410\pi\)
−0.528938 + 0.848660i \(0.677410\pi\)
\(128\) −99.1166 −0.774349
\(129\) 0 0
\(130\) −114.377 −0.879823
\(131\) −118.000 −0.900763 −0.450382 0.892836i \(-0.648712\pi\)
−0.450382 + 0.892836i \(0.648712\pi\)
\(132\) −133.639 −1.01241
\(133\) 0 0
\(134\) 139.459 1.04074
\(135\) −82.2431 −0.609208
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) −201.246 −1.44781 −0.723907 0.689898i \(-0.757656\pi\)
−0.723907 + 0.689898i \(0.757656\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −270.027 −1.88830
\(144\) 9.81272 0.0681439
\(145\) 0 0
\(146\) 0 0
\(147\) 180.223 1.22601
\(148\) 198.662 1.34231
\(149\) 228.079 1.53073 0.765366 0.643596i \(-0.222558\pi\)
0.765366 + 0.643596i \(0.222558\pi\)
\(150\) 104.508 0.696723
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 144.863 0.953045
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 200.478 1.28512
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 255.522 1.60705
\(160\) 164.803 1.03002
\(161\) 0 0
\(162\) −115.077 −0.710352
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 246.729 1.49533
\(166\) 0 0
\(167\) −331.734 −1.98643 −0.993215 0.116291i \(-0.962900\pi\)
−0.993215 + 0.116291i \(0.962900\pi\)
\(168\) 0 0
\(169\) 236.082 1.39694
\(170\) 0 0
\(171\) −86.0294 −0.503096
\(172\) 0 0
\(173\) 299.247 1.72975 0.864874 0.501988i \(-0.167398\pi\)
0.864874 + 0.501988i \(0.167398\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 29.0758 0.165204
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) −61.3119 −0.340622
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 444.113 2.42685
\(184\) 0 0
\(185\) −366.778 −1.98258
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) −107.974 −0.568286
\(191\) −302.000 −1.58115 −0.790576 0.612364i \(-0.790219\pi\)
−0.790576 + 0.612364i \(0.790219\pi\)
\(192\) 105.903 0.551576
\(193\) −66.9161 −0.346716 −0.173358 0.984859i \(-0.555462\pi\)
−0.173358 + 0.984859i \(0.555462\pi\)
\(194\) 210.292 1.08398
\(195\) −370.132 −1.89811
\(196\) −132.702 −0.677051
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 69.0441 0.348708
\(199\) 322.000 1.61809 0.809045 0.587746i \(-0.199985\pi\)
0.809045 + 0.587746i \(0.199985\pi\)
\(200\) −190.609 −0.953045
\(201\) 451.299 2.24527
\(202\) −228.731 −1.13233
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −92.2004 −0.447575
\(207\) 0 0
\(208\) −43.6182 −0.209703
\(209\) −254.912 −1.21967
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) −188.146 −0.887480
\(213\) 0 0
\(214\) −84.8816 −0.396643
\(215\) 0 0
\(216\) 125.410 0.580603
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −181.672 −0.825781
\(221\) 0 0
\(222\) −306.651 −1.38131
\(223\) −386.289 −1.73224 −0.866120 0.499837i \(-0.833393\pi\)
−0.866120 + 0.499837i \(0.833393\pi\)
\(224\) 0 0
\(225\) 113.197 0.503096
\(226\) 46.4497 0.205529
\(227\) 442.075 1.94747 0.973733 0.227694i \(-0.0731187\pi\)
0.973733 + 0.227694i \(0.0731187\pi\)
\(228\) 189.256 0.830070
\(229\) −415.909 −1.81619 −0.908097 0.418759i \(-0.862465\pi\)
−0.908097 + 0.418759i \(0.862465\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) −103.577 −0.442635
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 98.0000 0.410042 0.205021 0.978758i \(-0.434274\pi\)
0.205021 + 0.978758i \(0.434274\pi\)
\(240\) 39.8548 0.166062
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 67.0578 0.277098
\(243\) −224.359 −0.923290
\(244\) −327.009 −1.34020
\(245\) 245.000 1.00000
\(246\) 0 0
\(247\) 382.406 1.54820
\(248\) 0 0
\(249\) 0 0
\(250\) 142.072 0.568286
\(251\) −182.000 −0.725100 −0.362550 0.931964i \(-0.618094\pi\)
−0.362550 + 0.931964i \(0.618094\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −152.699 −0.601177
\(255\) 0 0
\(256\) −227.827 −0.889948
\(257\) 504.396 1.96263 0.981315 0.192407i \(-0.0616292\pi\)
0.981315 + 0.192407i \(0.0616292\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 272.535 1.04821
\(261\) 0 0
\(262\) −134.116 −0.511891
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) −376.231 −1.42512
\(265\) 347.363 1.31080
\(266\) 0 0
\(267\) 0 0
\(268\) −332.300 −1.23993
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) −93.4752 −0.346205
\(271\) −40.2492 −0.148521 −0.0742606 0.997239i \(-0.523660\pi\)
−0.0742606 + 0.997239i \(0.523660\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 335.410 1.21967
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) −228.731 −0.822772
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) −349.412 −1.22601
\(286\) −306.906 −1.07310
\(287\) 0 0
\(288\) 149.241 0.518198
\(289\) 289.000 1.00000
\(290\) 0 0
\(291\) 680.519 2.33855
\(292\) 0 0
\(293\) −5.92126 −0.0202091 −0.0101045 0.999949i \(-0.503216\pi\)
−0.0101045 + 0.999949i \(0.503216\pi\)
\(294\) 204.837 0.696723
\(295\) 0 0
\(296\) 559.289 1.88949
\(297\) −220.681 −0.743035
\(298\) 259.228 0.869893
\(299\) 0 0
\(300\) −249.021 −0.830070
\(301\) 0 0
\(302\) 0 0
\(303\) −740.188 −2.44287
\(304\) −41.1765 −0.135449
\(305\) 603.738 1.97947
\(306\) 0 0
\(307\) 47.3076 0.154096 0.0770482 0.997027i \(-0.475450\pi\)
0.0770482 + 0.997027i \(0.475450\pi\)
\(308\) 0 0
\(309\) −298.367 −0.965589
\(310\) 0 0
\(311\) −362.243 −1.16477 −0.582384 0.812914i \(-0.697880\pi\)
−0.582384 + 0.812914i \(0.697880\pi\)
\(312\) 564.403 1.80898
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −516.045 −1.62790 −0.813951 0.580933i \(-0.802688\pi\)
−0.813951 + 0.580933i \(0.802688\pi\)
\(318\) 290.419 0.913267
\(319\) 0 0
\(320\) 143.967 0.449896
\(321\) −274.683 −0.855709
\(322\) 0 0
\(323\) 0 0
\(324\) 274.204 0.846307
\(325\) −503.166 −1.54820
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 280.426 0.849775
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) −332.144 −0.997429
\(334\) −377.039 −1.12886
\(335\) 613.507 1.83136
\(336\) 0 0
\(337\) −60.2832 −0.178882 −0.0894409 0.995992i \(-0.528508\pi\)
−0.0894409 + 0.995992i \(0.528508\pi\)
\(338\) 268.324 0.793859
\(339\) 150.314 0.443405
\(340\) 0 0
\(341\) 0 0
\(342\) −97.7786 −0.285902
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 340.115 0.982992
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) −518.000 −1.48424 −0.742120 0.670267i \(-0.766180\pi\)
−0.742120 + 0.670267i \(0.766180\pi\)
\(350\) 0 0
\(351\) 331.056 0.943179
\(352\) 442.213 1.25629
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 67.0820 0.186858 0.0934290 0.995626i \(-0.470217\pi\)
0.0934290 + 0.995626i \(0.470217\pi\)
\(360\) −172.610 −0.479473
\(361\) 361.000 1.00000
\(362\) 0 0
\(363\) 217.003 0.597806
\(364\) 0 0
\(365\) 0 0
\(366\) 504.766 1.37914
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −416.869 −1.12667
\(371\) 0 0
\(372\) 0 0
\(373\) 708.219 1.89871 0.949355 0.314205i \(-0.101738\pi\)
0.949355 + 0.314205i \(0.101738\pi\)
\(374\) 0 0
\(375\) 459.753 1.22601
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 257.279 0.677051
\(381\) −494.144 −1.29697
\(382\) −343.245 −0.898547
\(383\) 755.008 1.97130 0.985651 0.168798i \(-0.0539885\pi\)
0.985651 + 0.168798i \(0.0539885\pi\)
\(384\) −364.553 −0.949358
\(385\) 0 0
\(386\) −76.0550 −0.197034
\(387\) 0 0
\(388\) −501.080 −1.29144
\(389\) −742.000 −1.90746 −0.953728 0.300672i \(-0.902789\pi\)
−0.953728 + 0.300672i \(0.902789\pi\)
\(390\) −420.681 −1.07867
\(391\) 0 0
\(392\) −373.594 −0.953045
\(393\) −434.007 −1.10434
\(394\) 0 0
\(395\) 0 0
\(396\) −164.517 −0.415447
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 365.976 0.919538
\(399\) 0 0
\(400\) 54.1796 0.135449
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 512.934 1.27595
\(403\) 0 0
\(404\) 545.016 1.34905
\(405\) −506.246 −1.24999
\(406\) 0 0
\(407\) −984.168 −2.41810
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 219.694 0.533237
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −663.386 −1.59468
\(417\) −740.188 −1.77503
\(418\) −289.726 −0.693123
\(419\) 458.000 1.09308 0.546539 0.837433i \(-0.315945\pi\)
0.546539 + 0.837433i \(0.315945\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −529.683 −1.24925
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 202.254 0.472557
\(429\) −993.167 −2.31508
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −35.6472 −0.0825167
\(433\) 679.615 1.56955 0.784774 0.619781i \(-0.212779\pi\)
0.784774 + 0.619781i \(0.212779\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) −511.457 −1.16240
\(441\) 221.865 0.503096
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 730.683 1.64568
\(445\) 0 0
\(446\) −439.046 −0.984407
\(447\) 838.880 1.87669
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 128.656 0.285902
\(451\) 0 0
\(452\) −110.679 −0.244866
\(453\) 0 0
\(454\) 502.450 1.10672
\(455\) 0 0
\(456\) 532.809 1.16844
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) −472.710 −1.03212
\(459\) 0 0
\(460\) 0 0
\(461\) −598.000 −1.29718 −0.648590 0.761138i \(-0.724641\pi\)
−0.648590 + 0.761138i \(0.724641\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 246.801 0.527352
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −475.000 −1.00000
\(476\) 0 0
\(477\) 314.562 0.659459
\(478\) 111.384 0.233021
\(479\) −898.899 −1.87662 −0.938308 0.345800i \(-0.887608\pi\)
−0.938308 + 0.345800i \(0.887608\pi\)
\(480\) 606.149 1.26281
\(481\) 1476.40 3.06944
\(482\) 0 0
\(483\) 0 0
\(484\) −159.784 −0.330132
\(485\) 925.114 1.90745
\(486\) −255.001 −0.524693
\(487\) −971.807 −1.99550 −0.997748 0.0670685i \(-0.978635\pi\)
−0.997748 + 0.0670685i \(0.978635\pi\)
\(488\) −920.623 −1.88652
\(489\) 0 0
\(490\) 278.460 0.568286
\(491\) 298.000 0.606925 0.303462 0.952843i \(-0.401857\pi\)
0.303462 + 0.952843i \(0.401857\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 434.632 0.879823
\(495\) 303.738 0.613613
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 979.398 1.96272 0.981360 0.192176i \(-0.0615544\pi\)
0.981360 + 0.192176i \(0.0615544\pi\)
\(500\) −338.525 −0.677051
\(501\) −1220.13 −2.43538
\(502\) −206.856 −0.412064
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) −1006.23 −1.99254
\(506\) 0 0
\(507\) 868.316 1.71265
\(508\) 363.848 0.716237
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 137.525 0.268604
\(513\) 312.524 0.609208
\(514\) 573.282 1.11534
\(515\) −405.608 −0.787587
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 1100.64 2.12069
\(520\) 767.264 1.47551
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) −888.647 −1.69913 −0.849567 0.527481i \(-0.823137\pi\)
−0.849567 + 0.527481i \(0.823137\pi\)
\(524\) 319.568 0.609863
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 106.942 0.202541
\(529\) 529.000 1.00000
\(530\) 394.803 0.744911
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −373.411 −0.697964
\(536\) −935.519 −1.74537
\(537\) 0 0
\(538\) 0 0
\(539\) 657.404 1.21967
\(540\) 222.731 0.412465
\(541\) 335.410 0.619982 0.309991 0.950740i \(-0.399674\pi\)
0.309991 + 0.950740i \(0.399674\pi\)
\(542\) −45.7461 −0.0844025
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −119.951 −0.219290 −0.109645 0.993971i \(-0.534971\pi\)
−0.109645 + 0.993971i \(0.534971\pi\)
\(548\) 0 0
\(549\) 546.729 0.995863
\(550\) 381.218 0.693123
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −1349.02 −2.43066
\(556\) 545.016 0.980244
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1086.03 −1.92901 −0.964503 0.264071i \(-0.914935\pi\)
−0.964503 + 0.264071i \(0.914935\pi\)
\(564\) 0 0
\(565\) 204.341 0.361666
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) −397.132 −0.696723
\(571\) −415.909 −0.728386 −0.364193 0.931323i \(-0.618655\pi\)
−0.364193 + 0.931323i \(0.618655\pi\)
\(572\) 731.289 1.27848
\(573\) −1110.76 −1.93851
\(574\) 0 0
\(575\) 0 0
\(576\) 130.372 0.226341
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 328.469 0.568286
\(579\) −246.119 −0.425076
\(580\) 0 0
\(581\) 0 0
\(582\) 773.458 1.32897
\(583\) 932.072 1.59875
\(584\) 0 0
\(585\) −455.654 −0.778895
\(586\) −6.72994 −0.0114845
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −488.081 −0.830070
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −158.975 −0.268539
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) −250.820 −0.422257
\(595\) 0 0
\(596\) −617.684 −1.03638
\(597\) 1184.32 1.98379
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) −701.064 −1.16844
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 555.575 0.921352
\(604\) 0 0
\(605\) 295.000 0.487603
\(606\) −841.277 −1.38825
\(607\) 653.857 1.07719 0.538597 0.842563i \(-0.318954\pi\)
0.538597 + 0.842563i \(0.318954\pi\)
\(608\) −626.251 −1.03002
\(609\) 0 0
\(610\) 686.192 1.12491
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 53.7685 0.0875709
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) −339.115 −0.548731
\(619\) 13.4164 0.0216743 0.0108372 0.999941i \(-0.496550\pi\)
0.0108372 + 0.999941i \(0.496550\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −411.715 −0.661922
\(623\) 0 0
\(624\) −160.429 −0.257097
\(625\) 625.000 1.00000
\(626\) 0 0
\(627\) −937.572 −1.49533
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1140.39 1.80728 0.903641 0.428291i \(-0.140884\pi\)
0.903641 + 0.428291i \(0.140884\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −586.522 −0.925114
\(635\) −671.752 −1.05788
\(636\) −692.005 −1.08806
\(637\) −986.206 −1.54820
\(638\) 0 0
\(639\) 0 0
\(640\) −495.583 −0.774349
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) −312.197 −0.486288
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 771.960 1.19130
\(649\) 0 0
\(650\) −571.885 −0.879823
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) −590.000 −0.900763
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) −668.193 −1.01241
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −377.505 −0.566825
\(667\) 0 0
\(668\) 898.403 1.34491
\(669\) −1420.78 −2.12374
\(670\) 697.295 1.04074
\(671\) 1620.00 2.41431
\(672\) 0 0
\(673\) 604.221 0.897802 0.448901 0.893581i \(-0.351816\pi\)
0.448901 + 0.893581i \(0.351816\pi\)
\(674\) −68.5162 −0.101656
\(675\) −411.216 −0.609208
\(676\) −639.358 −0.945796
\(677\) 1204.14 1.77864 0.889319 0.457288i \(-0.151179\pi\)
0.889319 + 0.457288i \(0.151179\pi\)
\(678\) 170.843 0.251981
\(679\) 0 0
\(680\) 0 0
\(681\) 1625.96 2.38761
\(682\) 0 0
\(683\) 539.633 0.790093 0.395046 0.918661i \(-0.370729\pi\)
0.395046 + 0.918661i \(0.370729\pi\)
\(684\) 232.985 0.340622
\(685\) 0 0
\(686\) 0 0
\(687\) −1529.72 −2.22667
\(688\) 0 0
\(689\) −1398.25 −2.02939
\(690\) 0 0
\(691\) −1381.89 −1.99984 −0.999920 0.0126162i \(-0.995984\pi\)
−0.999920 + 0.0126162i \(0.995984\pi\)
\(692\) −810.421 −1.17113
\(693\) 0 0
\(694\) 0 0
\(695\) −1006.23 −1.44781
\(696\) 0 0
\(697\) 0 0
\(698\) −588.744 −0.843473
\(699\) 0 0
\(700\) 0 0
\(701\) −952.565 −1.35887 −0.679433 0.733738i \(-0.737774\pi\)
−0.679433 + 0.733738i \(0.737774\pi\)
\(702\) 376.269 0.535995
\(703\) 1393.75 1.98258
\(704\) 386.303 0.548726
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 202.000 0.284908 0.142454 0.989801i \(-0.454501\pi\)
0.142454 + 0.989801i \(0.454501\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −1350.14 −1.88830
\(716\) 0 0
\(717\) 360.446 0.502715
\(718\) 76.2436 0.106189
\(719\) 1247.73 1.73536 0.867681 0.497121i \(-0.165609\pi\)
0.867681 + 0.497121i \(0.165609\pi\)
\(720\) 49.0636 0.0681439
\(721\) 0 0
\(722\) 410.303 0.568286
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 246.640 0.339725
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 86.0433 0.118029
\(730\) 0 0
\(731\) 0 0
\(732\) −1202.75 −1.64310
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 901.116 1.22601
\(736\) 0 0
\(737\) 1646.21 2.23367
\(738\) 0 0
\(739\) 1402.00 1.89716 0.948579 0.316540i \(-0.102521\pi\)
0.948579 + 0.316540i \(0.102521\pi\)
\(740\) 993.309 1.34231
\(741\) 1406.50 1.89811
\(742\) 0 0
\(743\) 1483.35 1.99644 0.998219 0.0596489i \(-0.0189981\pi\)
0.998219 + 0.0596489i \(0.0189981\pi\)
\(744\) 0 0
\(745\) 1140.39 1.53073
\(746\) 804.942 1.07901
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 522.542 0.696723
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) −669.400 −0.888978
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 724.314 0.953045
\(761\) −1435.56 −1.88641 −0.943203 0.332216i \(-0.892204\pi\)
−0.943203 + 0.332216i \(0.892204\pi\)
\(762\) −561.630 −0.737048
\(763\) 0 0
\(764\) 817.878 1.07052
\(765\) 0 0
\(766\) 858.122 1.12026
\(767\) 0 0
\(768\) −837.952 −1.09108
\(769\) −684.237 −0.889775 −0.444887 0.895587i \(-0.646756\pi\)
−0.444887 + 0.895587i \(0.646756\pi\)
\(770\) 0 0
\(771\) 1855.18 2.40620
\(772\) 181.223 0.234744
\(773\) −705.469 −0.912638 −0.456319 0.889816i \(-0.650832\pi\)
−0.456319 + 0.889816i \(0.650832\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −1410.68 −1.81789
\(777\) 0 0
\(778\) −843.336 −1.08398
\(779\) 0 0
\(780\) 1002.39 1.28512
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 106.192 0.135449
\(785\) 0 0
\(786\) −493.280 −0.627583
\(787\) 913.562 1.16082 0.580408 0.814326i \(-0.302893\pi\)
0.580408 + 0.814326i \(0.302893\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −463.162 −0.584800
\(793\) −2430.25 −3.06462
\(794\) 0 0
\(795\) 1277.61 1.60705
\(796\) −872.042 −1.09553
\(797\) −758.698 −0.951942 −0.475971 0.879461i \(-0.657903\pi\)
−0.475971 + 0.879461i \(0.657903\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 824.015 1.03002
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −1222.21 −1.52016
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 1534.37 1.89898
\(809\) −1118.00 −1.38195 −0.690977 0.722877i \(-0.742819\pi\)
−0.690977 + 0.722877i \(0.742819\pi\)
\(810\) −575.385 −0.710352
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) −148.038 −0.182088
\(814\) −1118.58 −1.37417
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 122.000 0.148599 0.0742996 0.997236i \(-0.476328\pi\)
0.0742996 + 0.997236i \(0.476328\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 618.499 0.750606
\(825\) 1233.65 1.49533
\(826\) 0 0
\(827\) −1501.64 −1.81576 −0.907881 0.419227i \(-0.862301\pi\)
−0.907881 + 0.419227i \(0.862301\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −579.514 −0.696531
\(833\) 0 0
\(834\) −841.277 −1.00873
\(835\) −1658.67 −1.98643
\(836\) 690.353 0.825781
\(837\) 0 0
\(838\) 520.550 0.621181
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 841.000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1180.41 1.39694
\(846\) 0 0
\(847\) 0 0
\(848\) 150.560 0.177547
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) −430.147 −0.503096
\(856\) 569.403 0.665191
\(857\) −1609.23 −1.87774 −0.938872 0.344266i \(-0.888128\pi\)
−0.938872 + 0.344266i \(0.888128\pi\)
\(858\) −1128.81 −1.31562
\(859\) −1702.00 −1.98137 −0.990687 0.136160i \(-0.956524\pi\)
−0.990687 + 0.136160i \(0.956524\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −217.704 −0.252264 −0.126132 0.992013i \(-0.540256\pi\)
−0.126132 + 0.992013i \(0.540256\pi\)
\(864\) −542.156 −0.627496
\(865\) 1496.23 1.72975
\(866\) 772.431 0.891953
\(867\) 1062.95 1.22601
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −2469.57 −2.83532
\(872\) 0 0
\(873\) 837.758 0.959631
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −44.5577 −0.0508069 −0.0254035 0.999677i \(-0.508087\pi\)
−0.0254035 + 0.999677i \(0.508087\pi\)
\(878\) 0 0
\(879\) −21.7786 −0.0247765
\(880\) 145.379 0.165204
\(881\) 1677.05 1.90358 0.951788 0.306756i \(-0.0992434\pi\)
0.951788 + 0.306756i \(0.0992434\pi\)
\(882\) 252.166 0.285902
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1489.99 1.67980 0.839902 0.542737i \(-0.182612\pi\)
0.839902 + 0.542737i \(0.182612\pi\)
\(888\) 2057.08 2.31653
\(889\) 0 0
\(890\) 0 0
\(891\) −1358.40 −1.52458
\(892\) 1046.15 1.17281
\(893\) 0 0
\(894\) 953.447 1.06650
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −306.559 −0.340622
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −311.594 −0.344683
\(905\) 0 0
\(906\) 0 0
\(907\) 1522.18 1.67826 0.839131 0.543929i \(-0.183064\pi\)
0.839131 + 0.543929i \(0.183064\pi\)
\(908\) −1197.23 −1.31853
\(909\) −911.215 −1.00244
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) −151.448 −0.166062
\(913\) 0 0
\(914\) 0 0
\(915\) 2220.56 2.42685
\(916\) 1126.37 1.22966
\(917\) 0 0
\(918\) 0 0
\(919\) −1582.00 −1.72144 −0.860718 0.509082i \(-0.829985\pi\)
−0.860718 + 0.509082i \(0.829985\pi\)
\(920\) 0 0
\(921\) 173.999 0.188923
\(922\) −679.670 −0.737169
\(923\) 0 0
\(924\) 0 0
\(925\) −1833.89 −1.98258
\(926\) 0 0
\(927\) −367.307 −0.396232
\(928\) 0 0
\(929\) −878.000 −0.945102 −0.472551 0.881303i \(-0.656667\pi\)
−0.472551 + 0.881303i \(0.656667\pi\)
\(930\) 0 0
\(931\) −931.000 −1.00000
\(932\) 0 0
\(933\) −1332.34 −1.42802
\(934\) 0 0
\(935\) 0 0
\(936\) 694.813 0.742322
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −539.872 −0.568286
\(951\) −1898.03 −1.99582
\(952\) 0 0
\(953\) 356.649 0.374238 0.187119 0.982337i \(-0.440085\pi\)
0.187119 + 0.982337i \(0.440085\pi\)
\(954\) 357.523 0.374762
\(955\) −1510.00 −1.58115
\(956\) −265.404 −0.277619
\(957\) 0 0
\(958\) −1021.66 −1.06645
\(959\) 0 0
\(960\) 529.513 0.551576
\(961\) 961.000 1.00000
\(962\) 1678.04 1.74432
\(963\) −338.150 −0.351143
\(964\) 0 0
\(965\) −334.581 −0.346716
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) −449.837 −0.464708
\(969\) 0 0
\(970\) 1051.46 1.08398
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 607.611 0.625114
\(973\) 0 0
\(974\) −1104.53 −1.13401
\(975\) −1850.66 −1.89811
\(976\) 261.682 0.268117
\(977\) −1000.60 −1.02416 −0.512080 0.858938i \(-0.671125\pi\)
−0.512080 + 0.858938i \(0.671125\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −663.510 −0.677051
\(981\) 0 0
\(982\) 338.698 0.344907
\(983\) 12.0703 0.0122791 0.00613954 0.999981i \(-0.498046\pi\)
0.00613954 + 0.999981i \(0.498046\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −1035.63 −1.04821
\(989\) 0 0
\(990\) 345.221 0.348708
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1610.00 1.61809
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 1113.16 1.11539
\(999\) 1206.60 1.20781
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 95.3.d.c.94.3 yes 4
3.2 odd 2 855.3.g.d.379.2 4
5.2 odd 4 475.3.c.d.151.3 4
5.3 odd 4 475.3.c.d.151.2 4
5.4 even 2 inner 95.3.d.c.94.2 4
15.14 odd 2 855.3.g.d.379.3 4
19.18 odd 2 inner 95.3.d.c.94.2 4
57.56 even 2 855.3.g.d.379.3 4
95.18 even 4 475.3.c.d.151.3 4
95.37 even 4 475.3.c.d.151.2 4
95.94 odd 2 CM 95.3.d.c.94.3 yes 4
285.284 even 2 855.3.g.d.379.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.3.d.c.94.2 4 5.4 even 2 inner
95.3.d.c.94.2 4 19.18 odd 2 inner
95.3.d.c.94.3 yes 4 1.1 even 1 trivial
95.3.d.c.94.3 yes 4 95.94 odd 2 CM
475.3.c.d.151.2 4 5.3 odd 4
475.3.c.d.151.2 4 95.37 even 4
475.3.c.d.151.3 4 5.2 odd 4
475.3.c.d.151.3 4 95.18 even 4
855.3.g.d.379.2 4 3.2 odd 2
855.3.g.d.379.2 4 285.284 even 2
855.3.g.d.379.3 4 15.14 odd 2
855.3.g.d.379.3 4 57.56 even 2