Properties

Label 95.3
Level 95
Weight 3
Dimension 606
Nonzero newspaces 9
Newform subspaces 12
Sturm bound 2160
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 95 = 5 \cdot 19 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 9 \)
Newform subspaces: \( 12 \)
Sturm bound: \(2160\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(95))\).

Total New Old
Modular forms 792 706 86
Cusp forms 648 606 42
Eisenstein series 144 100 44

Trace form

\( 606 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 27 q^{5} - 54 q^{6} - 18 q^{7} - 18 q^{8} - 18 q^{9} - 27 q^{10} - 54 q^{11} - 162 q^{12} - 138 q^{13} - 162 q^{14} - 81 q^{15} - 198 q^{16} - 36 q^{17} - 36 q^{18}+ \cdots - 2502 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(95))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
95.3.c \(\chi_{95}(56, \cdot)\) 95.3.c.a 12 1
95.3.d \(\chi_{95}(94, \cdot)\) 95.3.d.a 2 1
95.3.d.b 4
95.3.d.c 4
95.3.d.d 8
95.3.f \(\chi_{95}(58, \cdot)\) 95.3.f.a 36 2
95.3.h \(\chi_{95}(69, \cdot)\) 95.3.h.a 36 2
95.3.j \(\chi_{95}(31, \cdot)\) 95.3.j.a 24 2
95.3.m \(\chi_{95}(7, \cdot)\) 95.3.m.a 72 4
95.3.n \(\chi_{95}(21, \cdot)\) 95.3.n.a 84 6
95.3.o \(\chi_{95}(14, \cdot)\) 95.3.o.a 108 6
95.3.q \(\chi_{95}(17, \cdot)\) 95.3.q.a 216 12

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(95))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(95)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 2}\)