Properties

Label 95.3.d.c
Level $95$
Weight $3$
Character orbit 95.d
Self dual yes
Analytic conductor $2.589$
Analytic rank $0$
Dimension $4$
CM discriminant -95
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [95,3,Mod(94,95)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(95, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("95.94"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 95.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,16,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.58856251142\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.7600.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} + 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + ( - \beta_{2} - \beta_1) q^{3} + (3 \beta_{3} + 4) q^{4} + 5 q^{5} + ( - 5 \beta_{3} - 7) q^{6} + (3 \beta_{2} + 6 \beta_1) q^{8} + (2 \beta_{3} + 9) q^{9} + 5 \beta_1 q^{10} - 6 \beta_{3} q^{11}+ \cdots + ( - 54 \beta_{3} - 60) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{4} + 20 q^{5} - 28 q^{6} + 36 q^{9} + 116 q^{16} - 76 q^{19} + 80 q^{20} - 300 q^{24} + 100 q^{25} - 172 q^{26} - 140 q^{30} + 264 q^{36} + 8 q^{39} - 360 q^{44} + 180 q^{45} + 196 q^{49} - 200 q^{54}+ \cdots - 240 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 9x^{2} + 19 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{3} + 6\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} - 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 9 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{2} + 3\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
94.1
−2.37024
1.83901
−1.83901
2.37024
−3.83513 4.74048 10.7082 5.00000 −18.1803 0 −25.7268 13.4721 −19.1756
94.2 −1.13657 −3.67802 −2.70820 5.00000 4.18034 0 7.62436 4.52786 −5.68286
94.3 1.13657 3.67802 −2.70820 5.00000 4.18034 0 −7.62436 4.52786 5.68286
94.4 3.83513 −4.74048 10.7082 5.00000 −18.1803 0 25.7268 13.4721 19.1756
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
95.d odd 2 1 CM by \(\Q(\sqrt{-95}) \)
5.b even 2 1 inner
19.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 95.3.d.c 4
3.b odd 2 1 855.3.g.d 4
5.b even 2 1 inner 95.3.d.c 4
5.c odd 4 2 475.3.c.d 4
15.d odd 2 1 855.3.g.d 4
19.b odd 2 1 inner 95.3.d.c 4
57.d even 2 1 855.3.g.d 4
95.d odd 2 1 CM 95.3.d.c 4
95.g even 4 2 475.3.c.d 4
285.b even 2 1 855.3.g.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.3.d.c 4 1.a even 1 1 trivial
95.3.d.c 4 5.b even 2 1 inner
95.3.d.c 4 19.b odd 2 1 inner
95.3.d.c 4 95.d odd 2 1 CM
475.3.c.d 4 5.c odd 4 2
475.3.c.d 4 95.g even 4 2
855.3.g.d 4 3.b odd 2 1
855.3.g.d 4 15.d odd 2 1
855.3.g.d 4 57.d even 2 1
855.3.g.d 4 285.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 16T_{2}^{2} + 19 \) acting on \(S_{3}^{\mathrm{new}}(95, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 16T^{2} + 19 \) Copy content Toggle raw display
$3$ \( T^{4} - 36T^{2} + 304 \) Copy content Toggle raw display
$5$ \( (T - 5)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 180)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} - 676 T^{2} + 109744 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T + 19)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - 5476 T^{2} + 511024 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} - 11236 T^{2} + 30935344 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 14580)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 17956 T^{2} + 43666864 \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} - 37636 T^{2} + 116480944 \) Copy content Toggle raw display
show more
show less