Properties

Label 95.3.d.c.94.1
Level $95$
Weight $3$
Character 95.94
Self dual yes
Analytic conductor $2.589$
Analytic rank $0$
Dimension $4$
CM discriminant -95
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [95,3,Mod(94,95)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(95, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("95.94"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 95.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,16,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.58856251142\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.7600.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} + 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 94.1
Root \(-2.37024\) of defining polynomial
Character \(\chi\) \(=\) 95.94

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.83513 q^{2} +4.74048 q^{3} +10.7082 q^{4} +5.00000 q^{5} -18.1803 q^{6} -25.7268 q^{8} +13.4721 q^{9} -19.1756 q^{10} -13.4164 q^{11} +50.7620 q^{12} +16.4596 q^{13} +23.7024 q^{15} +55.8328 q^{16} -51.6674 q^{18} -19.0000 q^{19} +53.5410 q^{20} +51.4536 q^{22} -121.957 q^{24} +25.0000 q^{25} -63.1246 q^{26} +21.2001 q^{27} -90.9017 q^{30} -111.219 q^{32} -63.6002 q^{33} +144.262 q^{36} -9.74513 q^{37} +72.8674 q^{38} +78.0263 q^{39} -128.634 q^{40} -143.666 q^{44} +67.3607 q^{45} +264.674 q^{48} +49.0000 q^{49} -95.8782 q^{50} +176.253 q^{52} -80.0598 q^{53} -81.3050 q^{54} -67.0820 q^{55} -90.0691 q^{57} +253.810 q^{60} -120.748 q^{61} +203.207 q^{64} +82.2979 q^{65} +243.915 q^{66} -53.8551 q^{67} -346.595 q^{72} +37.3738 q^{74} +118.512 q^{75} -203.456 q^{76} -299.241 q^{78} +279.164 q^{80} -20.7508 q^{81} +345.161 q^{88} -258.337 q^{90} -95.0000 q^{95} -527.230 q^{96} -58.3314 q^{97} -187.921 q^{98} -180.748 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{4} + 20 q^{5} - 28 q^{6} + 36 q^{9} + 116 q^{16} - 76 q^{19} + 80 q^{20} - 300 q^{24} + 100 q^{25} - 172 q^{26} - 140 q^{30} + 264 q^{36} + 8 q^{39} - 360 q^{44} + 180 q^{45} + 196 q^{49} - 200 q^{54}+ \cdots - 240 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.83513 −1.91756 −0.958782 0.284143i \(-0.908291\pi\)
−0.958782 + 0.284143i \(0.908291\pi\)
\(3\) 4.74048 1.58016 0.790080 0.613004i \(-0.210039\pi\)
0.790080 + 0.613004i \(0.210039\pi\)
\(4\) 10.7082 2.67705
\(5\) 5.00000 1.00000
\(6\) −18.1803 −3.03006
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) −25.7268 −3.21585
\(9\) 13.4721 1.49690
\(10\) −19.1756 −1.91756
\(11\) −13.4164 −1.21967 −0.609837 0.792527i \(-0.708765\pi\)
−0.609837 + 0.792527i \(0.708765\pi\)
\(12\) 50.7620 4.23017
\(13\) 16.4596 1.26612 0.633061 0.774102i \(-0.281798\pi\)
0.633061 + 0.774102i \(0.281798\pi\)
\(14\) 0 0
\(15\) 23.7024 1.58016
\(16\) 55.8328 3.48955
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) −51.6674 −2.87041
\(19\) −19.0000 −1.00000
\(20\) 53.5410 2.67705
\(21\) 0 0
\(22\) 51.4536 2.33880
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) −121.957 −5.08156
\(25\) 25.0000 1.00000
\(26\) −63.1246 −2.42787
\(27\) 21.2001 0.785188
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) −90.9017 −3.03006
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −111.219 −3.47558
\(33\) −63.6002 −1.92728
\(34\) 0 0
\(35\) 0 0
\(36\) 144.262 4.00729
\(37\) −9.74513 −0.263382 −0.131691 0.991291i \(-0.542041\pi\)
−0.131691 + 0.991291i \(0.542041\pi\)
\(38\) 72.8674 1.91756
\(39\) 78.0263 2.00067
\(40\) −128.634 −3.21585
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) −143.666 −3.26513
\(45\) 67.3607 1.49690
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 264.674 5.51405
\(49\) 49.0000 1.00000
\(50\) −95.8782 −1.91756
\(51\) 0 0
\(52\) 176.253 3.38947
\(53\) −80.0598 −1.51056 −0.755281 0.655401i \(-0.772500\pi\)
−0.755281 + 0.655401i \(0.772500\pi\)
\(54\) −81.3050 −1.50565
\(55\) −67.0820 −1.21967
\(56\) 0 0
\(57\) −90.0691 −1.58016
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 253.810 4.23017
\(61\) −120.748 −1.97947 −0.989735 0.142915i \(-0.954353\pi\)
−0.989735 + 0.142915i \(0.954353\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 203.207 3.17510
\(65\) 82.2979 1.26612
\(66\) 243.915 3.69568
\(67\) −53.8551 −0.803807 −0.401903 0.915682i \(-0.631651\pi\)
−0.401903 + 0.915682i \(0.631651\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −346.595 −4.81382
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 37.3738 0.505052
\(75\) 118.512 1.58016
\(76\) −203.456 −2.67705
\(77\) 0 0
\(78\) −299.241 −3.83642
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 279.164 3.48955
\(81\) −20.7508 −0.256182
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 345.161 3.92229
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) −258.337 −2.87041
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −95.0000 −1.00000
\(96\) −527.230 −5.49198
\(97\) −58.3314 −0.601354 −0.300677 0.953726i \(-0.597213\pi\)
−0.300677 + 0.953726i \(0.597213\pi\)
\(98\) −187.921 −1.91756
\(99\) −180.748 −1.82573
\(100\) 267.705 2.67705
\(101\) 201.246 1.99254 0.996268 0.0863148i \(-0.0275091\pi\)
0.996268 + 0.0863148i \(0.0275091\pi\)
\(102\) 0 0
\(103\) −189.355 −1.83840 −0.919199 0.393794i \(-0.871162\pi\)
−0.919199 + 0.393794i \(0.871162\pi\)
\(104\) −423.453 −4.07166
\(105\) 0 0
\(106\) 307.039 2.89660
\(107\) 200.546 1.87426 0.937129 0.348982i \(-0.113473\pi\)
0.937129 + 0.348982i \(0.113473\pi\)
\(108\) 227.015 2.10199
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 257.268 2.33880
\(111\) −46.1966 −0.416186
\(112\) 0 0
\(113\) 222.274 1.96703 0.983514 0.180833i \(-0.0578793\pi\)
0.983514 + 0.180833i \(0.0578793\pi\)
\(114\) 345.426 3.03006
\(115\) 0 0
\(116\) 0 0
\(117\) 221.746 1.89526
\(118\) 0 0
\(119\) 0 0
\(120\) −609.787 −5.08156
\(121\) 59.0000 0.487603
\(122\) 463.083 3.79576
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000 1.00000
\(126\) 0 0
\(127\) −215.560 −1.69732 −0.848660 0.528938i \(-0.822590\pi\)
−0.848660 + 0.528938i \(0.822590\pi\)
\(128\) −334.449 −2.61288
\(129\) 0 0
\(130\) −315.623 −2.42787
\(131\) −118.000 −0.900763 −0.450382 0.892836i \(-0.648712\pi\)
−0.450382 + 0.892836i \(0.648712\pi\)
\(132\) −681.044 −5.15942
\(133\) 0 0
\(134\) 206.541 1.54135
\(135\) 106.000 0.785188
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 201.246 1.44781 0.723907 0.689898i \(-0.242344\pi\)
0.723907 + 0.689898i \(0.242344\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −220.829 −1.54426
\(144\) 752.187 5.22352
\(145\) 0 0
\(146\) 0 0
\(147\) 232.283 1.58016
\(148\) −104.353 −0.705087
\(149\) −228.079 −1.53073 −0.765366 0.643596i \(-0.777442\pi\)
−0.765366 + 0.643596i \(0.777442\pi\)
\(150\) −454.508 −3.03006
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 488.810 3.21585
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 835.522 5.35591
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) −379.522 −2.38693
\(160\) −556.094 −3.47558
\(161\) 0 0
\(162\) 79.5819 0.491246
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) −318.001 −1.92728
\(166\) 0 0
\(167\) 38.8411 0.232581 0.116291 0.993215i \(-0.462900\pi\)
0.116291 + 0.993215i \(0.462900\pi\)
\(168\) 0 0
\(169\) 101.918 0.603065
\(170\) 0 0
\(171\) −255.971 −1.49690
\(172\) 0 0
\(173\) 173.688 1.00398 0.501988 0.864874i \(-0.332602\pi\)
0.501988 + 0.864874i \(0.332602\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −749.076 −4.25611
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 721.312 4.00729
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) −572.402 −3.12788
\(184\) 0 0
\(185\) −48.7257 −0.263382
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 364.337 1.91756
\(191\) −302.000 −1.58115 −0.790576 0.612364i \(-0.790219\pi\)
−0.790576 + 0.612364i \(0.790219\pi\)
\(192\) 963.297 5.01717
\(193\) 380.156 1.96972 0.984859 0.173358i \(-0.0554617\pi\)
0.984859 + 0.173358i \(0.0554617\pi\)
\(194\) 223.708 1.15314
\(195\) 390.132 2.00067
\(196\) 524.702 2.67705
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 693.190 3.50096
\(199\) 322.000 1.61809 0.809045 0.587746i \(-0.199985\pi\)
0.809045 + 0.587746i \(0.199985\pi\)
\(200\) −643.170 −3.21585
\(201\) −255.299 −1.27014
\(202\) −771.805 −3.82081
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 726.200 3.52524
\(207\) 0 0
\(208\) 918.985 4.41820
\(209\) 254.912 1.21967
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) −857.296 −4.04385
\(213\) 0 0
\(214\) −769.118 −3.59401
\(215\) 0 0
\(216\) −545.410 −2.52505
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −718.328 −3.26513
\(221\) 0 0
\(222\) 177.170 0.798062
\(223\) 222.927 0.999674 0.499837 0.866120i \(-0.333393\pi\)
0.499837 + 0.866120i \(0.333393\pi\)
\(224\) 0 0
\(225\) 336.803 1.49690
\(226\) −852.450 −3.77190
\(227\) 103.373 0.455389 0.227694 0.973733i \(-0.426881\pi\)
0.227694 + 0.973733i \(0.426881\pi\)
\(228\) −964.478 −4.23017
\(229\) 415.909 1.81619 0.908097 0.418759i \(-0.137535\pi\)
0.908097 + 0.418759i \(0.137535\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) −850.423 −3.63429
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 98.0000 0.410042 0.205021 0.978758i \(-0.434274\pi\)
0.205021 + 0.978758i \(0.434274\pi\)
\(240\) 1323.37 5.51405
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −226.273 −0.935010
\(243\) −289.169 −1.19000
\(244\) −1292.99 −5.29914
\(245\) 245.000 1.00000
\(246\) 0 0
\(247\) −312.732 −1.26612
\(248\) 0 0
\(249\) 0 0
\(250\) −479.391 −1.91756
\(251\) −182.000 −0.725100 −0.362550 0.931964i \(-0.618094\pi\)
−0.362550 + 0.931964i \(0.618094\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 826.699 3.25472
\(255\) 0 0
\(256\) 469.827 1.83526
\(257\) 98.8970 0.384813 0.192407 0.981315i \(-0.438371\pi\)
0.192407 + 0.981315i \(0.438371\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 881.263 3.38947
\(261\) 0 0
\(262\) 452.545 1.72727
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 1636.23 6.19784
\(265\) −400.299 −1.51056
\(266\) 0 0
\(267\) 0 0
\(268\) −576.691 −2.15183
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) −406.525 −1.50565
\(271\) 40.2492 0.148521 0.0742606 0.997239i \(-0.476340\pi\)
0.0742606 + 0.997239i \(0.476340\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −335.410 −1.21967
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) −771.805 −2.77628
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) −450.345 −1.58016
\(286\) 846.906 2.96121
\(287\) 0 0
\(288\) −1498.35 −5.20262
\(289\) 289.000 1.00000
\(290\) 0 0
\(291\) −276.519 −0.950236
\(292\) 0 0
\(293\) 585.970 1.99990 0.999949 0.0101045i \(-0.00321643\pi\)
0.999949 + 0.0101045i \(0.00321643\pi\)
\(294\) −890.837 −3.03006
\(295\) 0 0
\(296\) 250.711 0.846998
\(297\) −284.429 −0.957672
\(298\) 874.712 2.93527
\(299\) 0 0
\(300\) 1269.05 4.23017
\(301\) 0 0
\(302\) 0 0
\(303\) 954.003 3.14852
\(304\) −1060.82 −3.48955
\(305\) −603.738 −1.97947
\(306\) 0 0
\(307\) 612.175 1.99405 0.997027 0.0770482i \(-0.0245495\pi\)
0.997027 + 0.0770482i \(0.0245495\pi\)
\(308\) 0 0
\(309\) −897.633 −2.90496
\(310\) 0 0
\(311\) 362.243 1.16477 0.582384 0.812914i \(-0.302120\pi\)
0.582384 + 0.812914i \(0.302120\pi\)
\(312\) −2007.37 −6.43387
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −368.312 −1.16187 −0.580933 0.813951i \(-0.697312\pi\)
−0.580933 + 0.813951i \(0.697312\pi\)
\(318\) 1455.51 4.57709
\(319\) 0 0
\(320\) 1016.03 3.17510
\(321\) 950.683 2.96163
\(322\) 0 0
\(323\) 0 0
\(324\) −222.204 −0.685813
\(325\) 411.490 1.26612
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 1219.57 3.69568
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) −131.288 −0.394258
\(334\) −148.961 −0.445990
\(335\) −269.275 −0.803807
\(336\) 0 0
\(337\) −671.299 −1.99198 −0.995992 0.0894409i \(-0.971492\pi\)
−0.995992 + 0.0894409i \(0.971492\pi\)
\(338\) −390.868 −1.15642
\(339\) 1053.69 3.10822
\(340\) 0 0
\(341\) 0 0
\(342\) 981.680 2.87041
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −666.115 −1.92519
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) −518.000 −1.48424 −0.742120 0.670267i \(-0.766180\pi\)
−0.742120 + 0.670267i \(0.766180\pi\)
\(350\) 0 0
\(351\) 348.944 0.994143
\(352\) 1492.16 4.23908
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −67.0820 −0.186858 −0.0934290 0.995626i \(-0.529783\pi\)
−0.0934290 + 0.995626i \(0.529783\pi\)
\(360\) −1732.98 −4.81382
\(361\) 361.000 1.00000
\(362\) 0 0
\(363\) 279.688 0.770491
\(364\) 0 0
\(365\) 0 0
\(366\) 2195.23 5.99791
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 186.869 0.505052
\(371\) 0 0
\(372\) 0 0
\(373\) 234.397 0.628410 0.314205 0.949355i \(-0.398262\pi\)
0.314205 + 0.949355i \(0.398262\pi\)
\(374\) 0 0
\(375\) 592.560 1.58016
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) −1017.28 −2.67705
\(381\) −1021.86 −2.68204
\(382\) 1158.21 3.03196
\(383\) −129.299 −0.337596 −0.168798 0.985651i \(-0.553988\pi\)
−0.168798 + 0.985651i \(0.553988\pi\)
\(384\) −1585.45 −4.12877
\(385\) 0 0
\(386\) −1457.95 −3.77706
\(387\) 0 0
\(388\) −624.624 −1.60986
\(389\) −742.000 −1.90746 −0.953728 0.300672i \(-0.902789\pi\)
−0.953728 + 0.300672i \(0.902789\pi\)
\(390\) −1496.20 −3.83642
\(391\) 0 0
\(392\) −1260.61 −3.21585
\(393\) −559.376 −1.42335
\(394\) 0 0
\(395\) 0 0
\(396\) −1935.48 −4.88758
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) −1234.91 −3.10279
\(399\) 0 0
\(400\) 1395.82 3.48955
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 979.103 2.43558
\(403\) 0 0
\(404\) 2154.98 5.33412
\(405\) −103.754 −0.256182
\(406\) 0 0
\(407\) 130.745 0.321240
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −2027.65 −4.92148
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −1830.61 −4.40051
\(417\) 954.003 2.28778
\(418\) −977.619 −2.33880
\(419\) 458.000 1.09308 0.546539 0.837433i \(-0.315945\pi\)
0.546539 + 0.837433i \(0.315945\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 2059.68 4.85774
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 2147.48 5.01749
\(429\) −1046.83 −2.44017
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 1183.66 2.73995
\(433\) 536.731 1.23956 0.619781 0.784774i \(-0.287221\pi\)
0.619781 + 0.784774i \(0.287221\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 1725.81 3.92229
\(441\) 660.135 1.49690
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) −494.683 −1.11415
\(445\) 0 0
\(446\) −854.954 −1.91694
\(447\) −1081.20 −2.41880
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −1291.68 −2.87041
\(451\) 0 0
\(452\) 2380.16 5.26583
\(453\) 0 0
\(454\) −396.450 −0.873237
\(455\) 0 0
\(456\) 2317.19 5.08156
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) −1595.06 −3.48267
\(459\) 0 0
\(460\) 0 0
\(461\) −598.000 −1.29718 −0.648590 0.761138i \(-0.724641\pi\)
−0.648590 + 0.761138i \(0.724641\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 2374.50 5.07372
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −475.000 −1.00000
\(476\) 0 0
\(477\) −1078.58 −2.26117
\(478\) −375.843 −0.786281
\(479\) 898.899 1.87662 0.938308 0.345800i \(-0.112392\pi\)
0.938308 + 0.345800i \(0.112392\pi\)
\(480\) −2636.15 −5.49198
\(481\) −160.401 −0.333474
\(482\) 0 0
\(483\) 0 0
\(484\) 631.784 1.30534
\(485\) −291.657 −0.601354
\(486\) 1109.00 2.28189
\(487\) −65.3247 −0.134137 −0.0670685 0.997748i \(-0.521365\pi\)
−0.0670685 + 0.997748i \(0.521365\pi\)
\(488\) 3106.45 6.36568
\(489\) 0 0
\(490\) −939.606 −1.91756
\(491\) 298.000 0.606925 0.303462 0.952843i \(-0.401857\pi\)
0.303462 + 0.952843i \(0.401857\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 1199.37 2.42787
\(495\) −903.738 −1.82573
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −979.398 −1.96272 −0.981360 0.192176i \(-0.938446\pi\)
−0.981360 + 0.192176i \(0.938446\pi\)
\(500\) 1338.53 2.67705
\(501\) 184.125 0.367516
\(502\) 697.993 1.39042
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 1006.23 1.99254
\(506\) 0 0
\(507\) 483.140 0.952939
\(508\) −2308.26 −4.54381
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −464.050 −0.906349
\(513\) −402.801 −0.785188
\(514\) −379.282 −0.737904
\(515\) −946.775 −1.83840
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 823.364 1.58644
\(520\) −2117.26 −4.07166
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) −551.745 −1.05496 −0.527481 0.849567i \(-0.676863\pi\)
−0.527481 + 0.849567i \(0.676863\pi\)
\(524\) −1263.57 −2.41139
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −3550.98 −6.72534
\(529\) 529.000 1.00000
\(530\) 1535.20 2.89660
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1002.73 1.87426
\(536\) 1385.52 2.58492
\(537\) 0 0
\(538\) 0 0
\(539\) −657.404 −1.21967
\(540\) 1135.07 2.10199
\(541\) −335.410 −0.619982 −0.309991 0.950740i \(-0.600326\pi\)
−0.309991 + 0.950740i \(0.600326\pi\)
\(542\) −154.361 −0.284799
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −1087.40 −1.98794 −0.993971 0.109645i \(-0.965029\pi\)
−0.993971 + 0.109645i \(0.965029\pi\)
\(548\) 0 0
\(549\) −1626.73 −2.96308
\(550\) 1286.34 2.33880
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −230.983 −0.416186
\(556\) 2154.98 3.87587
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −297.344 −0.528142 −0.264071 0.964503i \(-0.585065\pi\)
−0.264071 + 0.964503i \(0.585065\pi\)
\(564\) 0 0
\(565\) 1111.37 1.96703
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 1727.13 3.03006
\(571\) 415.909 0.728386 0.364193 0.931323i \(-0.381345\pi\)
0.364193 + 0.931323i \(0.381345\pi\)
\(572\) −2364.68 −4.13405
\(573\) −1431.62 −2.49847
\(574\) 0 0
\(575\) 0 0
\(576\) 2737.63 4.75283
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −1108.35 −1.91756
\(579\) 1802.12 3.11247
\(580\) 0 0
\(581\) 0 0
\(582\) 1060.48 1.82214
\(583\) 1074.11 1.84239
\(584\) 0 0
\(585\) 1108.73 1.89526
\(586\) −2247.27 −3.83493
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 2487.34 4.23017
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −544.098 −0.919085
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 1090.82 1.83640
\(595\) 0 0
\(596\) −2442.32 −4.09785
\(597\) 1526.43 2.55684
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) −3048.94 −5.08156
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) −725.543 −1.20322
\(604\) 0 0
\(605\) 295.000 0.487603
\(606\) −3658.72 −6.03750
\(607\) −1022.87 −1.68513 −0.842563 0.538597i \(-0.818954\pi\)
−0.842563 + 0.538597i \(0.818954\pi\)
\(608\) 2113.16 3.47558
\(609\) 0 0
\(610\) 2315.41 3.79576
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) −2347.77 −3.82373
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 3442.54 5.57045
\(619\) −13.4164 −0.0216743 −0.0108372 0.999941i \(-0.503450\pi\)
−0.0108372 + 0.999941i \(0.503450\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −1389.25 −2.23352
\(623\) 0 0
\(624\) 4356.43 6.98146
\(625\) 625.000 1.00000
\(626\) 0 0
\(627\) 1208.40 1.92728
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −1140.39 −1.80728 −0.903641 0.428291i \(-0.859116\pi\)
−0.903641 + 0.428291i \(0.859116\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 1412.52 2.22795
\(635\) −1077.80 −1.69732
\(636\) −4064.00 −6.38993
\(637\) 806.520 1.26612
\(638\) 0 0
\(639\) 0 0
\(640\) −1672.24 −2.61288
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) −3645.99 −5.67911
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 533.851 0.823845
\(649\) 0 0
\(650\) −1578.12 −2.42787
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) −590.000 −0.900763
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) −3405.22 −5.15942
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 503.505 0.756014
\(667\) 0 0
\(668\) 415.918 0.622632
\(669\) 1056.78 1.57964
\(670\) 1032.71 1.54135
\(671\) 1620.00 2.41431
\(672\) 0 0
\(673\) 1202.76 1.78716 0.893581 0.448901i \(-0.148184\pi\)
0.893581 + 0.448901i \(0.148184\pi\)
\(674\) 2574.52 3.81976
\(675\) 530.002 0.785188
\(676\) 1091.36 1.61444
\(677\) 619.168 0.914576 0.457288 0.889319i \(-0.348821\pi\)
0.457288 + 0.889319i \(0.348821\pi\)
\(678\) −4041.02 −5.96021
\(679\) 0 0
\(680\) 0 0
\(681\) 490.039 0.719587
\(682\) 0 0
\(683\) −1254.89 −1.83732 −0.918661 0.395046i \(-0.870729\pi\)
−0.918661 + 0.395046i \(0.870729\pi\)
\(684\) −2740.99 −4.00729
\(685\) 0 0
\(686\) 0 0
\(687\) 1971.61 2.86988
\(688\) 0 0
\(689\) −1317.75 −1.91256
\(690\) 0 0
\(691\) 1381.89 1.99984 0.999920 0.0126162i \(-0.00401597\pi\)
0.999920 + 0.0126162i \(0.00401597\pi\)
\(692\) 1859.89 2.68770
\(693\) 0 0
\(694\) 0 0
\(695\) 1006.23 1.44781
\(696\) 0 0
\(697\) 0 0
\(698\) 1986.60 2.84613
\(699\) 0 0
\(700\) 0 0
\(701\) 952.565 1.35887 0.679433 0.733738i \(-0.262226\pi\)
0.679433 + 0.733738i \(0.262226\pi\)
\(702\) −1338.25 −1.90633
\(703\) 185.158 0.263382
\(704\) −2726.30 −3.87259
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 202.000 0.284908 0.142454 0.989801i \(-0.454501\pi\)
0.142454 + 0.989801i \(0.454501\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −1104.14 −1.54426
\(716\) 0 0
\(717\) 464.567 0.647932
\(718\) 257.268 0.358312
\(719\) −1247.73 −1.73536 −0.867681 0.497121i \(-0.834391\pi\)
−0.867681 + 0.497121i \(0.834391\pi\)
\(720\) 3760.94 5.22352
\(721\) 0 0
\(722\) −1384.48 −1.91756
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) −1072.64 −1.47747
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) −1184.04 −1.62420
\(730\) 0 0
\(731\) 0 0
\(732\) −6129.39 −8.37349
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 1161.42 1.58016
\(736\) 0 0
\(737\) 722.541 0.980382
\(738\) 0 0
\(739\) 1402.00 1.89716 0.948579 0.316540i \(-0.102521\pi\)
0.948579 + 0.316540i \(0.102521\pi\)
\(740\) −521.764 −0.705087
\(741\) −1482.50 −2.00067
\(742\) 0 0
\(743\) 88.6382 0.119298 0.0596489 0.998219i \(-0.481002\pi\)
0.0596489 + 0.998219i \(0.481002\pi\)
\(744\) 0 0
\(745\) −1140.39 −1.53073
\(746\) −898.942 −1.20502
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) −2272.54 −3.03006
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) −862.767 −1.14577
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 2444.05 3.21585
\(761\) 1435.56 1.88641 0.943203 0.332216i \(-0.107796\pi\)
0.943203 + 0.332216i \(0.107796\pi\)
\(762\) 3918.95 5.14298
\(763\) 0 0
\(764\) −3233.88 −4.23282
\(765\) 0 0
\(766\) 495.878 0.647361
\(767\) 0 0
\(768\) 2227.20 2.90000
\(769\) 684.237 0.889775 0.444887 0.895587i \(-0.353244\pi\)
0.444887 + 0.895587i \(0.353244\pi\)
\(770\) 0 0
\(771\) 468.819 0.608066
\(772\) 4070.78 5.27304
\(773\) −1375.66 −1.77963 −0.889816 0.456319i \(-0.849168\pi\)
−0.889816 + 0.456319i \(0.849168\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1500.68 1.93387
\(777\) 0 0
\(778\) 2845.66 3.65767
\(779\) 0 0
\(780\) 4177.61 5.35591
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 2735.81 3.48955
\(785\) 0 0
\(786\) 2145.28 2.72936
\(787\) −1281.75 −1.62865 −0.814326 0.580408i \(-0.802893\pi\)
−0.814326 + 0.580408i \(0.802893\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 4650.06 5.87129
\(793\) −1987.46 −2.50625
\(794\) 0 0
\(795\) −1897.61 −2.38693
\(796\) 3448.04 4.33171
\(797\) −1401.86 −1.75892 −0.879461 0.475971i \(-0.842097\pi\)
−0.879461 + 0.475971i \(0.842097\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −2780.47 −3.47558
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −2733.79 −3.40024
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −5177.42 −6.40770
\(809\) −1118.00 −1.38195 −0.690977 0.722877i \(-0.742819\pi\)
−0.690977 + 0.722877i \(0.742819\pi\)
\(810\) 397.909 0.491246
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 190.801 0.234687
\(814\) −501.423 −0.615998
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 122.000 0.148599 0.0742996 0.997236i \(-0.476328\pi\)
0.0742996 + 0.997236i \(0.476328\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 4871.50 5.91202
\(825\) −1590.00 −1.92728
\(826\) 0 0
\(827\) 693.401 0.838454 0.419227 0.907881i \(-0.362301\pi\)
0.419227 + 0.907881i \(0.362301\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 3344.70 4.02007
\(833\) 0 0
\(834\) −3658.72 −4.38696
\(835\) 194.205 0.232581
\(836\) 2729.65 3.26513
\(837\) 0 0
\(838\) −1756.49 −2.09605
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 841.000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 509.590 0.603065
\(846\) 0 0
\(847\) 0 0
\(848\) −4469.96 −5.27118
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) −1279.85 −1.49690
\(856\) −5159.40 −6.02734
\(857\) −590.072 −0.688532 −0.344266 0.938872i \(-0.611872\pi\)
−0.344266 + 0.938872i \(0.611872\pi\)
\(858\) 4014.74 4.67918
\(859\) −1702.00 −1.98137 −0.990687 0.136160i \(-0.956524\pi\)
−0.990687 + 0.136160i \(0.956524\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1712.22 1.98403 0.992013 0.126132i \(-0.0402563\pi\)
0.992013 + 0.126132i \(0.0402563\pi\)
\(864\) −2357.84 −2.72899
\(865\) 868.440 1.00398
\(866\) −2058.43 −2.37694
\(867\) 1370.00 1.58016
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −886.432 −1.01772
\(872\) 0 0
\(873\) −785.848 −0.900170
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1753.43 −1.99935 −0.999677 0.0254035i \(-0.991913\pi\)
−0.999677 + 0.0254035i \(0.991913\pi\)
\(878\) 0 0
\(879\) 2777.78 3.16016
\(880\) −3745.38 −4.25611
\(881\) −1677.05 −1.90358 −0.951788 0.306756i \(-0.900757\pi\)
−0.951788 + 0.306756i \(0.900757\pi\)
\(882\) −2531.70 −2.87041
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −962.816 −1.08547 −0.542737 0.839902i \(-0.682612\pi\)
−0.542737 + 0.839902i \(0.682612\pi\)
\(888\) 1188.49 1.33839
\(889\) 0 0
\(890\) 0 0
\(891\) 278.401 0.312459
\(892\) 2387.15 2.67618
\(893\) 0 0
\(894\) 4146.55 4.63820
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 3606.56 4.00729
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −5718.41 −6.32567
\(905\) 0 0
\(906\) 0 0
\(907\) 986.687 1.08786 0.543929 0.839131i \(-0.316936\pi\)
0.543929 + 0.839131i \(0.316936\pi\)
\(908\) 1106.94 1.21910
\(909\) 2711.22 2.98263
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) −5028.81 −5.51405
\(913\) 0 0
\(914\) 0 0
\(915\) −2862.01 −3.12788
\(916\) 4453.63 4.86205
\(917\) 0 0
\(918\) 0 0
\(919\) −1582.00 −1.72144 −0.860718 0.509082i \(-0.829985\pi\)
−0.860718 + 0.509082i \(0.829985\pi\)
\(920\) 0 0
\(921\) 2902.00 3.15092
\(922\) 2293.41 2.48743
\(923\) 0 0
\(924\) 0 0
\(925\) −243.628 −0.263382
\(926\) 0 0
\(927\) −2551.02 −2.75190
\(928\) 0 0
\(929\) −878.000 −0.945102 −0.472551 0.881303i \(-0.656667\pi\)
−0.472551 + 0.881303i \(0.656667\pi\)
\(930\) 0 0
\(931\) −931.000 −1.00000
\(932\) 0 0
\(933\) 1717.21 1.84052
\(934\) 0 0
\(935\) 0 0
\(936\) −5704.81 −6.09489
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 1821.69 1.91756
\(951\) −1745.97 −1.83593
\(952\) 0 0
\(953\) −1872.33 −1.96467 −0.982337 0.187119i \(-0.940085\pi\)
−0.982337 + 0.187119i \(0.940085\pi\)
\(954\) 4136.48 4.33593
\(955\) −1510.00 −1.58115
\(956\) 1049.40 1.09770
\(957\) 0 0
\(958\) −3447.39 −3.59853
\(959\) 0 0
\(960\) 4816.48 5.01717
\(961\) 961.000 1.00000
\(962\) 615.158 0.639457
\(963\) 2701.78 2.80559
\(964\) 0 0
\(965\) 1900.78 1.96972
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) −1517.88 −1.56806
\(969\) 0 0
\(970\) 1118.54 1.15314
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) −3096.48 −3.18568
\(973\) 0 0
\(974\) 250.529 0.257216
\(975\) 1950.66 2.00067
\(976\) −6741.68 −6.90746
\(977\) 1678.36 1.71788 0.858938 0.512080i \(-0.171125\pi\)
0.858938 + 0.512080i \(0.171125\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 2623.51 2.67705
\(981\) 0 0
\(982\) −1142.87 −1.16382
\(983\) 1965.96 1.99996 0.999981 0.00613954i \(-0.00195429\pi\)
0.999981 + 0.00613954i \(0.00195429\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −3348.80 −3.38947
\(989\) 0 0
\(990\) 3465.95 3.50096
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1610.00 1.61809
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 3756.12 3.76364
\(999\) −206.597 −0.206804
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 95.3.d.c.94.1 4
3.2 odd 2 855.3.g.d.379.4 4
5.2 odd 4 475.3.c.d.151.1 4
5.3 odd 4 475.3.c.d.151.4 4
5.4 even 2 inner 95.3.d.c.94.4 yes 4
15.14 odd 2 855.3.g.d.379.1 4
19.18 odd 2 inner 95.3.d.c.94.4 yes 4
57.56 even 2 855.3.g.d.379.1 4
95.18 even 4 475.3.c.d.151.1 4
95.37 even 4 475.3.c.d.151.4 4
95.94 odd 2 CM 95.3.d.c.94.1 4
285.284 even 2 855.3.g.d.379.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.3.d.c.94.1 4 1.1 even 1 trivial
95.3.d.c.94.1 4 95.94 odd 2 CM
95.3.d.c.94.4 yes 4 5.4 even 2 inner
95.3.d.c.94.4 yes 4 19.18 odd 2 inner
475.3.c.d.151.1 4 5.2 odd 4
475.3.c.d.151.1 4 95.18 even 4
475.3.c.d.151.4 4 5.3 odd 4
475.3.c.d.151.4 4 95.37 even 4
855.3.g.d.379.1 4 15.14 odd 2
855.3.g.d.379.1 4 57.56 even 2
855.3.g.d.379.4 4 3.2 odd 2
855.3.g.d.379.4 4 285.284 even 2