Properties

Label 9464.2.a.t.1.3
Level $9464$
Weight $2$
Character 9464.1
Self dual yes
Analytic conductor $75.570$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9464,2,Mod(1,9464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-4,0,3,0,5,0,1,0,0,0,-7,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5704204729\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.24698\) of defining polynomial
Character \(\chi\) \(=\) 9464.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.69202 q^{3} -1.44504 q^{5} +1.00000 q^{7} -0.137063 q^{9} +4.85086 q^{11} -2.44504 q^{15} -0.149145 q^{17} +1.08815 q^{19} +1.69202 q^{21} +9.15883 q^{23} -2.91185 q^{25} -5.30798 q^{27} +3.15883 q^{29} -5.93900 q^{31} +8.20775 q^{33} -1.44504 q^{35} -4.15883 q^{37} +8.76271 q^{41} -3.08815 q^{43} +0.198062 q^{45} +11.4426 q^{47} +1.00000 q^{49} -0.252356 q^{51} -0.131687 q^{53} -7.00969 q^{55} +1.84117 q^{57} -0.454731 q^{59} +2.53319 q^{61} -0.137063 q^{63} +2.81402 q^{67} +15.4969 q^{69} -8.74094 q^{71} +6.96615 q^{73} -4.92692 q^{75} +4.85086 q^{77} -16.3817 q^{79} -8.57002 q^{81} +4.00538 q^{83} +0.215521 q^{85} +5.34481 q^{87} +6.95108 q^{89} -10.0489 q^{93} -1.57242 q^{95} +14.3666 q^{97} -0.664874 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 4 q^{5} + 3 q^{7} + 5 q^{9} + q^{11} - 7 q^{15} - 14 q^{17} + 7 q^{19} + 19 q^{23} - 5 q^{25} - 21 q^{27} + q^{29} - 8 q^{31} + 7 q^{33} - 4 q^{35} - 4 q^{37} + 9 q^{41} - 13 q^{43} + 5 q^{45} - 7 q^{47}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.69202 0.976889 0.488445 0.872595i \(-0.337564\pi\)
0.488445 + 0.872595i \(0.337564\pi\)
\(4\) 0 0
\(5\) −1.44504 −0.646242 −0.323121 0.946358i \(-0.604732\pi\)
−0.323121 + 0.946358i \(0.604732\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −0.137063 −0.0456878
\(10\) 0 0
\(11\) 4.85086 1.46259 0.731294 0.682062i \(-0.238917\pi\)
0.731294 + 0.682062i \(0.238917\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −2.44504 −0.631307
\(16\) 0 0
\(17\) −0.149145 −0.0361730 −0.0180865 0.999836i \(-0.505757\pi\)
−0.0180865 + 0.999836i \(0.505757\pi\)
\(18\) 0 0
\(19\) 1.08815 0.249638 0.124819 0.992180i \(-0.460165\pi\)
0.124819 + 0.992180i \(0.460165\pi\)
\(20\) 0 0
\(21\) 1.69202 0.369229
\(22\) 0 0
\(23\) 9.15883 1.90975 0.954874 0.297010i \(-0.0959894\pi\)
0.954874 + 0.297010i \(0.0959894\pi\)
\(24\) 0 0
\(25\) −2.91185 −0.582371
\(26\) 0 0
\(27\) −5.30798 −1.02152
\(28\) 0 0
\(29\) 3.15883 0.586581 0.293290 0.956023i \(-0.405250\pi\)
0.293290 + 0.956023i \(0.405250\pi\)
\(30\) 0 0
\(31\) −5.93900 −1.06668 −0.533338 0.845902i \(-0.679063\pi\)
−0.533338 + 0.845902i \(0.679063\pi\)
\(32\) 0 0
\(33\) 8.20775 1.42879
\(34\) 0 0
\(35\) −1.44504 −0.244257
\(36\) 0 0
\(37\) −4.15883 −0.683708 −0.341854 0.939753i \(-0.611055\pi\)
−0.341854 + 0.939753i \(0.611055\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.76271 1.36851 0.684253 0.729245i \(-0.260129\pi\)
0.684253 + 0.729245i \(0.260129\pi\)
\(42\) 0 0
\(43\) −3.08815 −0.470938 −0.235469 0.971882i \(-0.575663\pi\)
−0.235469 + 0.971882i \(0.575663\pi\)
\(44\) 0 0
\(45\) 0.198062 0.0295254
\(46\) 0 0
\(47\) 11.4426 1.66908 0.834541 0.550946i \(-0.185733\pi\)
0.834541 + 0.550946i \(0.185733\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −0.252356 −0.0353370
\(52\) 0 0
\(53\) −0.131687 −0.0180885 −0.00904427 0.999959i \(-0.502879\pi\)
−0.00904427 + 0.999959i \(0.502879\pi\)
\(54\) 0 0
\(55\) −7.00969 −0.945186
\(56\) 0 0
\(57\) 1.84117 0.243868
\(58\) 0 0
\(59\) −0.454731 −0.0592009 −0.0296004 0.999562i \(-0.509423\pi\)
−0.0296004 + 0.999562i \(0.509423\pi\)
\(60\) 0 0
\(61\) 2.53319 0.324341 0.162171 0.986763i \(-0.448150\pi\)
0.162171 + 0.986763i \(0.448150\pi\)
\(62\) 0 0
\(63\) −0.137063 −0.0172684
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.81402 0.343787 0.171894 0.985116i \(-0.445011\pi\)
0.171894 + 0.985116i \(0.445011\pi\)
\(68\) 0 0
\(69\) 15.4969 1.86561
\(70\) 0 0
\(71\) −8.74094 −1.03736 −0.518679 0.854969i \(-0.673576\pi\)
−0.518679 + 0.854969i \(0.673576\pi\)
\(72\) 0 0
\(73\) 6.96615 0.815326 0.407663 0.913132i \(-0.366344\pi\)
0.407663 + 0.913132i \(0.366344\pi\)
\(74\) 0 0
\(75\) −4.92692 −0.568912
\(76\) 0 0
\(77\) 4.85086 0.552806
\(78\) 0 0
\(79\) −16.3817 −1.84308 −0.921540 0.388284i \(-0.873068\pi\)
−0.921540 + 0.388284i \(0.873068\pi\)
\(80\) 0 0
\(81\) −8.57002 −0.952225
\(82\) 0 0
\(83\) 4.00538 0.439647 0.219824 0.975540i \(-0.429452\pi\)
0.219824 + 0.975540i \(0.429452\pi\)
\(84\) 0 0
\(85\) 0.215521 0.0233765
\(86\) 0 0
\(87\) 5.34481 0.573024
\(88\) 0 0
\(89\) 6.95108 0.736813 0.368407 0.929665i \(-0.379903\pi\)
0.368407 + 0.929665i \(0.379903\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −10.0489 −1.04202
\(94\) 0 0
\(95\) −1.57242 −0.161327
\(96\) 0 0
\(97\) 14.3666 1.45871 0.729353 0.684138i \(-0.239821\pi\)
0.729353 + 0.684138i \(0.239821\pi\)
\(98\) 0 0
\(99\) −0.664874 −0.0668224
\(100\) 0 0
\(101\) 0.872625 0.0868295 0.0434147 0.999057i \(-0.486176\pi\)
0.0434147 + 0.999057i \(0.486176\pi\)
\(102\) 0 0
\(103\) 13.0097 1.28188 0.640941 0.767590i \(-0.278544\pi\)
0.640941 + 0.767590i \(0.278544\pi\)
\(104\) 0 0
\(105\) −2.44504 −0.238612
\(106\) 0 0
\(107\) 19.3884 1.87434 0.937172 0.348869i \(-0.113434\pi\)
0.937172 + 0.348869i \(0.113434\pi\)
\(108\) 0 0
\(109\) 1.60925 0.154138 0.0770692 0.997026i \(-0.475444\pi\)
0.0770692 + 0.997026i \(0.475444\pi\)
\(110\) 0 0
\(111\) −7.03684 −0.667907
\(112\) 0 0
\(113\) −9.86054 −0.927602 −0.463801 0.885939i \(-0.653515\pi\)
−0.463801 + 0.885939i \(0.653515\pi\)
\(114\) 0 0
\(115\) −13.2349 −1.23416
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.149145 −0.0136721
\(120\) 0 0
\(121\) 12.5308 1.13916
\(122\) 0 0
\(123\) 14.8267 1.33688
\(124\) 0 0
\(125\) 11.4330 1.02260
\(126\) 0 0
\(127\) 7.13169 0.632835 0.316417 0.948620i \(-0.397520\pi\)
0.316417 + 0.948620i \(0.397520\pi\)
\(128\) 0 0
\(129\) −5.22521 −0.460054
\(130\) 0 0
\(131\) −21.8509 −1.90912 −0.954559 0.298022i \(-0.903673\pi\)
−0.954559 + 0.298022i \(0.903673\pi\)
\(132\) 0 0
\(133\) 1.08815 0.0943542
\(134\) 0 0
\(135\) 7.67025 0.660150
\(136\) 0 0
\(137\) 8.03146 0.686174 0.343087 0.939304i \(-0.388527\pi\)
0.343087 + 0.939304i \(0.388527\pi\)
\(138\) 0 0
\(139\) −19.2078 −1.62918 −0.814590 0.580037i \(-0.803038\pi\)
−0.814590 + 0.580037i \(0.803038\pi\)
\(140\) 0 0
\(141\) 19.3612 1.63051
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −4.56465 −0.379073
\(146\) 0 0
\(147\) 1.69202 0.139556
\(148\) 0 0
\(149\) 12.8509 1.05278 0.526392 0.850242i \(-0.323545\pi\)
0.526392 + 0.850242i \(0.323545\pi\)
\(150\) 0 0
\(151\) −6.74094 −0.548570 −0.274285 0.961648i \(-0.588441\pi\)
−0.274285 + 0.961648i \(0.588441\pi\)
\(152\) 0 0
\(153\) 0.0204423 0.00165266
\(154\) 0 0
\(155\) 8.58211 0.689331
\(156\) 0 0
\(157\) −12.7627 −1.01858 −0.509288 0.860596i \(-0.670091\pi\)
−0.509288 + 0.860596i \(0.670091\pi\)
\(158\) 0 0
\(159\) −0.222816 −0.0176705
\(160\) 0 0
\(161\) 9.15883 0.721817
\(162\) 0 0
\(163\) 10.0368 0.786146 0.393073 0.919507i \(-0.371412\pi\)
0.393073 + 0.919507i \(0.371412\pi\)
\(164\) 0 0
\(165\) −11.8605 −0.923342
\(166\) 0 0
\(167\) −8.57673 −0.663687 −0.331844 0.943334i \(-0.607671\pi\)
−0.331844 + 0.943334i \(0.607671\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −0.149145 −0.0114054
\(172\) 0 0
\(173\) −19.9051 −1.51336 −0.756680 0.653785i \(-0.773180\pi\)
−0.756680 + 0.653785i \(0.773180\pi\)
\(174\) 0 0
\(175\) −2.91185 −0.220115
\(176\) 0 0
\(177\) −0.769414 −0.0578327
\(178\) 0 0
\(179\) 4.16421 0.311248 0.155624 0.987816i \(-0.450261\pi\)
0.155624 + 0.987816i \(0.450261\pi\)
\(180\) 0 0
\(181\) −2.37196 −0.176306 −0.0881532 0.996107i \(-0.528097\pi\)
−0.0881532 + 0.996107i \(0.528097\pi\)
\(182\) 0 0
\(183\) 4.28621 0.316846
\(184\) 0 0
\(185\) 6.00969 0.441841
\(186\) 0 0
\(187\) −0.723480 −0.0529061
\(188\) 0 0
\(189\) −5.30798 −0.386099
\(190\) 0 0
\(191\) 17.1588 1.24157 0.620785 0.783981i \(-0.286814\pi\)
0.620785 + 0.783981i \(0.286814\pi\)
\(192\) 0 0
\(193\) 10.1914 0.733590 0.366795 0.930302i \(-0.380455\pi\)
0.366795 + 0.930302i \(0.380455\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.41657 0.670903 0.335451 0.942058i \(-0.391111\pi\)
0.335451 + 0.942058i \(0.391111\pi\)
\(198\) 0 0
\(199\) −8.52542 −0.604351 −0.302175 0.953252i \(-0.597713\pi\)
−0.302175 + 0.953252i \(0.597713\pi\)
\(200\) 0 0
\(201\) 4.76138 0.335842
\(202\) 0 0
\(203\) 3.15883 0.221707
\(204\) 0 0
\(205\) −12.6625 −0.884386
\(206\) 0 0
\(207\) −1.25534 −0.0872522
\(208\) 0 0
\(209\) 5.27844 0.365117
\(210\) 0 0
\(211\) −1.75302 −0.120683 −0.0603415 0.998178i \(-0.519219\pi\)
−0.0603415 + 0.998178i \(0.519219\pi\)
\(212\) 0 0
\(213\) −14.7899 −1.01338
\(214\) 0 0
\(215\) 4.46250 0.304340
\(216\) 0 0
\(217\) −5.93900 −0.403166
\(218\) 0 0
\(219\) 11.7869 0.796483
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 1.88769 0.126409 0.0632046 0.998001i \(-0.479868\pi\)
0.0632046 + 0.998001i \(0.479868\pi\)
\(224\) 0 0
\(225\) 0.399108 0.0266072
\(226\) 0 0
\(227\) 27.9463 1.85486 0.927430 0.373996i \(-0.122013\pi\)
0.927430 + 0.373996i \(0.122013\pi\)
\(228\) 0 0
\(229\) 11.1860 0.739190 0.369595 0.929193i \(-0.379496\pi\)
0.369595 + 0.929193i \(0.379496\pi\)
\(230\) 0 0
\(231\) 8.20775 0.540030
\(232\) 0 0
\(233\) 18.1129 1.18662 0.593308 0.804976i \(-0.297822\pi\)
0.593308 + 0.804976i \(0.297822\pi\)
\(234\) 0 0
\(235\) −16.5351 −1.07863
\(236\) 0 0
\(237\) −27.7181 −1.80048
\(238\) 0 0
\(239\) 16.9312 1.09519 0.547595 0.836743i \(-0.315543\pi\)
0.547595 + 0.836743i \(0.315543\pi\)
\(240\) 0 0
\(241\) −0.283815 −0.0182822 −0.00914108 0.999958i \(-0.502910\pi\)
−0.00914108 + 0.999958i \(0.502910\pi\)
\(242\) 0 0
\(243\) 1.42327 0.0913029
\(244\) 0 0
\(245\) −1.44504 −0.0923203
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 6.77718 0.429487
\(250\) 0 0
\(251\) −11.6528 −0.735518 −0.367759 0.929921i \(-0.619875\pi\)
−0.367759 + 0.929921i \(0.619875\pi\)
\(252\) 0 0
\(253\) 44.4282 2.79318
\(254\) 0 0
\(255\) 0.364666 0.0228362
\(256\) 0 0
\(257\) −1.46921 −0.0916465 −0.0458232 0.998950i \(-0.514591\pi\)
−0.0458232 + 0.998950i \(0.514591\pi\)
\(258\) 0 0
\(259\) −4.15883 −0.258417
\(260\) 0 0
\(261\) −0.432960 −0.0267996
\(262\) 0 0
\(263\) −21.5381 −1.32810 −0.664048 0.747690i \(-0.731163\pi\)
−0.664048 + 0.747690i \(0.731163\pi\)
\(264\) 0 0
\(265\) 0.190293 0.0116896
\(266\) 0 0
\(267\) 11.7614 0.719785
\(268\) 0 0
\(269\) 7.04221 0.429371 0.214686 0.976683i \(-0.431127\pi\)
0.214686 + 0.976683i \(0.431127\pi\)
\(270\) 0 0
\(271\) −20.0344 −1.21701 −0.608503 0.793552i \(-0.708230\pi\)
−0.608503 + 0.793552i \(0.708230\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −14.1250 −0.851768
\(276\) 0 0
\(277\) 29.5719 1.77681 0.888403 0.459065i \(-0.151815\pi\)
0.888403 + 0.459065i \(0.151815\pi\)
\(278\) 0 0
\(279\) 0.814019 0.0487341
\(280\) 0 0
\(281\) 13.1793 0.786210 0.393105 0.919494i \(-0.371401\pi\)
0.393105 + 0.919494i \(0.371401\pi\)
\(282\) 0 0
\(283\) 15.8073 0.939647 0.469824 0.882760i \(-0.344317\pi\)
0.469824 + 0.882760i \(0.344317\pi\)
\(284\) 0 0
\(285\) −2.66056 −0.157598
\(286\) 0 0
\(287\) 8.76271 0.517246
\(288\) 0 0
\(289\) −16.9778 −0.998692
\(290\) 0 0
\(291\) 24.3086 1.42499
\(292\) 0 0
\(293\) −5.76032 −0.336521 −0.168261 0.985743i \(-0.553815\pi\)
−0.168261 + 0.985743i \(0.553815\pi\)
\(294\) 0 0
\(295\) 0.657105 0.0382581
\(296\) 0 0
\(297\) −25.7482 −1.49406
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −3.08815 −0.177998
\(302\) 0 0
\(303\) 1.47650 0.0848228
\(304\) 0 0
\(305\) −3.66056 −0.209603
\(306\) 0 0
\(307\) 11.5036 0.656548 0.328274 0.944583i \(-0.393533\pi\)
0.328274 + 0.944583i \(0.393533\pi\)
\(308\) 0 0
\(309\) 22.0127 1.25226
\(310\) 0 0
\(311\) 1.24400 0.0705405 0.0352703 0.999378i \(-0.488771\pi\)
0.0352703 + 0.999378i \(0.488771\pi\)
\(312\) 0 0
\(313\) 10.7356 0.606810 0.303405 0.952862i \(-0.401877\pi\)
0.303405 + 0.952862i \(0.401877\pi\)
\(314\) 0 0
\(315\) 0.198062 0.0111595
\(316\) 0 0
\(317\) −11.3556 −0.637792 −0.318896 0.947790i \(-0.603312\pi\)
−0.318896 + 0.947790i \(0.603312\pi\)
\(318\) 0 0
\(319\) 15.3230 0.857926
\(320\) 0 0
\(321\) 32.8055 1.83103
\(322\) 0 0
\(323\) −0.162291 −0.00903014
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2.72289 0.150576
\(328\) 0 0
\(329\) 11.4426 0.630854
\(330\) 0 0
\(331\) −8.70410 −0.478421 −0.239210 0.970968i \(-0.576889\pi\)
−0.239210 + 0.970968i \(0.576889\pi\)
\(332\) 0 0
\(333\) 0.570024 0.0312371
\(334\) 0 0
\(335\) −4.06638 −0.222170
\(336\) 0 0
\(337\) 9.10560 0.496014 0.248007 0.968758i \(-0.420224\pi\)
0.248007 + 0.968758i \(0.420224\pi\)
\(338\) 0 0
\(339\) −16.6843 −0.906164
\(340\) 0 0
\(341\) −28.8092 −1.56011
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −22.3937 −1.20564
\(346\) 0 0
\(347\) 16.8823 0.906290 0.453145 0.891437i \(-0.350302\pi\)
0.453145 + 0.891437i \(0.350302\pi\)
\(348\) 0 0
\(349\) −1.08038 −0.0578312 −0.0289156 0.999582i \(-0.509205\pi\)
−0.0289156 + 0.999582i \(0.509205\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −18.6450 −0.992374 −0.496187 0.868216i \(-0.665267\pi\)
−0.496187 + 0.868216i \(0.665267\pi\)
\(354\) 0 0
\(355\) 12.6310 0.670385
\(356\) 0 0
\(357\) −0.252356 −0.0133561
\(358\) 0 0
\(359\) 23.3666 1.23324 0.616621 0.787260i \(-0.288501\pi\)
0.616621 + 0.787260i \(0.288501\pi\)
\(360\) 0 0
\(361\) −17.8159 −0.937681
\(362\) 0 0
\(363\) 21.2024 1.11284
\(364\) 0 0
\(365\) −10.0664 −0.526898
\(366\) 0 0
\(367\) 22.1497 1.15621 0.578103 0.815964i \(-0.303793\pi\)
0.578103 + 0.815964i \(0.303793\pi\)
\(368\) 0 0
\(369\) −1.20105 −0.0625240
\(370\) 0 0
\(371\) −0.131687 −0.00683682
\(372\) 0 0
\(373\) 2.81940 0.145983 0.0729914 0.997333i \(-0.476745\pi\)
0.0729914 + 0.997333i \(0.476745\pi\)
\(374\) 0 0
\(375\) 19.3448 0.998962
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 13.7651 0.707066 0.353533 0.935422i \(-0.384980\pi\)
0.353533 + 0.935422i \(0.384980\pi\)
\(380\) 0 0
\(381\) 12.0670 0.618209
\(382\) 0 0
\(383\) −33.2433 −1.69865 −0.849326 0.527869i \(-0.822991\pi\)
−0.849326 + 0.527869i \(0.822991\pi\)
\(384\) 0 0
\(385\) −7.00969 −0.357247
\(386\) 0 0
\(387\) 0.423272 0.0215161
\(388\) 0 0
\(389\) 15.2881 0.775139 0.387569 0.921841i \(-0.373315\pi\)
0.387569 + 0.921841i \(0.373315\pi\)
\(390\) 0 0
\(391\) −1.36599 −0.0690813
\(392\) 0 0
\(393\) −36.9721 −1.86500
\(394\) 0 0
\(395\) 23.6722 1.19108
\(396\) 0 0
\(397\) −4.49635 −0.225665 −0.112833 0.993614i \(-0.535992\pi\)
−0.112833 + 0.993614i \(0.535992\pi\)
\(398\) 0 0
\(399\) 1.84117 0.0921736
\(400\) 0 0
\(401\) −22.2610 −1.11166 −0.555830 0.831296i \(-0.687600\pi\)
−0.555830 + 0.831296i \(0.687600\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 12.3840 0.615368
\(406\) 0 0
\(407\) −20.1739 −0.999983
\(408\) 0 0
\(409\) 37.7453 1.86638 0.933191 0.359380i \(-0.117012\pi\)
0.933191 + 0.359380i \(0.117012\pi\)
\(410\) 0 0
\(411\) 13.5894 0.670316
\(412\) 0 0
\(413\) −0.454731 −0.0223758
\(414\) 0 0
\(415\) −5.78794 −0.284119
\(416\) 0 0
\(417\) −32.4999 −1.59153
\(418\) 0 0
\(419\) 35.9571 1.75662 0.878308 0.478094i \(-0.158672\pi\)
0.878308 + 0.478094i \(0.158672\pi\)
\(420\) 0 0
\(421\) 6.46921 0.315290 0.157645 0.987496i \(-0.449610\pi\)
0.157645 + 0.987496i \(0.449610\pi\)
\(422\) 0 0
\(423\) −1.56837 −0.0762566
\(424\) 0 0
\(425\) 0.434288 0.0210661
\(426\) 0 0
\(427\) 2.53319 0.122590
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −35.9711 −1.73266 −0.866332 0.499468i \(-0.833529\pi\)
−0.866332 + 0.499468i \(0.833529\pi\)
\(432\) 0 0
\(433\) 5.47352 0.263040 0.131520 0.991313i \(-0.458014\pi\)
0.131520 + 0.991313i \(0.458014\pi\)
\(434\) 0 0
\(435\) −7.72348 −0.370313
\(436\) 0 0
\(437\) 9.96615 0.476746
\(438\) 0 0
\(439\) −2.35557 −0.112425 −0.0562126 0.998419i \(-0.517902\pi\)
−0.0562126 + 0.998419i \(0.517902\pi\)
\(440\) 0 0
\(441\) −0.137063 −0.00652683
\(442\) 0 0
\(443\) −25.7845 −1.22506 −0.612529 0.790448i \(-0.709848\pi\)
−0.612529 + 0.790448i \(0.709848\pi\)
\(444\) 0 0
\(445\) −10.0446 −0.476160
\(446\) 0 0
\(447\) 21.7439 1.02845
\(448\) 0 0
\(449\) 22.7573 1.07398 0.536992 0.843587i \(-0.319560\pi\)
0.536992 + 0.843587i \(0.319560\pi\)
\(450\) 0 0
\(451\) 42.5066 2.00156
\(452\) 0 0
\(453\) −11.4058 −0.535892
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 26.7573 1.25166 0.625828 0.779961i \(-0.284761\pi\)
0.625828 + 0.779961i \(0.284761\pi\)
\(458\) 0 0
\(459\) 0.791658 0.0369514
\(460\) 0 0
\(461\) −20.8224 −0.969795 −0.484897 0.874571i \(-0.661143\pi\)
−0.484897 + 0.874571i \(0.661143\pi\)
\(462\) 0 0
\(463\) 40.2097 1.86870 0.934351 0.356354i \(-0.115980\pi\)
0.934351 + 0.356354i \(0.115980\pi\)
\(464\) 0 0
\(465\) 14.5211 0.673400
\(466\) 0 0
\(467\) 2.71678 0.125717 0.0628587 0.998022i \(-0.479978\pi\)
0.0628587 + 0.998022i \(0.479978\pi\)
\(468\) 0 0
\(469\) 2.81402 0.129939
\(470\) 0 0
\(471\) −21.5948 −0.995035
\(472\) 0 0
\(473\) −14.9801 −0.688788
\(474\) 0 0
\(475\) −3.16852 −0.145382
\(476\) 0 0
\(477\) 0.0180494 0.000826425 0
\(478\) 0 0
\(479\) 5.41550 0.247441 0.123720 0.992317i \(-0.460517\pi\)
0.123720 + 0.992317i \(0.460517\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 15.4969 0.705135
\(484\) 0 0
\(485\) −20.7603 −0.942677
\(486\) 0 0
\(487\) −20.6340 −0.935016 −0.467508 0.883989i \(-0.654848\pi\)
−0.467508 + 0.883989i \(0.654848\pi\)
\(488\) 0 0
\(489\) 16.9825 0.767977
\(490\) 0 0
\(491\) 35.4276 1.59882 0.799412 0.600783i \(-0.205144\pi\)
0.799412 + 0.600783i \(0.205144\pi\)
\(492\) 0 0
\(493\) −0.471124 −0.0212184
\(494\) 0 0
\(495\) 0.960771 0.0431835
\(496\) 0 0
\(497\) −8.74094 −0.392085
\(498\) 0 0
\(499\) −4.07367 −0.182363 −0.0911813 0.995834i \(-0.529064\pi\)
−0.0911813 + 0.995834i \(0.529064\pi\)
\(500\) 0 0
\(501\) −14.5120 −0.648349
\(502\) 0 0
\(503\) −20.2271 −0.901883 −0.450942 0.892553i \(-0.648912\pi\)
−0.450942 + 0.892553i \(0.648912\pi\)
\(504\) 0 0
\(505\) −1.26098 −0.0561129
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −17.0368 −0.755144 −0.377572 0.925980i \(-0.623241\pi\)
−0.377572 + 0.925980i \(0.623241\pi\)
\(510\) 0 0
\(511\) 6.96615 0.308164
\(512\) 0 0
\(513\) −5.77586 −0.255010
\(514\) 0 0
\(515\) −18.7995 −0.828407
\(516\) 0 0
\(517\) 55.5066 2.44118
\(518\) 0 0
\(519\) −33.6799 −1.47839
\(520\) 0 0
\(521\) 25.6504 1.12376 0.561882 0.827217i \(-0.310077\pi\)
0.561882 + 0.827217i \(0.310077\pi\)
\(522\) 0 0
\(523\) −18.8974 −0.826325 −0.413162 0.910657i \(-0.635576\pi\)
−0.413162 + 0.910657i \(0.635576\pi\)
\(524\) 0 0
\(525\) −4.92692 −0.215028
\(526\) 0 0
\(527\) 0.885772 0.0385848
\(528\) 0 0
\(529\) 60.8842 2.64714
\(530\) 0 0
\(531\) 0.0623269 0.00270476
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −28.0170 −1.21128
\(536\) 0 0
\(537\) 7.04593 0.304054
\(538\) 0 0
\(539\) 4.85086 0.208941
\(540\) 0 0
\(541\) −23.9691 −1.03051 −0.515257 0.857036i \(-0.672303\pi\)
−0.515257 + 0.857036i \(0.672303\pi\)
\(542\) 0 0
\(543\) −4.01341 −0.172232
\(544\) 0 0
\(545\) −2.32544 −0.0996108
\(546\) 0 0
\(547\) 28.1618 1.20411 0.602056 0.798454i \(-0.294348\pi\)
0.602056 + 0.798454i \(0.294348\pi\)
\(548\) 0 0
\(549\) −0.347207 −0.0148184
\(550\) 0 0
\(551\) 3.43727 0.146433
\(552\) 0 0
\(553\) −16.3817 −0.696619
\(554\) 0 0
\(555\) 10.1685 0.431630
\(556\) 0 0
\(557\) 35.7851 1.51626 0.758131 0.652102i \(-0.226113\pi\)
0.758131 + 0.652102i \(0.226113\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −1.22414 −0.0516834
\(562\) 0 0
\(563\) −2.02177 −0.0852075 −0.0426037 0.999092i \(-0.513565\pi\)
−0.0426037 + 0.999092i \(0.513565\pi\)
\(564\) 0 0
\(565\) 14.2489 0.599456
\(566\) 0 0
\(567\) −8.57002 −0.359907
\(568\) 0 0
\(569\) −28.7590 −1.20564 −0.602820 0.797877i \(-0.705956\pi\)
−0.602820 + 0.797877i \(0.705956\pi\)
\(570\) 0 0
\(571\) 24.3967 1.02097 0.510485 0.859886i \(-0.329466\pi\)
0.510485 + 0.859886i \(0.329466\pi\)
\(572\) 0 0
\(573\) 29.0331 1.21288
\(574\) 0 0
\(575\) −26.6692 −1.11218
\(576\) 0 0
\(577\) −9.56225 −0.398082 −0.199041 0.979991i \(-0.563783\pi\)
−0.199041 + 0.979991i \(0.563783\pi\)
\(578\) 0 0
\(579\) 17.2440 0.716636
\(580\) 0 0
\(581\) 4.00538 0.166171
\(582\) 0 0
\(583\) −0.638792 −0.0264561
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −21.3672 −0.881918 −0.440959 0.897527i \(-0.645362\pi\)
−0.440959 + 0.897527i \(0.645362\pi\)
\(588\) 0 0
\(589\) −6.46250 −0.266283
\(590\) 0 0
\(591\) 15.9330 0.655397
\(592\) 0 0
\(593\) −0.804331 −0.0330299 −0.0165150 0.999864i \(-0.505257\pi\)
−0.0165150 + 0.999864i \(0.505257\pi\)
\(594\) 0 0
\(595\) 0.215521 0.00883549
\(596\) 0 0
\(597\) −14.4252 −0.590384
\(598\) 0 0
\(599\) −3.23490 −0.132174 −0.0660872 0.997814i \(-0.521052\pi\)
−0.0660872 + 0.997814i \(0.521052\pi\)
\(600\) 0 0
\(601\) 13.8398 0.564539 0.282269 0.959335i \(-0.408913\pi\)
0.282269 + 0.959335i \(0.408913\pi\)
\(602\) 0 0
\(603\) −0.385699 −0.0157069
\(604\) 0 0
\(605\) −18.1075 −0.736176
\(606\) 0 0
\(607\) 3.92394 0.159268 0.0796338 0.996824i \(-0.474625\pi\)
0.0796338 + 0.996824i \(0.474625\pi\)
\(608\) 0 0
\(609\) 5.34481 0.216583
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −11.1629 −0.450865 −0.225432 0.974259i \(-0.572379\pi\)
−0.225432 + 0.974259i \(0.572379\pi\)
\(614\) 0 0
\(615\) −21.4252 −0.863947
\(616\) 0 0
\(617\) 36.8713 1.48438 0.742191 0.670188i \(-0.233787\pi\)
0.742191 + 0.670188i \(0.233787\pi\)
\(618\) 0 0
\(619\) −7.24219 −0.291088 −0.145544 0.989352i \(-0.546493\pi\)
−0.145544 + 0.989352i \(0.546493\pi\)
\(620\) 0 0
\(621\) −48.6149 −1.95085
\(622\) 0 0
\(623\) 6.95108 0.278489
\(624\) 0 0
\(625\) −1.96184 −0.0784735
\(626\) 0 0
\(627\) 8.93123 0.356679
\(628\) 0 0
\(629\) 0.620269 0.0247317
\(630\) 0 0
\(631\) −26.2664 −1.04565 −0.522824 0.852441i \(-0.675121\pi\)
−0.522824 + 0.852441i \(0.675121\pi\)
\(632\) 0 0
\(633\) −2.96615 −0.117894
\(634\) 0 0
\(635\) −10.3056 −0.408965
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.19806 0.0473946
\(640\) 0 0
\(641\) 27.0248 1.06741 0.533707 0.845670i \(-0.320799\pi\)
0.533707 + 0.845670i \(0.320799\pi\)
\(642\) 0 0
\(643\) 8.40044 0.331281 0.165640 0.986186i \(-0.447031\pi\)
0.165640 + 0.986186i \(0.447031\pi\)
\(644\) 0 0
\(645\) 7.55065 0.297306
\(646\) 0 0
\(647\) 21.5657 0.847836 0.423918 0.905701i \(-0.360655\pi\)
0.423918 + 0.905701i \(0.360655\pi\)
\(648\) 0 0
\(649\) −2.20583 −0.0865865
\(650\) 0 0
\(651\) −10.0489 −0.393848
\(652\) 0 0
\(653\) −12.7216 −0.497833 −0.248917 0.968525i \(-0.580075\pi\)
−0.248917 + 0.968525i \(0.580075\pi\)
\(654\) 0 0
\(655\) 31.5754 1.23375
\(656\) 0 0
\(657\) −0.954804 −0.0372504
\(658\) 0 0
\(659\) 46.9764 1.82994 0.914971 0.403520i \(-0.132213\pi\)
0.914971 + 0.403520i \(0.132213\pi\)
\(660\) 0 0
\(661\) 32.2573 1.25466 0.627331 0.778753i \(-0.284147\pi\)
0.627331 + 0.778753i \(0.284147\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.57242 −0.0609757
\(666\) 0 0
\(667\) 28.9312 1.12022
\(668\) 0 0
\(669\) 3.19401 0.123488
\(670\) 0 0
\(671\) 12.2881 0.474378
\(672\) 0 0
\(673\) −12.8528 −0.495438 −0.247719 0.968832i \(-0.579681\pi\)
−0.247719 + 0.968832i \(0.579681\pi\)
\(674\) 0 0
\(675\) 15.4561 0.594904
\(676\) 0 0
\(677\) −28.2118 −1.08427 −0.542134 0.840292i \(-0.682383\pi\)
−0.542134 + 0.840292i \(0.682383\pi\)
\(678\) 0 0
\(679\) 14.3666 0.551339
\(680\) 0 0
\(681\) 47.2857 1.81199
\(682\) 0 0
\(683\) 1.12929 0.0432112 0.0216056 0.999767i \(-0.493122\pi\)
0.0216056 + 0.999767i \(0.493122\pi\)
\(684\) 0 0
\(685\) −11.6058 −0.443435
\(686\) 0 0
\(687\) 18.9269 0.722107
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −15.8810 −0.604141 −0.302071 0.953286i \(-0.597678\pi\)
−0.302071 + 0.953286i \(0.597678\pi\)
\(692\) 0 0
\(693\) −0.664874 −0.0252565
\(694\) 0 0
\(695\) 27.7560 1.05285
\(696\) 0 0
\(697\) −1.30691 −0.0495029
\(698\) 0 0
\(699\) 30.6474 1.15919
\(700\) 0 0
\(701\) −30.0810 −1.13614 −0.568071 0.822979i \(-0.692310\pi\)
−0.568071 + 0.822979i \(0.692310\pi\)
\(702\) 0 0
\(703\) −4.52542 −0.170679
\(704\) 0 0
\(705\) −27.9778 −1.05370
\(706\) 0 0
\(707\) 0.872625 0.0328185
\(708\) 0 0
\(709\) 0.473517 0.0177833 0.00889165 0.999960i \(-0.497170\pi\)
0.00889165 + 0.999960i \(0.497170\pi\)
\(710\) 0 0
\(711\) 2.24532 0.0842062
\(712\) 0 0
\(713\) −54.3943 −2.03708
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 28.6480 1.06988
\(718\) 0 0
\(719\) −37.8562 −1.41180 −0.705900 0.708312i \(-0.749457\pi\)
−0.705900 + 0.708312i \(0.749457\pi\)
\(720\) 0 0
\(721\) 13.0097 0.484506
\(722\) 0 0
\(723\) −0.480222 −0.0178596
\(724\) 0 0
\(725\) −9.19806 −0.341607
\(726\) 0 0
\(727\) 37.8877 1.40518 0.702588 0.711597i \(-0.252028\pi\)
0.702588 + 0.711597i \(0.252028\pi\)
\(728\) 0 0
\(729\) 28.1183 1.04142
\(730\) 0 0
\(731\) 0.460581 0.0170352
\(732\) 0 0
\(733\) −37.2161 −1.37461 −0.687304 0.726370i \(-0.741206\pi\)
−0.687304 + 0.726370i \(0.741206\pi\)
\(734\) 0 0
\(735\) −2.44504 −0.0901867
\(736\) 0 0
\(737\) 13.6504 0.502819
\(738\) 0 0
\(739\) 23.0019 0.846139 0.423070 0.906097i \(-0.360953\pi\)
0.423070 + 0.906097i \(0.360953\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −45.7284 −1.67761 −0.838806 0.544431i \(-0.816746\pi\)
−0.838806 + 0.544431i \(0.816746\pi\)
\(744\) 0 0
\(745\) −18.5700 −0.680353
\(746\) 0 0
\(747\) −0.548990 −0.0200865
\(748\) 0 0
\(749\) 19.3884 0.708435
\(750\) 0 0
\(751\) 6.28680 0.229409 0.114704 0.993400i \(-0.463408\pi\)
0.114704 + 0.993400i \(0.463408\pi\)
\(752\) 0 0
\(753\) −19.7168 −0.718519
\(754\) 0 0
\(755\) 9.74094 0.354509
\(756\) 0 0
\(757\) 9.35019 0.339838 0.169919 0.985458i \(-0.445649\pi\)
0.169919 + 0.985458i \(0.445649\pi\)
\(758\) 0 0
\(759\) 75.1734 2.72862
\(760\) 0 0
\(761\) −17.6649 −0.640351 −0.320176 0.947358i \(-0.603742\pi\)
−0.320176 + 0.947358i \(0.603742\pi\)
\(762\) 0 0
\(763\) 1.60925 0.0582588
\(764\) 0 0
\(765\) −0.0295400 −0.00106802
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −47.2325 −1.70325 −0.851624 0.524153i \(-0.824382\pi\)
−0.851624 + 0.524153i \(0.824382\pi\)
\(770\) 0 0
\(771\) −2.48593 −0.0895285
\(772\) 0 0
\(773\) −24.9463 −0.897256 −0.448628 0.893719i \(-0.648087\pi\)
−0.448628 + 0.893719i \(0.648087\pi\)
\(774\) 0 0
\(775\) 17.2935 0.621201
\(776\) 0 0
\(777\) −7.03684 −0.252445
\(778\) 0 0
\(779\) 9.53511 0.341631
\(780\) 0 0
\(781\) −42.4010 −1.51723
\(782\) 0 0
\(783\) −16.7670 −0.599204
\(784\) 0 0
\(785\) 18.4426 0.658246
\(786\) 0 0
\(787\) −51.7864 −1.84599 −0.922993 0.384817i \(-0.874265\pi\)
−0.922993 + 0.384817i \(0.874265\pi\)
\(788\) 0 0
\(789\) −36.4429 −1.29740
\(790\) 0 0
\(791\) −9.86054 −0.350601
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0.321979 0.0114194
\(796\) 0 0
\(797\) −17.1395 −0.607111 −0.303555 0.952814i \(-0.598174\pi\)
−0.303555 + 0.952814i \(0.598174\pi\)
\(798\) 0 0
\(799\) −1.70661 −0.0603756
\(800\) 0 0
\(801\) −0.952739 −0.0336634
\(802\) 0 0
\(803\) 33.7918 1.19249
\(804\) 0 0
\(805\) −13.2349 −0.466469
\(806\) 0 0
\(807\) 11.9156 0.419448
\(808\) 0 0
\(809\) −14.6437 −0.514845 −0.257422 0.966299i \(-0.582873\pi\)
−0.257422 + 0.966299i \(0.582873\pi\)
\(810\) 0 0
\(811\) 17.3002 0.607492 0.303746 0.952753i \(-0.401762\pi\)
0.303746 + 0.952753i \(0.401762\pi\)
\(812\) 0 0
\(813\) −33.8987 −1.18888
\(814\) 0 0
\(815\) −14.5036 −0.508041
\(816\) 0 0
\(817\) −3.36035 −0.117564
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −44.4965 −1.55294 −0.776469 0.630156i \(-0.782991\pi\)
−0.776469 + 0.630156i \(0.782991\pi\)
\(822\) 0 0
\(823\) −48.9566 −1.70652 −0.853259 0.521487i \(-0.825378\pi\)
−0.853259 + 0.521487i \(0.825378\pi\)
\(824\) 0 0
\(825\) −23.8998 −0.832083
\(826\) 0 0
\(827\) −14.1390 −0.491661 −0.245830 0.969313i \(-0.579061\pi\)
−0.245830 + 0.969313i \(0.579061\pi\)
\(828\) 0 0
\(829\) −35.0157 −1.21614 −0.608072 0.793882i \(-0.708057\pi\)
−0.608072 + 0.793882i \(0.708057\pi\)
\(830\) 0 0
\(831\) 50.0364 1.73574
\(832\) 0 0
\(833\) −0.149145 −0.00516757
\(834\) 0 0
\(835\) 12.3937 0.428903
\(836\) 0 0
\(837\) 31.5241 1.08963
\(838\) 0 0
\(839\) 18.8146 0.649552 0.324776 0.945791i \(-0.394711\pi\)
0.324776 + 0.945791i \(0.394711\pi\)
\(840\) 0 0
\(841\) −19.0218 −0.655923
\(842\) 0 0
\(843\) 22.2996 0.768040
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 12.5308 0.430563
\(848\) 0 0
\(849\) 26.7463 0.917931
\(850\) 0 0
\(851\) −38.0901 −1.30571
\(852\) 0 0
\(853\) 49.6058 1.69847 0.849235 0.528015i \(-0.177064\pi\)
0.849235 + 0.528015i \(0.177064\pi\)
\(854\) 0 0
\(855\) 0.215521 0.00737065
\(856\) 0 0
\(857\) −34.6426 −1.18337 −0.591685 0.806169i \(-0.701537\pi\)
−0.591685 + 0.806169i \(0.701537\pi\)
\(858\) 0 0
\(859\) −13.7345 −0.468615 −0.234307 0.972163i \(-0.575282\pi\)
−0.234307 + 0.972163i \(0.575282\pi\)
\(860\) 0 0
\(861\) 14.8267 0.505292
\(862\) 0 0
\(863\) −29.7103 −1.01135 −0.505676 0.862724i \(-0.668757\pi\)
−0.505676 + 0.862724i \(0.668757\pi\)
\(864\) 0 0
\(865\) 28.7638 0.977998
\(866\) 0 0
\(867\) −28.7267 −0.975611
\(868\) 0 0
\(869\) −79.4650 −2.69567
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −1.96913 −0.0666450
\(874\) 0 0
\(875\) 11.4330 0.386505
\(876\) 0 0
\(877\) 20.4513 0.690590 0.345295 0.938494i \(-0.387779\pi\)
0.345295 + 0.938494i \(0.387779\pi\)
\(878\) 0 0
\(879\) −9.74658 −0.328744
\(880\) 0 0
\(881\) −14.0291 −0.472651 −0.236326 0.971674i \(-0.575943\pi\)
−0.236326 + 0.971674i \(0.575943\pi\)
\(882\) 0 0
\(883\) −22.0218 −0.741092 −0.370546 0.928814i \(-0.620829\pi\)
−0.370546 + 0.928814i \(0.620829\pi\)
\(884\) 0 0
\(885\) 1.11184 0.0373739
\(886\) 0 0
\(887\) −40.5056 −1.36004 −0.680022 0.733192i \(-0.738030\pi\)
−0.680022 + 0.733192i \(0.738030\pi\)
\(888\) 0 0
\(889\) 7.13169 0.239189
\(890\) 0 0
\(891\) −41.5719 −1.39271
\(892\) 0 0
\(893\) 12.4513 0.416666
\(894\) 0 0
\(895\) −6.01746 −0.201141
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −18.7603 −0.625692
\(900\) 0 0
\(901\) 0.0196404 0.000654316 0
\(902\) 0 0
\(903\) −5.22521 −0.173884
\(904\) 0 0
\(905\) 3.42758 0.113937
\(906\) 0 0
\(907\) −58.3967 −1.93903 −0.969516 0.245030i \(-0.921202\pi\)
−0.969516 + 0.245030i \(0.921202\pi\)
\(908\) 0 0
\(909\) −0.119605 −0.00396705
\(910\) 0 0
\(911\) 30.1728 0.999671 0.499835 0.866120i \(-0.333394\pi\)
0.499835 + 0.866120i \(0.333394\pi\)
\(912\) 0 0
\(913\) 19.4295 0.643023
\(914\) 0 0
\(915\) −6.19375 −0.204759
\(916\) 0 0
\(917\) −21.8509 −0.721579
\(918\) 0 0
\(919\) −27.8015 −0.917086 −0.458543 0.888672i \(-0.651628\pi\)
−0.458543 + 0.888672i \(0.651628\pi\)
\(920\) 0 0
\(921\) 19.4644 0.641374
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 12.1099 0.398172
\(926\) 0 0
\(927\) −1.78315 −0.0585664
\(928\) 0 0
\(929\) −38.9627 −1.27832 −0.639162 0.769072i \(-0.720719\pi\)
−0.639162 + 0.769072i \(0.720719\pi\)
\(930\) 0 0
\(931\) 1.08815 0.0356625
\(932\) 0 0
\(933\) 2.10487 0.0689103
\(934\) 0 0
\(935\) 1.04546 0.0341902
\(936\) 0 0
\(937\) −31.5687 −1.03130 −0.515652 0.856798i \(-0.672450\pi\)
−0.515652 + 0.856798i \(0.672450\pi\)
\(938\) 0 0
\(939\) 18.1648 0.592786
\(940\) 0 0
\(941\) −9.85756 −0.321347 −0.160674 0.987008i \(-0.551367\pi\)
−0.160674 + 0.987008i \(0.551367\pi\)
\(942\) 0 0
\(943\) 80.2562 2.61350
\(944\) 0 0
\(945\) 7.67025 0.249513
\(946\) 0 0
\(947\) 50.5435 1.64244 0.821221 0.570610i \(-0.193293\pi\)
0.821221 + 0.570610i \(0.193293\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −19.2139 −0.623052
\(952\) 0 0
\(953\) −24.0218 −0.778141 −0.389071 0.921208i \(-0.627204\pi\)
−0.389071 + 0.921208i \(0.627204\pi\)
\(954\) 0 0
\(955\) −24.7952 −0.802355
\(956\) 0 0
\(957\) 25.9269 0.838098
\(958\) 0 0
\(959\) 8.03146 0.259349
\(960\) 0 0
\(961\) 4.27173 0.137798
\(962\) 0 0
\(963\) −2.65743 −0.0856346
\(964\) 0 0
\(965\) −14.7269 −0.474077
\(966\) 0 0
\(967\) −52.4969 −1.68819 −0.844094 0.536195i \(-0.819861\pi\)
−0.844094 + 0.536195i \(0.819861\pi\)
\(968\) 0 0
\(969\) −0.274601 −0.00882144
\(970\) 0 0
\(971\) −7.21957 −0.231687 −0.115844 0.993267i \(-0.536957\pi\)
−0.115844 + 0.993267i \(0.536957\pi\)
\(972\) 0 0
\(973\) −19.2078 −0.615772
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.43237 0.0778184 0.0389092 0.999243i \(-0.487612\pi\)
0.0389092 + 0.999243i \(0.487612\pi\)
\(978\) 0 0
\(979\) 33.7187 1.07765
\(980\) 0 0
\(981\) −0.220569 −0.00704224
\(982\) 0 0
\(983\) 35.9452 1.14647 0.573237 0.819389i \(-0.305687\pi\)
0.573237 + 0.819389i \(0.305687\pi\)
\(984\) 0 0
\(985\) −13.6073 −0.433566
\(986\) 0 0
\(987\) 19.3612 0.616274
\(988\) 0 0
\(989\) −28.2838 −0.899373
\(990\) 0 0
\(991\) 48.5695 1.54286 0.771431 0.636313i \(-0.219541\pi\)
0.771431 + 0.636313i \(0.219541\pi\)
\(992\) 0 0
\(993\) −14.7275 −0.467364
\(994\) 0 0
\(995\) 12.3196 0.390557
\(996\) 0 0
\(997\) −24.6179 −0.779656 −0.389828 0.920888i \(-0.627466\pi\)
−0.389828 + 0.920888i \(0.627466\pi\)
\(998\) 0 0
\(999\) 22.0750 0.698422
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9464.2.a.t.1.3 3
13.12 even 2 9464.2.a.u.1.3 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9464.2.a.t.1.3 3 1.1 even 1 trivial
9464.2.a.u.1.3 yes 3 13.12 even 2