Properties

Label 9464.2.a.k
Level $9464$
Weight $2$
Character orbit 9464.a
Self dual yes
Analytic conductor $75.570$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9464,2,Mod(1,9464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-4,0,2,0,-2,0,6,0,4,0,0,0,-8,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5704204729\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 728)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 2) q^{3} + ( - \beta + 1) q^{5} - q^{7} + ( - 4 \beta + 3) q^{9} + (3 \beta + 2) q^{11} + (3 \beta - 4) q^{15} + ( - \beta + 2) q^{17} + (\beta + 5) q^{19} + ( - \beta + 2) q^{21} + (4 \beta - 1) q^{23}+ \cdots + (\beta - 18) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{3} + 2 q^{5} - 2 q^{7} + 6 q^{9} + 4 q^{11} - 8 q^{15} + 4 q^{17} + 10 q^{19} + 4 q^{21} - 2 q^{23} - 4 q^{25} - 16 q^{27} + 6 q^{29} + 14 q^{31} + 4 q^{33} - 2 q^{35} + 8 q^{37} - 12 q^{41}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 −3.41421 0 2.41421 0 −1.00000 0 8.65685 0
1.2 0 −0.585786 0 −0.414214 0 −1.00000 0 −2.65685 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9464.2.a.k 2
13.b even 2 1 728.2.a.e 2
39.d odd 2 1 6552.2.a.bj 2
52.b odd 2 1 1456.2.a.s 2
91.b odd 2 1 5096.2.a.q 2
104.e even 2 1 5824.2.a.br 2
104.h odd 2 1 5824.2.a.bg 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
728.2.a.e 2 13.b even 2 1
1456.2.a.s 2 52.b odd 2 1
5096.2.a.q 2 91.b odd 2 1
5824.2.a.bg 2 104.h odd 2 1
5824.2.a.br 2 104.e even 2 1
6552.2.a.bj 2 39.d odd 2 1
9464.2.a.k 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9464))\):

\( T_{3}^{2} + 4T_{3} + 2 \) Copy content Toggle raw display
\( T_{5}^{2} - 2T_{5} - 1 \) Copy content Toggle raw display
\( T_{11}^{2} - 4T_{11} - 14 \) Copy content Toggle raw display
\( T_{17}^{2} - 4T_{17} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 4T + 2 \) Copy content Toggle raw display
$5$ \( T^{2} - 2T - 1 \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 4T - 14 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 4T + 2 \) Copy content Toggle raw display
$19$ \( T^{2} - 10T + 23 \) Copy content Toggle raw display
$23$ \( T^{2} + 2T - 31 \) Copy content Toggle raw display
$29$ \( T^{2} - 6T + 1 \) Copy content Toggle raw display
$31$ \( T^{2} - 14T + 47 \) Copy content Toggle raw display
$37$ \( T^{2} - 8T - 2 \) Copy content Toggle raw display
$41$ \( T^{2} + 12T + 28 \) Copy content Toggle raw display
$43$ \( T^{2} + 6T - 63 \) Copy content Toggle raw display
$47$ \( T^{2} + 2T - 17 \) Copy content Toggle raw display
$53$ \( T^{2} - 2T - 71 \) Copy content Toggle raw display
$59$ \( T^{2} - 12T + 4 \) Copy content Toggle raw display
$61$ \( (T + 10)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - 12T + 28 \) Copy content Toggle raw display
$71$ \( T^{2} - 8T + 14 \) Copy content Toggle raw display
$73$ \( T^{2} - 10T + 7 \) Copy content Toggle raw display
$79$ \( T^{2} - 2T - 31 \) Copy content Toggle raw display
$83$ \( T^{2} + 14T - 1 \) Copy content Toggle raw display
$89$ \( T^{2} - 2T - 1 \) Copy content Toggle raw display
$97$ \( T^{2} - 18T - 17 \) Copy content Toggle raw display
show more
show less