Properties

Label 9464.2.a.bs.1.9
Level $9464$
Weight $2$
Character 9464.1
Self dual yes
Analytic conductor $75.570$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9464,2,Mod(1,9464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,0,-3,0,4,0,15,0,16,0,15,0,0,0,8,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5704204729\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 3 x^{14} - 26 x^{13} + 78 x^{12} + 253 x^{11} - 782 x^{10} - 1087 x^{9} + 3776 x^{8} + \cdots - 344 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(0.354884\) of defining polynomial
Character \(\chi\) \(=\) 9464.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.354884 q^{3} -1.29454 q^{5} +1.00000 q^{7} -2.87406 q^{9} +2.70106 q^{11} +0.459413 q^{15} +5.65190 q^{17} +5.06579 q^{19} -0.354884 q^{21} +5.87053 q^{23} -3.32416 q^{25} +2.08461 q^{27} +4.05535 q^{29} +1.61958 q^{31} -0.958562 q^{33} -1.29454 q^{35} -6.26172 q^{37} -0.259788 q^{41} +0.838619 q^{43} +3.72059 q^{45} +2.19448 q^{47} +1.00000 q^{49} -2.00577 q^{51} -2.42435 q^{53} -3.49664 q^{55} -1.79777 q^{57} -1.49591 q^{59} -4.14499 q^{61} -2.87406 q^{63} -8.01117 q^{67} -2.08336 q^{69} +6.10633 q^{71} +1.42716 q^{73} +1.17969 q^{75} +2.70106 q^{77} +3.64099 q^{79} +7.88238 q^{81} +16.8713 q^{83} -7.31664 q^{85} -1.43918 q^{87} -12.7106 q^{89} -0.574763 q^{93} -6.55789 q^{95} -8.46418 q^{97} -7.76300 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 3 q^{3} + 4 q^{5} + 15 q^{7} + 16 q^{9} + 15 q^{11} + 8 q^{15} + 2 q^{17} + 13 q^{19} - 3 q^{21} - 10 q^{23} + 23 q^{25} - 9 q^{27} + 25 q^{29} + 19 q^{31} - 24 q^{33} + 4 q^{35} - 2 q^{37} + 30 q^{41}+ \cdots + 70 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.354884 −0.204892 −0.102446 0.994739i \(-0.532667\pi\)
−0.102446 + 0.994739i \(0.532667\pi\)
\(4\) 0 0
\(5\) −1.29454 −0.578937 −0.289469 0.957187i \(-0.593479\pi\)
−0.289469 + 0.957187i \(0.593479\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −2.87406 −0.958019
\(10\) 0 0
\(11\) 2.70106 0.814400 0.407200 0.913339i \(-0.366505\pi\)
0.407200 + 0.913339i \(0.366505\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0.459413 0.118620
\(16\) 0 0
\(17\) 5.65190 1.37079 0.685394 0.728172i \(-0.259630\pi\)
0.685394 + 0.728172i \(0.259630\pi\)
\(18\) 0 0
\(19\) 5.06579 1.16217 0.581086 0.813842i \(-0.302628\pi\)
0.581086 + 0.813842i \(0.302628\pi\)
\(20\) 0 0
\(21\) −0.354884 −0.0774420
\(22\) 0 0
\(23\) 5.87053 1.22409 0.612045 0.790823i \(-0.290347\pi\)
0.612045 + 0.790823i \(0.290347\pi\)
\(24\) 0 0
\(25\) −3.32416 −0.664831
\(26\) 0 0
\(27\) 2.08461 0.401183
\(28\) 0 0
\(29\) 4.05535 0.753059 0.376530 0.926405i \(-0.377117\pi\)
0.376530 + 0.926405i \(0.377117\pi\)
\(30\) 0 0
\(31\) 1.61958 0.290885 0.145443 0.989367i \(-0.453539\pi\)
0.145443 + 0.989367i \(0.453539\pi\)
\(32\) 0 0
\(33\) −0.958562 −0.166864
\(34\) 0 0
\(35\) −1.29454 −0.218818
\(36\) 0 0
\(37\) −6.26172 −1.02942 −0.514710 0.857364i \(-0.672100\pi\)
−0.514710 + 0.857364i \(0.672100\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.259788 −0.0405721 −0.0202860 0.999794i \(-0.506458\pi\)
−0.0202860 + 0.999794i \(0.506458\pi\)
\(42\) 0 0
\(43\) 0.838619 0.127888 0.0639441 0.997953i \(-0.479632\pi\)
0.0639441 + 0.997953i \(0.479632\pi\)
\(44\) 0 0
\(45\) 3.72059 0.554633
\(46\) 0 0
\(47\) 2.19448 0.320098 0.160049 0.987109i \(-0.448835\pi\)
0.160049 + 0.987109i \(0.448835\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.00577 −0.280864
\(52\) 0 0
\(53\) −2.42435 −0.333010 −0.166505 0.986041i \(-0.553248\pi\)
−0.166505 + 0.986041i \(0.553248\pi\)
\(54\) 0 0
\(55\) −3.49664 −0.471487
\(56\) 0 0
\(57\) −1.79777 −0.238120
\(58\) 0 0
\(59\) −1.49591 −0.194751 −0.0973756 0.995248i \(-0.531045\pi\)
−0.0973756 + 0.995248i \(0.531045\pi\)
\(60\) 0 0
\(61\) −4.14499 −0.530712 −0.265356 0.964150i \(-0.585490\pi\)
−0.265356 + 0.964150i \(0.585490\pi\)
\(62\) 0 0
\(63\) −2.87406 −0.362097
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −8.01117 −0.978721 −0.489360 0.872082i \(-0.662770\pi\)
−0.489360 + 0.872082i \(0.662770\pi\)
\(68\) 0 0
\(69\) −2.08336 −0.250807
\(70\) 0 0
\(71\) 6.10633 0.724689 0.362344 0.932044i \(-0.381976\pi\)
0.362344 + 0.932044i \(0.381976\pi\)
\(72\) 0 0
\(73\) 1.42716 0.167036 0.0835181 0.996506i \(-0.473384\pi\)
0.0835181 + 0.996506i \(0.473384\pi\)
\(74\) 0 0
\(75\) 1.17969 0.136219
\(76\) 0 0
\(77\) 2.70106 0.307814
\(78\) 0 0
\(79\) 3.64099 0.409644 0.204822 0.978799i \(-0.434338\pi\)
0.204822 + 0.978799i \(0.434338\pi\)
\(80\) 0 0
\(81\) 7.88238 0.875820
\(82\) 0 0
\(83\) 16.8713 1.85186 0.925932 0.377690i \(-0.123282\pi\)
0.925932 + 0.377690i \(0.123282\pi\)
\(84\) 0 0
\(85\) −7.31664 −0.793601
\(86\) 0 0
\(87\) −1.43918 −0.154296
\(88\) 0 0
\(89\) −12.7106 −1.34732 −0.673661 0.739040i \(-0.735279\pi\)
−0.673661 + 0.739040i \(0.735279\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.574763 −0.0596001
\(94\) 0 0
\(95\) −6.55789 −0.672825
\(96\) 0 0
\(97\) −8.46418 −0.859408 −0.429704 0.902970i \(-0.641382\pi\)
−0.429704 + 0.902970i \(0.641382\pi\)
\(98\) 0 0
\(99\) −7.76300 −0.780211
\(100\) 0 0
\(101\) −0.505794 −0.0503284 −0.0251642 0.999683i \(-0.508011\pi\)
−0.0251642 + 0.999683i \(0.508011\pi\)
\(102\) 0 0
\(103\) −5.27577 −0.519837 −0.259918 0.965631i \(-0.583696\pi\)
−0.259918 + 0.965631i \(0.583696\pi\)
\(104\) 0 0
\(105\) 0.459413 0.0448341
\(106\) 0 0
\(107\) 6.83896 0.661147 0.330574 0.943780i \(-0.392758\pi\)
0.330574 + 0.943780i \(0.392758\pi\)
\(108\) 0 0
\(109\) −6.77926 −0.649335 −0.324668 0.945828i \(-0.605252\pi\)
−0.324668 + 0.945828i \(0.605252\pi\)
\(110\) 0 0
\(111\) 2.22218 0.210920
\(112\) 0 0
\(113\) −13.1698 −1.23891 −0.619456 0.785032i \(-0.712647\pi\)
−0.619456 + 0.785032i \(0.712647\pi\)
\(114\) 0 0
\(115\) −7.59965 −0.708671
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.65190 0.518109
\(120\) 0 0
\(121\) −3.70428 −0.336753
\(122\) 0 0
\(123\) 0.0921946 0.00831291
\(124\) 0 0
\(125\) 10.7760 0.963833
\(126\) 0 0
\(127\) −20.5040 −1.81944 −0.909718 0.415227i \(-0.863702\pi\)
−0.909718 + 0.415227i \(0.863702\pi\)
\(128\) 0 0
\(129\) −0.297612 −0.0262033
\(130\) 0 0
\(131\) −9.94594 −0.868980 −0.434490 0.900677i \(-0.643071\pi\)
−0.434490 + 0.900677i \(0.643071\pi\)
\(132\) 0 0
\(133\) 5.06579 0.439260
\(134\) 0 0
\(135\) −2.69862 −0.232260
\(136\) 0 0
\(137\) 3.64127 0.311094 0.155547 0.987828i \(-0.450286\pi\)
0.155547 + 0.987828i \(0.450286\pi\)
\(138\) 0 0
\(139\) 6.40454 0.543226 0.271613 0.962407i \(-0.412443\pi\)
0.271613 + 0.962407i \(0.412443\pi\)
\(140\) 0 0
\(141\) −0.778786 −0.0655856
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −5.24983 −0.435974
\(146\) 0 0
\(147\) −0.354884 −0.0292703
\(148\) 0 0
\(149\) 18.6698 1.52949 0.764747 0.644331i \(-0.222864\pi\)
0.764747 + 0.644331i \(0.222864\pi\)
\(150\) 0 0
\(151\) 16.9039 1.37562 0.687809 0.725892i \(-0.258573\pi\)
0.687809 + 0.725892i \(0.258573\pi\)
\(152\) 0 0
\(153\) −16.2439 −1.31324
\(154\) 0 0
\(155\) −2.09662 −0.168404
\(156\) 0 0
\(157\) 20.1888 1.61124 0.805622 0.592430i \(-0.201831\pi\)
0.805622 + 0.592430i \(0.201831\pi\)
\(158\) 0 0
\(159\) 0.860362 0.0682312
\(160\) 0 0
\(161\) 5.87053 0.462662
\(162\) 0 0
\(163\) 5.00332 0.391890 0.195945 0.980615i \(-0.437223\pi\)
0.195945 + 0.980615i \(0.437223\pi\)
\(164\) 0 0
\(165\) 1.24090 0.0966040
\(166\) 0 0
\(167\) 15.5426 1.20272 0.601360 0.798978i \(-0.294626\pi\)
0.601360 + 0.798978i \(0.294626\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −14.5594 −1.11338
\(172\) 0 0
\(173\) −24.4949 −1.86232 −0.931158 0.364616i \(-0.881200\pi\)
−0.931158 + 0.364616i \(0.881200\pi\)
\(174\) 0 0
\(175\) −3.32416 −0.251283
\(176\) 0 0
\(177\) 0.530875 0.0399030
\(178\) 0 0
\(179\) −5.75501 −0.430150 −0.215075 0.976598i \(-0.569000\pi\)
−0.215075 + 0.976598i \(0.569000\pi\)
\(180\) 0 0
\(181\) 10.9096 0.810906 0.405453 0.914116i \(-0.367114\pi\)
0.405453 + 0.914116i \(0.367114\pi\)
\(182\) 0 0
\(183\) 1.47099 0.108739
\(184\) 0 0
\(185\) 8.10606 0.595970
\(186\) 0 0
\(187\) 15.2661 1.11637
\(188\) 0 0
\(189\) 2.08461 0.151633
\(190\) 0 0
\(191\) −16.1385 −1.16774 −0.583869 0.811848i \(-0.698462\pi\)
−0.583869 + 0.811848i \(0.698462\pi\)
\(192\) 0 0
\(193\) 24.2928 1.74864 0.874318 0.485353i \(-0.161309\pi\)
0.874318 + 0.485353i \(0.161309\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19.3693 1.38000 0.690001 0.723808i \(-0.257610\pi\)
0.690001 + 0.723808i \(0.257610\pi\)
\(198\) 0 0
\(199\) 15.5910 1.10522 0.552609 0.833440i \(-0.313632\pi\)
0.552609 + 0.833440i \(0.313632\pi\)
\(200\) 0 0
\(201\) 2.84304 0.200532
\(202\) 0 0
\(203\) 4.05535 0.284630
\(204\) 0 0
\(205\) 0.336307 0.0234887
\(206\) 0 0
\(207\) −16.8722 −1.17270
\(208\) 0 0
\(209\) 13.6830 0.946473
\(210\) 0 0
\(211\) 17.9687 1.23702 0.618508 0.785778i \(-0.287737\pi\)
0.618508 + 0.785778i \(0.287737\pi\)
\(212\) 0 0
\(213\) −2.16704 −0.148483
\(214\) 0 0
\(215\) −1.08563 −0.0740392
\(216\) 0 0
\(217\) 1.61958 0.109944
\(218\) 0 0
\(219\) −0.506475 −0.0342244
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −4.55222 −0.304839 −0.152420 0.988316i \(-0.548707\pi\)
−0.152420 + 0.988316i \(0.548707\pi\)
\(224\) 0 0
\(225\) 9.55382 0.636921
\(226\) 0 0
\(227\) 1.06050 0.0703876 0.0351938 0.999381i \(-0.488795\pi\)
0.0351938 + 0.999381i \(0.488795\pi\)
\(228\) 0 0
\(229\) 6.54437 0.432464 0.216232 0.976342i \(-0.430623\pi\)
0.216232 + 0.976342i \(0.430623\pi\)
\(230\) 0 0
\(231\) −0.958562 −0.0630688
\(232\) 0 0
\(233\) −5.64509 −0.369822 −0.184911 0.982755i \(-0.559200\pi\)
−0.184911 + 0.982755i \(0.559200\pi\)
\(234\) 0 0
\(235\) −2.84085 −0.185317
\(236\) 0 0
\(237\) −1.29213 −0.0839329
\(238\) 0 0
\(239\) 10.8418 0.701298 0.350649 0.936507i \(-0.385961\pi\)
0.350649 + 0.936507i \(0.385961\pi\)
\(240\) 0 0
\(241\) 0.684200 0.0440732 0.0220366 0.999757i \(-0.492985\pi\)
0.0220366 + 0.999757i \(0.492985\pi\)
\(242\) 0 0
\(243\) −9.05116 −0.580632
\(244\) 0 0
\(245\) −1.29454 −0.0827054
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −5.98735 −0.379433
\(250\) 0 0
\(251\) 3.11117 0.196376 0.0981878 0.995168i \(-0.468695\pi\)
0.0981878 + 0.995168i \(0.468695\pi\)
\(252\) 0 0
\(253\) 15.8566 0.996898
\(254\) 0 0
\(255\) 2.59656 0.162603
\(256\) 0 0
\(257\) 16.7548 1.04514 0.522568 0.852598i \(-0.324974\pi\)
0.522568 + 0.852598i \(0.324974\pi\)
\(258\) 0 0
\(259\) −6.26172 −0.389084
\(260\) 0 0
\(261\) −11.6553 −0.721445
\(262\) 0 0
\(263\) 7.22612 0.445582 0.222791 0.974866i \(-0.428483\pi\)
0.222791 + 0.974866i \(0.428483\pi\)
\(264\) 0 0
\(265\) 3.13842 0.192792
\(266\) 0 0
\(267\) 4.51079 0.276056
\(268\) 0 0
\(269\) −11.3080 −0.689461 −0.344730 0.938702i \(-0.612030\pi\)
−0.344730 + 0.938702i \(0.612030\pi\)
\(270\) 0 0
\(271\) 15.3864 0.934655 0.467327 0.884084i \(-0.345217\pi\)
0.467327 + 0.884084i \(0.345217\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.97874 −0.541439
\(276\) 0 0
\(277\) 1.62728 0.0977737 0.0488869 0.998804i \(-0.484433\pi\)
0.0488869 + 0.998804i \(0.484433\pi\)
\(278\) 0 0
\(279\) −4.65477 −0.278674
\(280\) 0 0
\(281\) 1.52381 0.0909029 0.0454514 0.998967i \(-0.485527\pi\)
0.0454514 + 0.998967i \(0.485527\pi\)
\(282\) 0 0
\(283\) −17.8863 −1.06323 −0.531614 0.846987i \(-0.678414\pi\)
−0.531614 + 0.846987i \(0.678414\pi\)
\(284\) 0 0
\(285\) 2.32729 0.137857
\(286\) 0 0
\(287\) −0.259788 −0.0153348
\(288\) 0 0
\(289\) 14.9440 0.879060
\(290\) 0 0
\(291\) 3.00380 0.176086
\(292\) 0 0
\(293\) −21.8894 −1.27879 −0.639396 0.768878i \(-0.720815\pi\)
−0.639396 + 0.768878i \(0.720815\pi\)
\(294\) 0 0
\(295\) 1.93652 0.112749
\(296\) 0 0
\(297\) 5.63065 0.326723
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0.838619 0.0483372
\(302\) 0 0
\(303\) 0.179498 0.0103119
\(304\) 0 0
\(305\) 5.36588 0.307249
\(306\) 0 0
\(307\) 31.9244 1.82202 0.911010 0.412383i \(-0.135304\pi\)
0.911010 + 0.412383i \(0.135304\pi\)
\(308\) 0 0
\(309\) 1.87229 0.106511
\(310\) 0 0
\(311\) 1.62986 0.0924211 0.0462105 0.998932i \(-0.485285\pi\)
0.0462105 + 0.998932i \(0.485285\pi\)
\(312\) 0 0
\(313\) 32.9153 1.86048 0.930242 0.366947i \(-0.119597\pi\)
0.930242 + 0.366947i \(0.119597\pi\)
\(314\) 0 0
\(315\) 3.72059 0.209632
\(316\) 0 0
\(317\) 21.5434 1.21000 0.604999 0.796226i \(-0.293173\pi\)
0.604999 + 0.796226i \(0.293173\pi\)
\(318\) 0 0
\(319\) 10.9537 0.613291
\(320\) 0 0
\(321\) −2.42704 −0.135464
\(322\) 0 0
\(323\) 28.6314 1.59309
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2.40585 0.133044
\(328\) 0 0
\(329\) 2.19448 0.120986
\(330\) 0 0
\(331\) −18.8986 −1.03876 −0.519379 0.854544i \(-0.673837\pi\)
−0.519379 + 0.854544i \(0.673837\pi\)
\(332\) 0 0
\(333\) 17.9965 0.986204
\(334\) 0 0
\(335\) 10.3708 0.566618
\(336\) 0 0
\(337\) −17.0379 −0.928114 −0.464057 0.885805i \(-0.653607\pi\)
−0.464057 + 0.885805i \(0.653607\pi\)
\(338\) 0 0
\(339\) 4.67375 0.253843
\(340\) 0 0
\(341\) 4.37458 0.236897
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 2.69700 0.145201
\(346\) 0 0
\(347\) 6.10071 0.327504 0.163752 0.986502i \(-0.447640\pi\)
0.163752 + 0.986502i \(0.447640\pi\)
\(348\) 0 0
\(349\) −16.1111 −0.862407 −0.431204 0.902255i \(-0.641911\pi\)
−0.431204 + 0.902255i \(0.641911\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5.38709 0.286726 0.143363 0.989670i \(-0.454208\pi\)
0.143363 + 0.989670i \(0.454208\pi\)
\(354\) 0 0
\(355\) −7.90492 −0.419549
\(356\) 0 0
\(357\) −2.00577 −0.106157
\(358\) 0 0
\(359\) 26.2145 1.38355 0.691774 0.722114i \(-0.256829\pi\)
0.691774 + 0.722114i \(0.256829\pi\)
\(360\) 0 0
\(361\) 6.66224 0.350644
\(362\) 0 0
\(363\) 1.31459 0.0689981
\(364\) 0 0
\(365\) −1.84752 −0.0967035
\(366\) 0 0
\(367\) −17.7366 −0.925844 −0.462922 0.886399i \(-0.653199\pi\)
−0.462922 + 0.886399i \(0.653199\pi\)
\(368\) 0 0
\(369\) 0.746646 0.0388688
\(370\) 0 0
\(371\) −2.42435 −0.125866
\(372\) 0 0
\(373\) 13.0990 0.678241 0.339120 0.940743i \(-0.389871\pi\)
0.339120 + 0.940743i \(0.389871\pi\)
\(374\) 0 0
\(375\) −3.82422 −0.197482
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −16.3094 −0.837759 −0.418879 0.908042i \(-0.637577\pi\)
−0.418879 + 0.908042i \(0.637577\pi\)
\(380\) 0 0
\(381\) 7.27654 0.372788
\(382\) 0 0
\(383\) 8.74491 0.446844 0.223422 0.974722i \(-0.428277\pi\)
0.223422 + 0.974722i \(0.428277\pi\)
\(384\) 0 0
\(385\) −3.49664 −0.178205
\(386\) 0 0
\(387\) −2.41024 −0.122519
\(388\) 0 0
\(389\) 29.3389 1.48754 0.743770 0.668435i \(-0.233036\pi\)
0.743770 + 0.668435i \(0.233036\pi\)
\(390\) 0 0
\(391\) 33.1797 1.67797
\(392\) 0 0
\(393\) 3.52965 0.178047
\(394\) 0 0
\(395\) −4.71342 −0.237158
\(396\) 0 0
\(397\) −9.83870 −0.493790 −0.246895 0.969042i \(-0.579410\pi\)
−0.246895 + 0.969042i \(0.579410\pi\)
\(398\) 0 0
\(399\) −1.79777 −0.0900010
\(400\) 0 0
\(401\) −28.2640 −1.41144 −0.705718 0.708493i \(-0.749375\pi\)
−0.705718 + 0.708493i \(0.749375\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −10.2041 −0.507045
\(406\) 0 0
\(407\) −16.9133 −0.838359
\(408\) 0 0
\(409\) 34.2555 1.69383 0.846913 0.531731i \(-0.178458\pi\)
0.846913 + 0.531731i \(0.178458\pi\)
\(410\) 0 0
\(411\) −1.29223 −0.0637409
\(412\) 0 0
\(413\) −1.49591 −0.0736090
\(414\) 0 0
\(415\) −21.8406 −1.07211
\(416\) 0 0
\(417\) −2.27287 −0.111303
\(418\) 0 0
\(419\) −6.33712 −0.309589 −0.154794 0.987947i \(-0.549471\pi\)
−0.154794 + 0.987947i \(0.549471\pi\)
\(420\) 0 0
\(421\) 26.4362 1.28842 0.644210 0.764849i \(-0.277186\pi\)
0.644210 + 0.764849i \(0.277186\pi\)
\(422\) 0 0
\(423\) −6.30706 −0.306660
\(424\) 0 0
\(425\) −18.7878 −0.911343
\(426\) 0 0
\(427\) −4.14499 −0.200590
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −22.1652 −1.06766 −0.533830 0.845592i \(-0.679248\pi\)
−0.533830 + 0.845592i \(0.679248\pi\)
\(432\) 0 0
\(433\) −24.0234 −1.15449 −0.577244 0.816571i \(-0.695872\pi\)
−0.577244 + 0.816571i \(0.695872\pi\)
\(434\) 0 0
\(435\) 1.86308 0.0893278
\(436\) 0 0
\(437\) 29.7389 1.42260
\(438\) 0 0
\(439\) −26.1253 −1.24689 −0.623445 0.781867i \(-0.714268\pi\)
−0.623445 + 0.781867i \(0.714268\pi\)
\(440\) 0 0
\(441\) −2.87406 −0.136860
\(442\) 0 0
\(443\) 19.6003 0.931240 0.465620 0.884985i \(-0.345831\pi\)
0.465620 + 0.884985i \(0.345831\pi\)
\(444\) 0 0
\(445\) 16.4544 0.780016
\(446\) 0 0
\(447\) −6.62563 −0.313381
\(448\) 0 0
\(449\) 3.95912 0.186842 0.0934212 0.995627i \(-0.470220\pi\)
0.0934212 + 0.995627i \(0.470220\pi\)
\(450\) 0 0
\(451\) −0.701703 −0.0330419
\(452\) 0 0
\(453\) −5.99892 −0.281854
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6.40988 0.299842 0.149921 0.988698i \(-0.452098\pi\)
0.149921 + 0.988698i \(0.452098\pi\)
\(458\) 0 0
\(459\) 11.7820 0.549937
\(460\) 0 0
\(461\) 19.8252 0.923351 0.461676 0.887049i \(-0.347248\pi\)
0.461676 + 0.887049i \(0.347248\pi\)
\(462\) 0 0
\(463\) −9.06580 −0.421324 −0.210662 0.977559i \(-0.567562\pi\)
−0.210662 + 0.977559i \(0.567562\pi\)
\(464\) 0 0
\(465\) 0.744056 0.0345048
\(466\) 0 0
\(467\) −34.2617 −1.58544 −0.792721 0.609584i \(-0.791336\pi\)
−0.792721 + 0.609584i \(0.791336\pi\)
\(468\) 0 0
\(469\) −8.01117 −0.369922
\(470\) 0 0
\(471\) −7.16469 −0.330132
\(472\) 0 0
\(473\) 2.26516 0.104152
\(474\) 0 0
\(475\) −16.8395 −0.772649
\(476\) 0 0
\(477\) 6.96772 0.319030
\(478\) 0 0
\(479\) −20.5465 −0.938794 −0.469397 0.882987i \(-0.655529\pi\)
−0.469397 + 0.882987i \(0.655529\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −2.08336 −0.0947960
\(484\) 0 0
\(485\) 10.9573 0.497543
\(486\) 0 0
\(487\) 24.7311 1.12067 0.560337 0.828264i \(-0.310672\pi\)
0.560337 + 0.828264i \(0.310672\pi\)
\(488\) 0 0
\(489\) −1.77560 −0.0802952
\(490\) 0 0
\(491\) −28.0991 −1.26810 −0.634048 0.773293i \(-0.718608\pi\)
−0.634048 + 0.773293i \(0.718608\pi\)
\(492\) 0 0
\(493\) 22.9204 1.03229
\(494\) 0 0
\(495\) 10.0495 0.451693
\(496\) 0 0
\(497\) 6.10633 0.273907
\(498\) 0 0
\(499\) −20.7117 −0.927185 −0.463592 0.886049i \(-0.653440\pi\)
−0.463592 + 0.886049i \(0.653440\pi\)
\(500\) 0 0
\(501\) −5.51581 −0.246428
\(502\) 0 0
\(503\) 18.6729 0.832584 0.416292 0.909231i \(-0.363329\pi\)
0.416292 + 0.909231i \(0.363329\pi\)
\(504\) 0 0
\(505\) 0.654772 0.0291370
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −28.2436 −1.25187 −0.625937 0.779874i \(-0.715283\pi\)
−0.625937 + 0.779874i \(0.715283\pi\)
\(510\) 0 0
\(511\) 1.42716 0.0631337
\(512\) 0 0
\(513\) 10.5602 0.466244
\(514\) 0 0
\(515\) 6.82971 0.300953
\(516\) 0 0
\(517\) 5.92742 0.260687
\(518\) 0 0
\(519\) 8.69286 0.381574
\(520\) 0 0
\(521\) 0.617556 0.0270556 0.0135278 0.999908i \(-0.495694\pi\)
0.0135278 + 0.999908i \(0.495694\pi\)
\(522\) 0 0
\(523\) −12.6813 −0.554514 −0.277257 0.960796i \(-0.589425\pi\)
−0.277257 + 0.960796i \(0.589425\pi\)
\(524\) 0 0
\(525\) 1.17969 0.0514859
\(526\) 0 0
\(527\) 9.15371 0.398742
\(528\) 0 0
\(529\) 11.4631 0.498396
\(530\) 0 0
\(531\) 4.29934 0.186575
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −8.85333 −0.382763
\(536\) 0 0
\(537\) 2.04236 0.0881344
\(538\) 0 0
\(539\) 2.70106 0.116343
\(540\) 0 0
\(541\) 16.2059 0.696745 0.348372 0.937356i \(-0.386734\pi\)
0.348372 + 0.937356i \(0.386734\pi\)
\(542\) 0 0
\(543\) −3.87165 −0.166148
\(544\) 0 0
\(545\) 8.77605 0.375925
\(546\) 0 0
\(547\) 12.1627 0.520040 0.260020 0.965603i \(-0.416271\pi\)
0.260020 + 0.965603i \(0.416271\pi\)
\(548\) 0 0
\(549\) 11.9130 0.508432
\(550\) 0 0
\(551\) 20.5436 0.875185
\(552\) 0 0
\(553\) 3.64099 0.154831
\(554\) 0 0
\(555\) −2.87671 −0.122110
\(556\) 0 0
\(557\) −6.19015 −0.262285 −0.131143 0.991364i \(-0.541865\pi\)
−0.131143 + 0.991364i \(0.541865\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −5.41770 −0.228736
\(562\) 0 0
\(563\) −8.76617 −0.369450 −0.184725 0.982790i \(-0.559139\pi\)
−0.184725 + 0.982790i \(0.559139\pi\)
\(564\) 0 0
\(565\) 17.0489 0.717252
\(566\) 0 0
\(567\) 7.88238 0.331029
\(568\) 0 0
\(569\) −19.2367 −0.806446 −0.403223 0.915102i \(-0.632110\pi\)
−0.403223 + 0.915102i \(0.632110\pi\)
\(570\) 0 0
\(571\) 16.4143 0.686919 0.343459 0.939168i \(-0.388401\pi\)
0.343459 + 0.939168i \(0.388401\pi\)
\(572\) 0 0
\(573\) 5.72728 0.239261
\(574\) 0 0
\(575\) −19.5146 −0.813813
\(576\) 0 0
\(577\) −10.8255 −0.450670 −0.225335 0.974281i \(-0.572348\pi\)
−0.225335 + 0.974281i \(0.572348\pi\)
\(578\) 0 0
\(579\) −8.62114 −0.358282
\(580\) 0 0
\(581\) 16.8713 0.699939
\(582\) 0 0
\(583\) −6.54831 −0.271203
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −17.5679 −0.725106 −0.362553 0.931963i \(-0.618095\pi\)
−0.362553 + 0.931963i \(0.618095\pi\)
\(588\) 0 0
\(589\) 8.20445 0.338059
\(590\) 0 0
\(591\) −6.87384 −0.282752
\(592\) 0 0
\(593\) −33.5792 −1.37893 −0.689465 0.724319i \(-0.742154\pi\)
−0.689465 + 0.724319i \(0.742154\pi\)
\(594\) 0 0
\(595\) −7.31664 −0.299953
\(596\) 0 0
\(597\) −5.53301 −0.226451
\(598\) 0 0
\(599\) 42.8842 1.75220 0.876100 0.482130i \(-0.160137\pi\)
0.876100 + 0.482130i \(0.160137\pi\)
\(600\) 0 0
\(601\) 41.1591 1.67892 0.839458 0.543425i \(-0.182873\pi\)
0.839458 + 0.543425i \(0.182873\pi\)
\(602\) 0 0
\(603\) 23.0246 0.937633
\(604\) 0 0
\(605\) 4.79536 0.194959
\(606\) 0 0
\(607\) −27.4675 −1.11487 −0.557435 0.830221i \(-0.688214\pi\)
−0.557435 + 0.830221i \(0.688214\pi\)
\(608\) 0 0
\(609\) −1.43918 −0.0583185
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 28.4353 1.14849 0.574245 0.818684i \(-0.305296\pi\)
0.574245 + 0.818684i \(0.305296\pi\)
\(614\) 0 0
\(615\) −0.119350 −0.00481265
\(616\) 0 0
\(617\) 35.4166 1.42582 0.712910 0.701255i \(-0.247377\pi\)
0.712910 + 0.701255i \(0.247377\pi\)
\(618\) 0 0
\(619\) 19.5809 0.787021 0.393511 0.919320i \(-0.371260\pi\)
0.393511 + 0.919320i \(0.371260\pi\)
\(620\) 0 0
\(621\) 12.2378 0.491084
\(622\) 0 0
\(623\) −12.7106 −0.509240
\(624\) 0 0
\(625\) 2.67081 0.106832
\(626\) 0 0
\(627\) −4.85588 −0.193925
\(628\) 0 0
\(629\) −35.3906 −1.41112
\(630\) 0 0
\(631\) 27.9767 1.11373 0.556867 0.830602i \(-0.312003\pi\)
0.556867 + 0.830602i \(0.312003\pi\)
\(632\) 0 0
\(633\) −6.37681 −0.253455
\(634\) 0 0
\(635\) 26.5433 1.05334
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −17.5500 −0.694266
\(640\) 0 0
\(641\) 13.0690 0.516194 0.258097 0.966119i \(-0.416905\pi\)
0.258097 + 0.966119i \(0.416905\pi\)
\(642\) 0 0
\(643\) 29.5312 1.16460 0.582298 0.812975i \(-0.302154\pi\)
0.582298 + 0.812975i \(0.302154\pi\)
\(644\) 0 0
\(645\) 0.385272 0.0151701
\(646\) 0 0
\(647\) 5.22069 0.205247 0.102623 0.994720i \(-0.467276\pi\)
0.102623 + 0.994720i \(0.467276\pi\)
\(648\) 0 0
\(649\) −4.04055 −0.158605
\(650\) 0 0
\(651\) −0.574763 −0.0225267
\(652\) 0 0
\(653\) 45.0760 1.76396 0.881980 0.471287i \(-0.156211\pi\)
0.881980 + 0.471287i \(0.156211\pi\)
\(654\) 0 0
\(655\) 12.8754 0.503085
\(656\) 0 0
\(657\) −4.10173 −0.160024
\(658\) 0 0
\(659\) −48.9003 −1.90489 −0.952443 0.304718i \(-0.901438\pi\)
−0.952443 + 0.304718i \(0.901438\pi\)
\(660\) 0 0
\(661\) 12.3715 0.481194 0.240597 0.970625i \(-0.422657\pi\)
0.240597 + 0.970625i \(0.422657\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6.55789 −0.254304
\(666\) 0 0
\(667\) 23.8070 0.921812
\(668\) 0 0
\(669\) 1.61551 0.0624593
\(670\) 0 0
\(671\) −11.1959 −0.432212
\(672\) 0 0
\(673\) 32.2469 1.24303 0.621513 0.783403i \(-0.286518\pi\)
0.621513 + 0.783403i \(0.286518\pi\)
\(674\) 0 0
\(675\) −6.92957 −0.266719
\(676\) 0 0
\(677\) 28.5883 1.09874 0.549369 0.835580i \(-0.314868\pi\)
0.549369 + 0.835580i \(0.314868\pi\)
\(678\) 0 0
\(679\) −8.46418 −0.324826
\(680\) 0 0
\(681\) −0.376353 −0.0144219
\(682\) 0 0
\(683\) 4.18894 0.160285 0.0801426 0.996783i \(-0.474462\pi\)
0.0801426 + 0.996783i \(0.474462\pi\)
\(684\) 0 0
\(685\) −4.71378 −0.180104
\(686\) 0 0
\(687\) −2.32249 −0.0886086
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 39.6200 1.50722 0.753609 0.657323i \(-0.228311\pi\)
0.753609 + 0.657323i \(0.228311\pi\)
\(692\) 0 0
\(693\) −7.76300 −0.294892
\(694\) 0 0
\(695\) −8.29096 −0.314494
\(696\) 0 0
\(697\) −1.46830 −0.0556157
\(698\) 0 0
\(699\) 2.00335 0.0757737
\(700\) 0 0
\(701\) 33.5649 1.26773 0.633865 0.773444i \(-0.281467\pi\)
0.633865 + 0.773444i \(0.281467\pi\)
\(702\) 0 0
\(703\) −31.7205 −1.19636
\(704\) 0 0
\(705\) 1.00817 0.0379699
\(706\) 0 0
\(707\) −0.505794 −0.0190223
\(708\) 0 0
\(709\) 15.9669 0.599649 0.299825 0.953994i \(-0.403072\pi\)
0.299825 + 0.953994i \(0.403072\pi\)
\(710\) 0 0
\(711\) −10.4644 −0.392447
\(712\) 0 0
\(713\) 9.50779 0.356070
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −3.84758 −0.143691
\(718\) 0 0
\(719\) −45.1792 −1.68490 −0.842450 0.538774i \(-0.818887\pi\)
−0.842450 + 0.538774i \(0.818887\pi\)
\(720\) 0 0
\(721\) −5.27577 −0.196480
\(722\) 0 0
\(723\) −0.242812 −0.00903026
\(724\) 0 0
\(725\) −13.4806 −0.500658
\(726\) 0 0
\(727\) −24.7244 −0.916975 −0.458488 0.888701i \(-0.651609\pi\)
−0.458488 + 0.888701i \(0.651609\pi\)
\(728\) 0 0
\(729\) −20.4350 −0.756853
\(730\) 0 0
\(731\) 4.73979 0.175308
\(732\) 0 0
\(733\) 0.277679 0.0102563 0.00512815 0.999987i \(-0.498368\pi\)
0.00512815 + 0.999987i \(0.498368\pi\)
\(734\) 0 0
\(735\) 0.459413 0.0169457
\(736\) 0 0
\(737\) −21.6386 −0.797070
\(738\) 0 0
\(739\) −27.0377 −0.994600 −0.497300 0.867579i \(-0.665675\pi\)
−0.497300 + 0.867579i \(0.665675\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −21.9240 −0.804314 −0.402157 0.915571i \(-0.631739\pi\)
−0.402157 + 0.915571i \(0.631739\pi\)
\(744\) 0 0
\(745\) −24.1689 −0.885481
\(746\) 0 0
\(747\) −48.4890 −1.77412
\(748\) 0 0
\(749\) 6.83896 0.249890
\(750\) 0 0
\(751\) −13.4452 −0.490623 −0.245311 0.969444i \(-0.578890\pi\)
−0.245311 + 0.969444i \(0.578890\pi\)
\(752\) 0 0
\(753\) −1.10411 −0.0402358
\(754\) 0 0
\(755\) −21.8828 −0.796397
\(756\) 0 0
\(757\) −37.1671 −1.35086 −0.675430 0.737424i \(-0.736042\pi\)
−0.675430 + 0.737424i \(0.736042\pi\)
\(758\) 0 0
\(759\) −5.62727 −0.204257
\(760\) 0 0
\(761\) −45.7346 −1.65788 −0.828939 0.559339i \(-0.811055\pi\)
−0.828939 + 0.559339i \(0.811055\pi\)
\(762\) 0 0
\(763\) −6.77926 −0.245426
\(764\) 0 0
\(765\) 21.0284 0.760285
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 49.1871 1.77373 0.886866 0.462026i \(-0.152877\pi\)
0.886866 + 0.462026i \(0.152877\pi\)
\(770\) 0 0
\(771\) −5.94601 −0.214140
\(772\) 0 0
\(773\) −6.65141 −0.239235 −0.119617 0.992820i \(-0.538167\pi\)
−0.119617 + 0.992820i \(0.538167\pi\)
\(774\) 0 0
\(775\) −5.38374 −0.193390
\(776\) 0 0
\(777\) 2.22218 0.0797204
\(778\) 0 0
\(779\) −1.31603 −0.0471517
\(780\) 0 0
\(781\) 16.4936 0.590186
\(782\) 0 0
\(783\) 8.45382 0.302115
\(784\) 0 0
\(785\) −26.1353 −0.932810
\(786\) 0 0
\(787\) 49.5475 1.76618 0.883089 0.469206i \(-0.155460\pi\)
0.883089 + 0.469206i \(0.155460\pi\)
\(788\) 0 0
\(789\) −2.56443 −0.0912963
\(790\) 0 0
\(791\) −13.1698 −0.468265
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −1.11378 −0.0395016
\(796\) 0 0
\(797\) −19.6344 −0.695487 −0.347744 0.937590i \(-0.613052\pi\)
−0.347744 + 0.937590i \(0.613052\pi\)
\(798\) 0 0
\(799\) 12.4030 0.438786
\(800\) 0 0
\(801\) 36.5310 1.29076
\(802\) 0 0
\(803\) 3.85483 0.136034
\(804\) 0 0
\(805\) −7.59965 −0.267853
\(806\) 0 0
\(807\) 4.01303 0.141265
\(808\) 0 0
\(809\) 49.8888 1.75400 0.876998 0.480494i \(-0.159543\pi\)
0.876998 + 0.480494i \(0.159543\pi\)
\(810\) 0 0
\(811\) 23.4443 0.823242 0.411621 0.911355i \(-0.364963\pi\)
0.411621 + 0.911355i \(0.364963\pi\)
\(812\) 0 0
\(813\) −5.46037 −0.191504
\(814\) 0 0
\(815\) −6.47701 −0.226880
\(816\) 0 0
\(817\) 4.24827 0.148628
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 12.2650 0.428050 0.214025 0.976828i \(-0.431343\pi\)
0.214025 + 0.976828i \(0.431343\pi\)
\(822\) 0 0
\(823\) 48.2863 1.68315 0.841577 0.540138i \(-0.181628\pi\)
0.841577 + 0.540138i \(0.181628\pi\)
\(824\) 0 0
\(825\) 3.18641 0.110937
\(826\) 0 0
\(827\) 44.8076 1.55811 0.779056 0.626955i \(-0.215699\pi\)
0.779056 + 0.626955i \(0.215699\pi\)
\(828\) 0 0
\(829\) −5.68706 −0.197520 −0.0987599 0.995111i \(-0.531488\pi\)
−0.0987599 + 0.995111i \(0.531488\pi\)
\(830\) 0 0
\(831\) −0.577495 −0.0200331
\(832\) 0 0
\(833\) 5.65190 0.195827
\(834\) 0 0
\(835\) −20.1205 −0.696300
\(836\) 0 0
\(837\) 3.37619 0.116698
\(838\) 0 0
\(839\) −25.5046 −0.880516 −0.440258 0.897871i \(-0.645113\pi\)
−0.440258 + 0.897871i \(0.645113\pi\)
\(840\) 0 0
\(841\) −12.5541 −0.432901
\(842\) 0 0
\(843\) −0.540776 −0.0186253
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −3.70428 −0.127281
\(848\) 0 0
\(849\) 6.34755 0.217847
\(850\) 0 0
\(851\) −36.7596 −1.26010
\(852\) 0 0
\(853\) 10.3542 0.354523 0.177261 0.984164i \(-0.443276\pi\)
0.177261 + 0.984164i \(0.443276\pi\)
\(854\) 0 0
\(855\) 18.8477 0.644579
\(856\) 0 0
\(857\) −3.47023 −0.118541 −0.0592704 0.998242i \(-0.518877\pi\)
−0.0592704 + 0.998242i \(0.518877\pi\)
\(858\) 0 0
\(859\) 37.6507 1.28463 0.642313 0.766443i \(-0.277975\pi\)
0.642313 + 0.766443i \(0.277975\pi\)
\(860\) 0 0
\(861\) 0.0921946 0.00314198
\(862\) 0 0
\(863\) 4.51649 0.153743 0.0768716 0.997041i \(-0.475507\pi\)
0.0768716 + 0.997041i \(0.475507\pi\)
\(864\) 0 0
\(865\) 31.7098 1.07816
\(866\) 0 0
\(867\) −5.30339 −0.180113
\(868\) 0 0
\(869\) 9.83454 0.333614
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 24.3266 0.823329
\(874\) 0 0
\(875\) 10.7760 0.364295
\(876\) 0 0
\(877\) −27.5324 −0.929703 −0.464851 0.885389i \(-0.653892\pi\)
−0.464851 + 0.885389i \(0.653892\pi\)
\(878\) 0 0
\(879\) 7.76819 0.262015
\(880\) 0 0
\(881\) 12.3395 0.415727 0.207863 0.978158i \(-0.433349\pi\)
0.207863 + 0.978158i \(0.433349\pi\)
\(882\) 0 0
\(883\) −17.6551 −0.594140 −0.297070 0.954856i \(-0.596009\pi\)
−0.297070 + 0.954856i \(0.596009\pi\)
\(884\) 0 0
\(885\) −0.687241 −0.0231014
\(886\) 0 0
\(887\) −21.0907 −0.708157 −0.354078 0.935216i \(-0.615205\pi\)
−0.354078 + 0.935216i \(0.615205\pi\)
\(888\) 0 0
\(889\) −20.5040 −0.687682
\(890\) 0 0
\(891\) 21.2908 0.713267
\(892\) 0 0
\(893\) 11.1168 0.372009
\(894\) 0 0
\(895\) 7.45011 0.249030
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.56796 0.219054
\(900\) 0 0
\(901\) −13.7022 −0.456486
\(902\) 0 0
\(903\) −0.297612 −0.00990392
\(904\) 0 0
\(905\) −14.1230 −0.469464
\(906\) 0 0
\(907\) 6.47035 0.214845 0.107422 0.994213i \(-0.465740\pi\)
0.107422 + 0.994213i \(0.465740\pi\)
\(908\) 0 0
\(909\) 1.45368 0.0482156
\(910\) 0 0
\(911\) −23.2455 −0.770158 −0.385079 0.922884i \(-0.625826\pi\)
−0.385079 + 0.922884i \(0.625826\pi\)
\(912\) 0 0
\(913\) 45.5703 1.50816
\(914\) 0 0
\(915\) −1.90426 −0.0629530
\(916\) 0 0
\(917\) −9.94594 −0.328444
\(918\) 0 0
\(919\) 36.4849 1.20353 0.601763 0.798675i \(-0.294465\pi\)
0.601763 + 0.798675i \(0.294465\pi\)
\(920\) 0 0
\(921\) −11.3295 −0.373318
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 20.8149 0.684391
\(926\) 0 0
\(927\) 15.1629 0.498014
\(928\) 0 0
\(929\) 39.7444 1.30397 0.651986 0.758231i \(-0.273936\pi\)
0.651986 + 0.758231i \(0.273936\pi\)
\(930\) 0 0
\(931\) 5.06579 0.166025
\(932\) 0 0
\(933\) −0.578412 −0.0189364
\(934\) 0 0
\(935\) −19.7627 −0.646308
\(936\) 0 0
\(937\) −25.2520 −0.824946 −0.412473 0.910970i \(-0.635335\pi\)
−0.412473 + 0.910970i \(0.635335\pi\)
\(938\) 0 0
\(939\) −11.6811 −0.381199
\(940\) 0 0
\(941\) 27.9746 0.911945 0.455973 0.889994i \(-0.349292\pi\)
0.455973 + 0.889994i \(0.349292\pi\)
\(942\) 0 0
\(943\) −1.52509 −0.0496639
\(944\) 0 0
\(945\) −2.69862 −0.0877860
\(946\) 0 0
\(947\) 5.19982 0.168971 0.0844857 0.996425i \(-0.473075\pi\)
0.0844857 + 0.996425i \(0.473075\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −7.64541 −0.247919
\(952\) 0 0
\(953\) −39.0886 −1.26620 −0.633102 0.774069i \(-0.718218\pi\)
−0.633102 + 0.774069i \(0.718218\pi\)
\(954\) 0 0
\(955\) 20.8920 0.676048
\(956\) 0 0
\(957\) −3.88731 −0.125659
\(958\) 0 0
\(959\) 3.64127 0.117583
\(960\) 0 0
\(961\) −28.3770 −0.915386
\(962\) 0 0
\(963\) −19.6556 −0.633392
\(964\) 0 0
\(965\) −31.4481 −1.01235
\(966\) 0 0
\(967\) 43.4306 1.39663 0.698317 0.715789i \(-0.253933\pi\)
0.698317 + 0.715789i \(0.253933\pi\)
\(968\) 0 0
\(969\) −10.1608 −0.326412
\(970\) 0 0
\(971\) 18.1168 0.581395 0.290698 0.956815i \(-0.406113\pi\)
0.290698 + 0.956815i \(0.406113\pi\)
\(972\) 0 0
\(973\) 6.40454 0.205320
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 43.6622 1.39688 0.698439 0.715669i \(-0.253878\pi\)
0.698439 + 0.715669i \(0.253878\pi\)
\(978\) 0 0
\(979\) −34.3321 −1.09726
\(980\) 0 0
\(981\) 19.4840 0.622076
\(982\) 0 0
\(983\) −58.7257 −1.87306 −0.936530 0.350589i \(-0.885982\pi\)
−0.936530 + 0.350589i \(0.885982\pi\)
\(984\) 0 0
\(985\) −25.0743 −0.798935
\(986\) 0 0
\(987\) −0.778786 −0.0247890
\(988\) 0 0
\(989\) 4.92313 0.156547
\(990\) 0 0
\(991\) 28.4382 0.903369 0.451684 0.892178i \(-0.350823\pi\)
0.451684 + 0.892178i \(0.350823\pi\)
\(992\) 0 0
\(993\) 6.70680 0.212834
\(994\) 0 0
\(995\) −20.1833 −0.639853
\(996\) 0 0
\(997\) 36.8258 1.16629 0.583143 0.812370i \(-0.301823\pi\)
0.583143 + 0.812370i \(0.301823\pi\)
\(998\) 0 0
\(999\) −13.0532 −0.412986
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9464.2.a.bs.1.9 yes 15
13.12 even 2 9464.2.a.br.1.9 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9464.2.a.br.1.9 15 13.12 even 2
9464.2.a.bs.1.9 yes 15 1.1 even 1 trivial