Properties

Label 9464.2.a.bs.1.8
Level $9464$
Weight $2$
Character 9464.1
Self dual yes
Analytic conductor $75.570$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9464,2,Mod(1,9464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,0,-3,0,4,0,15,0,16,0,15,0,0,0,8,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5704204729\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 3 x^{14} - 26 x^{13} + 78 x^{12} + 253 x^{11} - 782 x^{10} - 1087 x^{9} + 3776 x^{8} + \cdots - 344 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(0.739098\) of defining polynomial
Character \(\chi\) \(=\) 9464.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.739098 q^{3} +1.43777 q^{5} +1.00000 q^{7} -2.45373 q^{9} +4.73322 q^{11} -1.06266 q^{15} +2.85457 q^{17} -0.0123052 q^{19} -0.739098 q^{21} +8.75886 q^{23} -2.93281 q^{25} +4.03085 q^{27} -6.55507 q^{29} -6.65606 q^{31} -3.49831 q^{33} +1.43777 q^{35} -2.21341 q^{37} +1.13704 q^{41} +8.89935 q^{43} -3.52791 q^{45} +13.0192 q^{47} +1.00000 q^{49} -2.10981 q^{51} +6.20713 q^{53} +6.80529 q^{55} +0.00909476 q^{57} -8.21482 q^{59} +8.05714 q^{61} -2.45373 q^{63} +9.19433 q^{67} -6.47366 q^{69} -0.560824 q^{71} -11.2553 q^{73} +2.16763 q^{75} +4.73322 q^{77} -9.20505 q^{79} +4.38201 q^{81} -10.9039 q^{83} +4.10423 q^{85} +4.84484 q^{87} +0.0602602 q^{89} +4.91948 q^{93} -0.0176921 q^{95} +16.0537 q^{97} -11.6141 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 3 q^{3} + 4 q^{5} + 15 q^{7} + 16 q^{9} + 15 q^{11} + 8 q^{15} + 2 q^{17} + 13 q^{19} - 3 q^{21} - 10 q^{23} + 23 q^{25} - 9 q^{27} + 25 q^{29} + 19 q^{31} - 24 q^{33} + 4 q^{35} - 2 q^{37} + 30 q^{41}+ \cdots + 70 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.739098 −0.426719 −0.213359 0.976974i \(-0.568440\pi\)
−0.213359 + 0.976974i \(0.568440\pi\)
\(4\) 0 0
\(5\) 1.43777 0.642992 0.321496 0.946911i \(-0.395814\pi\)
0.321496 + 0.946911i \(0.395814\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −2.45373 −0.817911
\(10\) 0 0
\(11\) 4.73322 1.42712 0.713559 0.700595i \(-0.247082\pi\)
0.713559 + 0.700595i \(0.247082\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −1.06266 −0.274377
\(16\) 0 0
\(17\) 2.85457 0.692336 0.346168 0.938173i \(-0.387483\pi\)
0.346168 + 0.938173i \(0.387483\pi\)
\(18\) 0 0
\(19\) −0.0123052 −0.00282301 −0.00141150 0.999999i \(-0.500449\pi\)
−0.00141150 + 0.999999i \(0.500449\pi\)
\(20\) 0 0
\(21\) −0.739098 −0.161284
\(22\) 0 0
\(23\) 8.75886 1.82635 0.913175 0.407569i \(-0.133623\pi\)
0.913175 + 0.407569i \(0.133623\pi\)
\(24\) 0 0
\(25\) −2.93281 −0.586561
\(26\) 0 0
\(27\) 4.03085 0.775737
\(28\) 0 0
\(29\) −6.55507 −1.21725 −0.608623 0.793459i \(-0.708278\pi\)
−0.608623 + 0.793459i \(0.708278\pi\)
\(30\) 0 0
\(31\) −6.65606 −1.19546 −0.597732 0.801696i \(-0.703931\pi\)
−0.597732 + 0.801696i \(0.703931\pi\)
\(32\) 0 0
\(33\) −3.49831 −0.608978
\(34\) 0 0
\(35\) 1.43777 0.243028
\(36\) 0 0
\(37\) −2.21341 −0.363882 −0.181941 0.983309i \(-0.558238\pi\)
−0.181941 + 0.983309i \(0.558238\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.13704 0.177577 0.0887883 0.996051i \(-0.471701\pi\)
0.0887883 + 0.996051i \(0.471701\pi\)
\(42\) 0 0
\(43\) 8.89935 1.35714 0.678569 0.734537i \(-0.262600\pi\)
0.678569 + 0.734537i \(0.262600\pi\)
\(44\) 0 0
\(45\) −3.52791 −0.525910
\(46\) 0 0
\(47\) 13.0192 1.89905 0.949525 0.313692i \(-0.101566\pi\)
0.949525 + 0.313692i \(0.101566\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.10981 −0.295433
\(52\) 0 0
\(53\) 6.20713 0.852615 0.426308 0.904578i \(-0.359814\pi\)
0.426308 + 0.904578i \(0.359814\pi\)
\(54\) 0 0
\(55\) 6.80529 0.917626
\(56\) 0 0
\(57\) 0.00909476 0.00120463
\(58\) 0 0
\(59\) −8.21482 −1.06948 −0.534739 0.845017i \(-0.679590\pi\)
−0.534739 + 0.845017i \(0.679590\pi\)
\(60\) 0 0
\(61\) 8.05714 1.03161 0.515805 0.856706i \(-0.327493\pi\)
0.515805 + 0.856706i \(0.327493\pi\)
\(62\) 0 0
\(63\) −2.45373 −0.309141
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 9.19433 1.12327 0.561633 0.827387i \(-0.310173\pi\)
0.561633 + 0.827387i \(0.310173\pi\)
\(68\) 0 0
\(69\) −6.47366 −0.779337
\(70\) 0 0
\(71\) −0.560824 −0.0665576 −0.0332788 0.999446i \(-0.510595\pi\)
−0.0332788 + 0.999446i \(0.510595\pi\)
\(72\) 0 0
\(73\) −11.2553 −1.31733 −0.658665 0.752436i \(-0.728879\pi\)
−0.658665 + 0.752436i \(0.728879\pi\)
\(74\) 0 0
\(75\) 2.16763 0.250297
\(76\) 0 0
\(77\) 4.73322 0.539400
\(78\) 0 0
\(79\) −9.20505 −1.03565 −0.517824 0.855487i \(-0.673258\pi\)
−0.517824 + 0.855487i \(0.673258\pi\)
\(80\) 0 0
\(81\) 4.38201 0.486890
\(82\) 0 0
\(83\) −10.9039 −1.19686 −0.598431 0.801175i \(-0.704209\pi\)
−0.598431 + 0.801175i \(0.704209\pi\)
\(84\) 0 0
\(85\) 4.10423 0.445166
\(86\) 0 0
\(87\) 4.84484 0.519422
\(88\) 0 0
\(89\) 0.0602602 0.00638757 0.00319379 0.999995i \(-0.498983\pi\)
0.00319379 + 0.999995i \(0.498983\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 4.91948 0.510127
\(94\) 0 0
\(95\) −0.0176921 −0.00181517
\(96\) 0 0
\(97\) 16.0537 1.63001 0.815006 0.579453i \(-0.196734\pi\)
0.815006 + 0.579453i \(0.196734\pi\)
\(98\) 0 0
\(99\) −11.6141 −1.16726
\(100\) 0 0
\(101\) 14.8575 1.47838 0.739190 0.673497i \(-0.235209\pi\)
0.739190 + 0.673497i \(0.235209\pi\)
\(102\) 0 0
\(103\) −11.8433 −1.16695 −0.583477 0.812130i \(-0.698308\pi\)
−0.583477 + 0.812130i \(0.698308\pi\)
\(104\) 0 0
\(105\) −1.06266 −0.103705
\(106\) 0 0
\(107\) −8.59602 −0.831009 −0.415504 0.909591i \(-0.636395\pi\)
−0.415504 + 0.909591i \(0.636395\pi\)
\(108\) 0 0
\(109\) 4.79814 0.459578 0.229789 0.973240i \(-0.426196\pi\)
0.229789 + 0.973240i \(0.426196\pi\)
\(110\) 0 0
\(111\) 1.63593 0.155275
\(112\) 0 0
\(113\) 15.2321 1.43291 0.716456 0.697632i \(-0.245763\pi\)
0.716456 + 0.697632i \(0.245763\pi\)
\(114\) 0 0
\(115\) 12.5933 1.17433
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.85457 0.261678
\(120\) 0 0
\(121\) 11.4033 1.03667
\(122\) 0 0
\(123\) −0.840388 −0.0757752
\(124\) 0 0
\(125\) −11.4056 −1.02015
\(126\) 0 0
\(127\) −10.5724 −0.938145 −0.469072 0.883160i \(-0.655412\pi\)
−0.469072 + 0.883160i \(0.655412\pi\)
\(128\) 0 0
\(129\) −6.57749 −0.579116
\(130\) 0 0
\(131\) 11.4595 1.00122 0.500609 0.865674i \(-0.333110\pi\)
0.500609 + 0.865674i \(0.333110\pi\)
\(132\) 0 0
\(133\) −0.0123052 −0.00106700
\(134\) 0 0
\(135\) 5.79544 0.498792
\(136\) 0 0
\(137\) 17.2627 1.47486 0.737428 0.675426i \(-0.236040\pi\)
0.737428 + 0.675426i \(0.236040\pi\)
\(138\) 0 0
\(139\) −9.89549 −0.839324 −0.419662 0.907680i \(-0.637851\pi\)
−0.419662 + 0.907680i \(0.637851\pi\)
\(140\) 0 0
\(141\) −9.62249 −0.810360
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −9.42471 −0.782680
\(146\) 0 0
\(147\) −0.739098 −0.0609598
\(148\) 0 0
\(149\) −12.8608 −1.05360 −0.526799 0.849990i \(-0.676608\pi\)
−0.526799 + 0.849990i \(0.676608\pi\)
\(150\) 0 0
\(151\) −5.75509 −0.468343 −0.234171 0.972195i \(-0.575238\pi\)
−0.234171 + 0.972195i \(0.575238\pi\)
\(152\) 0 0
\(153\) −7.00437 −0.566269
\(154\) 0 0
\(155\) −9.56991 −0.768673
\(156\) 0 0
\(157\) −0.00669191 −0.000534072 0 −0.000267036 1.00000i \(-0.500085\pi\)
−0.000267036 1.00000i \(0.500085\pi\)
\(158\) 0 0
\(159\) −4.58768 −0.363827
\(160\) 0 0
\(161\) 8.75886 0.690295
\(162\) 0 0
\(163\) −4.06876 −0.318690 −0.159345 0.987223i \(-0.550938\pi\)
−0.159345 + 0.987223i \(0.550938\pi\)
\(164\) 0 0
\(165\) −5.02978 −0.391568
\(166\) 0 0
\(167\) 14.2107 1.09966 0.549828 0.835278i \(-0.314693\pi\)
0.549828 + 0.835278i \(0.314693\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0.0301937 0.00230897
\(172\) 0 0
\(173\) 18.5209 1.40812 0.704059 0.710141i \(-0.251369\pi\)
0.704059 + 0.710141i \(0.251369\pi\)
\(174\) 0 0
\(175\) −2.93281 −0.221699
\(176\) 0 0
\(177\) 6.07156 0.456366
\(178\) 0 0
\(179\) −15.3133 −1.14457 −0.572285 0.820055i \(-0.693943\pi\)
−0.572285 + 0.820055i \(0.693943\pi\)
\(180\) 0 0
\(181\) −24.3037 −1.80648 −0.903239 0.429138i \(-0.858817\pi\)
−0.903239 + 0.429138i \(0.858817\pi\)
\(182\) 0 0
\(183\) −5.95502 −0.440207
\(184\) 0 0
\(185\) −3.18238 −0.233973
\(186\) 0 0
\(187\) 13.5113 0.988046
\(188\) 0 0
\(189\) 4.03085 0.293201
\(190\) 0 0
\(191\) 13.0831 0.946656 0.473328 0.880886i \(-0.343052\pi\)
0.473328 + 0.880886i \(0.343052\pi\)
\(192\) 0 0
\(193\) −7.27999 −0.524025 −0.262013 0.965064i \(-0.584386\pi\)
−0.262013 + 0.965064i \(0.584386\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.4616 1.24409 0.622044 0.782982i \(-0.286302\pi\)
0.622044 + 0.782982i \(0.286302\pi\)
\(198\) 0 0
\(199\) −18.9308 −1.34197 −0.670986 0.741470i \(-0.734129\pi\)
−0.670986 + 0.741470i \(0.734129\pi\)
\(200\) 0 0
\(201\) −6.79551 −0.479318
\(202\) 0 0
\(203\) −6.55507 −0.460076
\(204\) 0 0
\(205\) 1.63481 0.114180
\(206\) 0 0
\(207\) −21.4919 −1.49379
\(208\) 0 0
\(209\) −0.0582432 −0.00402877
\(210\) 0 0
\(211\) −5.39681 −0.371532 −0.185766 0.982594i \(-0.559477\pi\)
−0.185766 + 0.982594i \(0.559477\pi\)
\(212\) 0 0
\(213\) 0.414504 0.0284014
\(214\) 0 0
\(215\) 12.7952 0.872629
\(216\) 0 0
\(217\) −6.65606 −0.451843
\(218\) 0 0
\(219\) 8.31876 0.562130
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 14.0955 0.943903 0.471952 0.881624i \(-0.343550\pi\)
0.471952 + 0.881624i \(0.343550\pi\)
\(224\) 0 0
\(225\) 7.19633 0.479755
\(226\) 0 0
\(227\) −4.54506 −0.301666 −0.150833 0.988559i \(-0.548196\pi\)
−0.150833 + 0.988559i \(0.548196\pi\)
\(228\) 0 0
\(229\) −9.69784 −0.640851 −0.320426 0.947274i \(-0.603826\pi\)
−0.320426 + 0.947274i \(0.603826\pi\)
\(230\) 0 0
\(231\) −3.49831 −0.230172
\(232\) 0 0
\(233\) −7.26297 −0.475813 −0.237906 0.971288i \(-0.576461\pi\)
−0.237906 + 0.971288i \(0.576461\pi\)
\(234\) 0 0
\(235\) 18.7187 1.22107
\(236\) 0 0
\(237\) 6.80344 0.441931
\(238\) 0 0
\(239\) 23.6215 1.52794 0.763972 0.645249i \(-0.223246\pi\)
0.763972 + 0.645249i \(0.223246\pi\)
\(240\) 0 0
\(241\) −0.721163 −0.0464542 −0.0232271 0.999730i \(-0.507394\pi\)
−0.0232271 + 0.999730i \(0.507394\pi\)
\(242\) 0 0
\(243\) −15.3313 −0.983502
\(244\) 0 0
\(245\) 1.43777 0.0918560
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 8.05907 0.510723
\(250\) 0 0
\(251\) 9.70022 0.612272 0.306136 0.951988i \(-0.400964\pi\)
0.306136 + 0.951988i \(0.400964\pi\)
\(252\) 0 0
\(253\) 41.4576 2.60642
\(254\) 0 0
\(255\) −3.03343 −0.189961
\(256\) 0 0
\(257\) 4.84021 0.301924 0.150962 0.988540i \(-0.451763\pi\)
0.150962 + 0.988540i \(0.451763\pi\)
\(258\) 0 0
\(259\) −2.21341 −0.137535
\(260\) 0 0
\(261\) 16.0844 0.995600
\(262\) 0 0
\(263\) 3.54533 0.218615 0.109307 0.994008i \(-0.465137\pi\)
0.109307 + 0.994008i \(0.465137\pi\)
\(264\) 0 0
\(265\) 8.92445 0.548225
\(266\) 0 0
\(267\) −0.0445382 −0.00272570
\(268\) 0 0
\(269\) 21.5909 1.31642 0.658210 0.752834i \(-0.271314\pi\)
0.658210 + 0.752834i \(0.271314\pi\)
\(270\) 0 0
\(271\) 18.3590 1.11523 0.557614 0.830101i \(-0.311717\pi\)
0.557614 + 0.830101i \(0.311717\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −13.8816 −0.837093
\(276\) 0 0
\(277\) −1.20391 −0.0723358 −0.0361679 0.999346i \(-0.511515\pi\)
−0.0361679 + 0.999346i \(0.511515\pi\)
\(278\) 0 0
\(279\) 16.3322 0.977783
\(280\) 0 0
\(281\) −1.91102 −0.114002 −0.0570011 0.998374i \(-0.518154\pi\)
−0.0570011 + 0.998374i \(0.518154\pi\)
\(282\) 0 0
\(283\) 18.8183 1.11863 0.559315 0.828955i \(-0.311064\pi\)
0.559315 + 0.828955i \(0.311064\pi\)
\(284\) 0 0
\(285\) 0.0130762 0.000774568 0
\(286\) 0 0
\(287\) 1.13704 0.0671176
\(288\) 0 0
\(289\) −8.85140 −0.520671
\(290\) 0 0
\(291\) −11.8653 −0.695556
\(292\) 0 0
\(293\) 25.3667 1.48194 0.740970 0.671538i \(-0.234366\pi\)
0.740970 + 0.671538i \(0.234366\pi\)
\(294\) 0 0
\(295\) −11.8110 −0.687666
\(296\) 0 0
\(297\) 19.0789 1.10707
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 8.89935 0.512950
\(302\) 0 0
\(303\) −10.9812 −0.630852
\(304\) 0 0
\(305\) 11.5843 0.663317
\(306\) 0 0
\(307\) 0.385991 0.0220297 0.0110148 0.999939i \(-0.496494\pi\)
0.0110148 + 0.999939i \(0.496494\pi\)
\(308\) 0 0
\(309\) 8.75335 0.497961
\(310\) 0 0
\(311\) −7.06003 −0.400338 −0.200169 0.979761i \(-0.564149\pi\)
−0.200169 + 0.979761i \(0.564149\pi\)
\(312\) 0 0
\(313\) −30.7682 −1.73912 −0.869561 0.493826i \(-0.835598\pi\)
−0.869561 + 0.493826i \(0.835598\pi\)
\(314\) 0 0
\(315\) −3.52791 −0.198775
\(316\) 0 0
\(317\) 18.2431 1.02464 0.512318 0.858796i \(-0.328787\pi\)
0.512318 + 0.858796i \(0.328787\pi\)
\(318\) 0 0
\(319\) −31.0266 −1.73716
\(320\) 0 0
\(321\) 6.35331 0.354607
\(322\) 0 0
\(323\) −0.0351261 −0.00195447
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −3.54629 −0.196111
\(328\) 0 0
\(329\) 13.0192 0.717773
\(330\) 0 0
\(331\) −11.9871 −0.658871 −0.329436 0.944178i \(-0.606858\pi\)
−0.329436 + 0.944178i \(0.606858\pi\)
\(332\) 0 0
\(333\) 5.43112 0.297623
\(334\) 0 0
\(335\) 13.2194 0.722251
\(336\) 0 0
\(337\) 28.3914 1.54658 0.773289 0.634054i \(-0.218610\pi\)
0.773289 + 0.634054i \(0.218610\pi\)
\(338\) 0 0
\(339\) −11.2580 −0.611450
\(340\) 0 0
\(341\) −31.5046 −1.70607
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −9.30766 −0.501107
\(346\) 0 0
\(347\) 28.4813 1.52896 0.764479 0.644649i \(-0.222996\pi\)
0.764479 + 0.644649i \(0.222996\pi\)
\(348\) 0 0
\(349\) −10.4237 −0.557970 −0.278985 0.960295i \(-0.589998\pi\)
−0.278985 + 0.960295i \(0.589998\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 17.7421 0.944315 0.472158 0.881514i \(-0.343475\pi\)
0.472158 + 0.881514i \(0.343475\pi\)
\(354\) 0 0
\(355\) −0.806338 −0.0427960
\(356\) 0 0
\(357\) −2.10981 −0.111663
\(358\) 0 0
\(359\) −15.7513 −0.831320 −0.415660 0.909520i \(-0.636449\pi\)
−0.415660 + 0.909520i \(0.636449\pi\)
\(360\) 0 0
\(361\) −18.9998 −0.999992
\(362\) 0 0
\(363\) −8.42819 −0.442365
\(364\) 0 0
\(365\) −16.1825 −0.847033
\(366\) 0 0
\(367\) −1.17630 −0.0614025 −0.0307013 0.999529i \(-0.509774\pi\)
−0.0307013 + 0.999529i \(0.509774\pi\)
\(368\) 0 0
\(369\) −2.79001 −0.145242
\(370\) 0 0
\(371\) 6.20713 0.322258
\(372\) 0 0
\(373\) 0.296248 0.0153391 0.00766957 0.999971i \(-0.497559\pi\)
0.00766957 + 0.999971i \(0.497559\pi\)
\(374\) 0 0
\(375\) 8.42985 0.435315
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 14.6639 0.753235 0.376617 0.926369i \(-0.377087\pi\)
0.376617 + 0.926369i \(0.377087\pi\)
\(380\) 0 0
\(381\) 7.81401 0.400324
\(382\) 0 0
\(383\) 30.4945 1.55820 0.779099 0.626901i \(-0.215677\pi\)
0.779099 + 0.626901i \(0.215677\pi\)
\(384\) 0 0
\(385\) 6.80529 0.346830
\(386\) 0 0
\(387\) −21.8366 −1.11002
\(388\) 0 0
\(389\) 15.3289 0.777206 0.388603 0.921405i \(-0.372958\pi\)
0.388603 + 0.921405i \(0.372958\pi\)
\(390\) 0 0
\(391\) 25.0028 1.26445
\(392\) 0 0
\(393\) −8.46967 −0.427238
\(394\) 0 0
\(395\) −13.2348 −0.665914
\(396\) 0 0
\(397\) −26.6483 −1.33744 −0.668721 0.743514i \(-0.733158\pi\)
−0.668721 + 0.743514i \(0.733158\pi\)
\(398\) 0 0
\(399\) 0.00909476 0.000455307 0
\(400\) 0 0
\(401\) 34.0084 1.69830 0.849149 0.528153i \(-0.177115\pi\)
0.849149 + 0.528153i \(0.177115\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 6.30034 0.313066
\(406\) 0 0
\(407\) −10.4765 −0.519303
\(408\) 0 0
\(409\) −18.7181 −0.925549 −0.462774 0.886476i \(-0.653146\pi\)
−0.462774 + 0.886476i \(0.653146\pi\)
\(410\) 0 0
\(411\) −12.7589 −0.629348
\(412\) 0 0
\(413\) −8.21482 −0.404225
\(414\) 0 0
\(415\) −15.6774 −0.769572
\(416\) 0 0
\(417\) 7.31374 0.358155
\(418\) 0 0
\(419\) −10.7245 −0.523926 −0.261963 0.965078i \(-0.584370\pi\)
−0.261963 + 0.965078i \(0.584370\pi\)
\(420\) 0 0
\(421\) −7.94362 −0.387148 −0.193574 0.981086i \(-0.562008\pi\)
−0.193574 + 0.981086i \(0.562008\pi\)
\(422\) 0 0
\(423\) −31.9457 −1.55325
\(424\) 0 0
\(425\) −8.37192 −0.406098
\(426\) 0 0
\(427\) 8.05714 0.389912
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7.94545 0.382719 0.191359 0.981520i \(-0.438710\pi\)
0.191359 + 0.981520i \(0.438710\pi\)
\(432\) 0 0
\(433\) 21.3383 1.02545 0.512727 0.858551i \(-0.328635\pi\)
0.512727 + 0.858551i \(0.328635\pi\)
\(434\) 0 0
\(435\) 6.96579 0.333984
\(436\) 0 0
\(437\) −0.107780 −0.00515580
\(438\) 0 0
\(439\) 8.61980 0.411401 0.205700 0.978615i \(-0.434053\pi\)
0.205700 + 0.978615i \(0.434053\pi\)
\(440\) 0 0
\(441\) −2.45373 −0.116844
\(442\) 0 0
\(443\) 6.37389 0.302833 0.151416 0.988470i \(-0.451617\pi\)
0.151416 + 0.988470i \(0.451617\pi\)
\(444\) 0 0
\(445\) 0.0866406 0.00410716
\(446\) 0 0
\(447\) 9.50540 0.449590
\(448\) 0 0
\(449\) −28.3857 −1.33960 −0.669802 0.742539i \(-0.733621\pi\)
−0.669802 + 0.742539i \(0.733621\pi\)
\(450\) 0 0
\(451\) 5.38188 0.253423
\(452\) 0 0
\(453\) 4.25358 0.199851
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 15.2569 0.713687 0.356844 0.934164i \(-0.383853\pi\)
0.356844 + 0.934164i \(0.383853\pi\)
\(458\) 0 0
\(459\) 11.5063 0.537070
\(460\) 0 0
\(461\) −39.0810 −1.82018 −0.910092 0.414406i \(-0.863989\pi\)
−0.910092 + 0.414406i \(0.863989\pi\)
\(462\) 0 0
\(463\) −17.0493 −0.792347 −0.396174 0.918176i \(-0.629662\pi\)
−0.396174 + 0.918176i \(0.629662\pi\)
\(464\) 0 0
\(465\) 7.07310 0.328007
\(466\) 0 0
\(467\) −37.8487 −1.75143 −0.875713 0.482831i \(-0.839608\pi\)
−0.875713 + 0.482831i \(0.839608\pi\)
\(468\) 0 0
\(469\) 9.19433 0.424555
\(470\) 0 0
\(471\) 0.00494598 0.000227899 0
\(472\) 0 0
\(473\) 42.1225 1.93680
\(474\) 0 0
\(475\) 0.0360888 0.00165587
\(476\) 0 0
\(477\) −15.2306 −0.697364
\(478\) 0 0
\(479\) −9.07594 −0.414690 −0.207345 0.978268i \(-0.566482\pi\)
−0.207345 + 0.978268i \(0.566482\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −6.47366 −0.294562
\(484\) 0 0
\(485\) 23.0817 1.04808
\(486\) 0 0
\(487\) 20.4498 0.926669 0.463334 0.886183i \(-0.346653\pi\)
0.463334 + 0.886183i \(0.346653\pi\)
\(488\) 0 0
\(489\) 3.00721 0.135991
\(490\) 0 0
\(491\) −35.7051 −1.61135 −0.805674 0.592359i \(-0.798197\pi\)
−0.805674 + 0.592359i \(0.798197\pi\)
\(492\) 0 0
\(493\) −18.7119 −0.842744
\(494\) 0 0
\(495\) −16.6984 −0.750536
\(496\) 0 0
\(497\) −0.560824 −0.0251564
\(498\) 0 0
\(499\) 27.3366 1.22375 0.611877 0.790953i \(-0.290415\pi\)
0.611877 + 0.790953i \(0.290415\pi\)
\(500\) 0 0
\(501\) −10.5031 −0.469243
\(502\) 0 0
\(503\) −20.1944 −0.900424 −0.450212 0.892922i \(-0.648652\pi\)
−0.450212 + 0.892922i \(0.648652\pi\)
\(504\) 0 0
\(505\) 21.3618 0.950586
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 18.4517 0.817858 0.408929 0.912566i \(-0.365902\pi\)
0.408929 + 0.912566i \(0.365902\pi\)
\(510\) 0 0
\(511\) −11.2553 −0.497904
\(512\) 0 0
\(513\) −0.0496004 −0.00218991
\(514\) 0 0
\(515\) −17.0280 −0.750342
\(516\) 0 0
\(517\) 61.6228 2.71017
\(518\) 0 0
\(519\) −13.6888 −0.600871
\(520\) 0 0
\(521\) −3.89874 −0.170807 −0.0854035 0.996346i \(-0.527218\pi\)
−0.0854035 + 0.996346i \(0.527218\pi\)
\(522\) 0 0
\(523\) 18.3776 0.803596 0.401798 0.915728i \(-0.368385\pi\)
0.401798 + 0.915728i \(0.368385\pi\)
\(524\) 0 0
\(525\) 2.16763 0.0946033
\(526\) 0 0
\(527\) −19.0002 −0.827663
\(528\) 0 0
\(529\) 53.7177 2.33555
\(530\) 0 0
\(531\) 20.1570 0.874738
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −12.3591 −0.534332
\(536\) 0 0
\(537\) 11.3180 0.488409
\(538\) 0 0
\(539\) 4.73322 0.203874
\(540\) 0 0
\(541\) −5.76656 −0.247924 −0.123962 0.992287i \(-0.539560\pi\)
−0.123962 + 0.992287i \(0.539560\pi\)
\(542\) 0 0
\(543\) 17.9628 0.770858
\(544\) 0 0
\(545\) 6.89863 0.295505
\(546\) 0 0
\(547\) 0.511830 0.0218843 0.0109421 0.999940i \(-0.496517\pi\)
0.0109421 + 0.999940i \(0.496517\pi\)
\(548\) 0 0
\(549\) −19.7701 −0.843766
\(550\) 0 0
\(551\) 0.0806616 0.00343630
\(552\) 0 0
\(553\) −9.20505 −0.391438
\(554\) 0 0
\(555\) 2.35209 0.0998407
\(556\) 0 0
\(557\) −11.7391 −0.497400 −0.248700 0.968581i \(-0.580003\pi\)
−0.248700 + 0.968581i \(0.580003\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −9.98619 −0.421617
\(562\) 0 0
\(563\) −0.773900 −0.0326160 −0.0163080 0.999867i \(-0.505191\pi\)
−0.0163080 + 0.999867i \(0.505191\pi\)
\(564\) 0 0
\(565\) 21.9003 0.921351
\(566\) 0 0
\(567\) 4.38201 0.184027
\(568\) 0 0
\(569\) 38.9667 1.63357 0.816785 0.576942i \(-0.195754\pi\)
0.816785 + 0.576942i \(0.195754\pi\)
\(570\) 0 0
\(571\) 16.8130 0.703603 0.351801 0.936075i \(-0.385569\pi\)
0.351801 + 0.936075i \(0.385569\pi\)
\(572\) 0 0
\(573\) −9.66966 −0.403956
\(574\) 0 0
\(575\) −25.6881 −1.07127
\(576\) 0 0
\(577\) 43.1012 1.79433 0.897163 0.441699i \(-0.145624\pi\)
0.897163 + 0.441699i \(0.145624\pi\)
\(578\) 0 0
\(579\) 5.38063 0.223611
\(580\) 0 0
\(581\) −10.9039 −0.452371
\(582\) 0 0
\(583\) 29.3797 1.21678
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 39.4085 1.62656 0.813282 0.581870i \(-0.197679\pi\)
0.813282 + 0.581870i \(0.197679\pi\)
\(588\) 0 0
\(589\) 0.0819042 0.00337480
\(590\) 0 0
\(591\) −12.9058 −0.530876
\(592\) 0 0
\(593\) 28.0980 1.15385 0.576923 0.816799i \(-0.304253\pi\)
0.576923 + 0.816799i \(0.304253\pi\)
\(594\) 0 0
\(595\) 4.10423 0.168257
\(596\) 0 0
\(597\) 13.9917 0.572644
\(598\) 0 0
\(599\) 9.70891 0.396695 0.198348 0.980132i \(-0.436442\pi\)
0.198348 + 0.980132i \(0.436442\pi\)
\(600\) 0 0
\(601\) −5.64199 −0.230141 −0.115071 0.993357i \(-0.536709\pi\)
−0.115071 + 0.993357i \(0.536709\pi\)
\(602\) 0 0
\(603\) −22.5604 −0.918732
\(604\) 0 0
\(605\) 16.3954 0.666569
\(606\) 0 0
\(607\) −29.6547 −1.20365 −0.601824 0.798629i \(-0.705559\pi\)
−0.601824 + 0.798629i \(0.705559\pi\)
\(608\) 0 0
\(609\) 4.84484 0.196323
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −3.33755 −0.134802 −0.0674012 0.997726i \(-0.521471\pi\)
−0.0674012 + 0.997726i \(0.521471\pi\)
\(614\) 0 0
\(615\) −1.20829 −0.0487229
\(616\) 0 0
\(617\) −27.0763 −1.09005 −0.545025 0.838420i \(-0.683480\pi\)
−0.545025 + 0.838420i \(0.683480\pi\)
\(618\) 0 0
\(619\) −2.80966 −0.112930 −0.0564648 0.998405i \(-0.517983\pi\)
−0.0564648 + 0.998405i \(0.517983\pi\)
\(620\) 0 0
\(621\) 35.3056 1.41677
\(622\) 0 0
\(623\) 0.0602602 0.00241428
\(624\) 0 0
\(625\) −1.73461 −0.0693843
\(626\) 0 0
\(627\) 0.0430475 0.00171915
\(628\) 0 0
\(629\) −6.31834 −0.251929
\(630\) 0 0
\(631\) 7.59709 0.302435 0.151218 0.988500i \(-0.451681\pi\)
0.151218 + 0.988500i \(0.451681\pi\)
\(632\) 0 0
\(633\) 3.98877 0.158539
\(634\) 0 0
\(635\) −15.2007 −0.603219
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.37611 0.0544382
\(640\) 0 0
\(641\) 28.1025 1.10998 0.554991 0.831856i \(-0.312722\pi\)
0.554991 + 0.831856i \(0.312722\pi\)
\(642\) 0 0
\(643\) 15.9447 0.628797 0.314398 0.949291i \(-0.398197\pi\)
0.314398 + 0.949291i \(0.398197\pi\)
\(644\) 0 0
\(645\) −9.45695 −0.372367
\(646\) 0 0
\(647\) −6.54759 −0.257412 −0.128706 0.991683i \(-0.541082\pi\)
−0.128706 + 0.991683i \(0.541082\pi\)
\(648\) 0 0
\(649\) −38.8825 −1.52627
\(650\) 0 0
\(651\) 4.91948 0.192810
\(652\) 0 0
\(653\) 43.4384 1.69988 0.849939 0.526881i \(-0.176639\pi\)
0.849939 + 0.526881i \(0.176639\pi\)
\(654\) 0 0
\(655\) 16.4761 0.643775
\(656\) 0 0
\(657\) 27.6175 1.07746
\(658\) 0 0
\(659\) 4.61021 0.179588 0.0897941 0.995960i \(-0.471379\pi\)
0.0897941 + 0.995960i \(0.471379\pi\)
\(660\) 0 0
\(661\) −15.7249 −0.611626 −0.305813 0.952092i \(-0.598928\pi\)
−0.305813 + 0.952092i \(0.598928\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.0176921 −0.000686070 0
\(666\) 0 0
\(667\) −57.4150 −2.22312
\(668\) 0 0
\(669\) −10.4179 −0.402781
\(670\) 0 0
\(671\) 38.1362 1.47223
\(672\) 0 0
\(673\) 6.17462 0.238014 0.119007 0.992893i \(-0.462029\pi\)
0.119007 + 0.992893i \(0.462029\pi\)
\(674\) 0 0
\(675\) −11.8217 −0.455017
\(676\) 0 0
\(677\) 14.9856 0.575945 0.287972 0.957639i \(-0.407019\pi\)
0.287972 + 0.957639i \(0.407019\pi\)
\(678\) 0 0
\(679\) 16.0537 0.616086
\(680\) 0 0
\(681\) 3.35925 0.128727
\(682\) 0 0
\(683\) 11.2056 0.428770 0.214385 0.976749i \(-0.431225\pi\)
0.214385 + 0.976749i \(0.431225\pi\)
\(684\) 0 0
\(685\) 24.8199 0.948320
\(686\) 0 0
\(687\) 7.16766 0.273463
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −3.29602 −0.125387 −0.0626933 0.998033i \(-0.519969\pi\)
−0.0626933 + 0.998033i \(0.519969\pi\)
\(692\) 0 0
\(693\) −11.6141 −0.441181
\(694\) 0 0
\(695\) −14.2275 −0.539679
\(696\) 0 0
\(697\) 3.24578 0.122943
\(698\) 0 0
\(699\) 5.36805 0.203038
\(700\) 0 0
\(701\) −25.2549 −0.953864 −0.476932 0.878940i \(-0.658251\pi\)
−0.476932 + 0.878940i \(0.658251\pi\)
\(702\) 0 0
\(703\) 0.0272365 0.00102724
\(704\) 0 0
\(705\) −13.8350 −0.521055
\(706\) 0 0
\(707\) 14.8575 0.558775
\(708\) 0 0
\(709\) 23.2928 0.874778 0.437389 0.899272i \(-0.355903\pi\)
0.437389 + 0.899272i \(0.355903\pi\)
\(710\) 0 0
\(711\) 22.5867 0.847069
\(712\) 0 0
\(713\) −58.2995 −2.18333
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −17.4586 −0.652002
\(718\) 0 0
\(719\) −3.96844 −0.147998 −0.0739989 0.997258i \(-0.523576\pi\)
−0.0739989 + 0.997258i \(0.523576\pi\)
\(720\) 0 0
\(721\) −11.8433 −0.441067
\(722\) 0 0
\(723\) 0.533011 0.0198229
\(724\) 0 0
\(725\) 19.2248 0.713990
\(726\) 0 0
\(727\) 1.38311 0.0512966 0.0256483 0.999671i \(-0.491835\pi\)
0.0256483 + 0.999671i \(0.491835\pi\)
\(728\) 0 0
\(729\) −1.81471 −0.0672116
\(730\) 0 0
\(731\) 25.4039 0.939595
\(732\) 0 0
\(733\) 22.4616 0.829637 0.414819 0.909904i \(-0.363845\pi\)
0.414819 + 0.909904i \(0.363845\pi\)
\(734\) 0 0
\(735\) −1.06266 −0.0391967
\(736\) 0 0
\(737\) 43.5187 1.60303
\(738\) 0 0
\(739\) 40.8199 1.50158 0.750792 0.660539i \(-0.229672\pi\)
0.750792 + 0.660539i \(0.229672\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14.0414 0.515130 0.257565 0.966261i \(-0.417080\pi\)
0.257565 + 0.966261i \(0.417080\pi\)
\(744\) 0 0
\(745\) −18.4909 −0.677455
\(746\) 0 0
\(747\) 26.7553 0.978926
\(748\) 0 0
\(749\) −8.59602 −0.314092
\(750\) 0 0
\(751\) −43.8260 −1.59924 −0.799618 0.600510i \(-0.794964\pi\)
−0.799618 + 0.600510i \(0.794964\pi\)
\(752\) 0 0
\(753\) −7.16941 −0.261268
\(754\) 0 0
\(755\) −8.27452 −0.301141
\(756\) 0 0
\(757\) −26.8248 −0.974963 −0.487482 0.873133i \(-0.662084\pi\)
−0.487482 + 0.873133i \(0.662084\pi\)
\(758\) 0 0
\(759\) −30.6412 −1.11221
\(760\) 0 0
\(761\) −11.3939 −0.413027 −0.206513 0.978444i \(-0.566212\pi\)
−0.206513 + 0.978444i \(0.566212\pi\)
\(762\) 0 0
\(763\) 4.79814 0.173704
\(764\) 0 0
\(765\) −10.0707 −0.364107
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 15.6620 0.564785 0.282392 0.959299i \(-0.408872\pi\)
0.282392 + 0.959299i \(0.408872\pi\)
\(770\) 0 0
\(771\) −3.57739 −0.128837
\(772\) 0 0
\(773\) 36.6682 1.31886 0.659432 0.751764i \(-0.270797\pi\)
0.659432 + 0.751764i \(0.270797\pi\)
\(774\) 0 0
\(775\) 19.5209 0.701213
\(776\) 0 0
\(777\) 1.63593 0.0586885
\(778\) 0 0
\(779\) −0.0139916 −0.000501300 0
\(780\) 0 0
\(781\) −2.65450 −0.0949856
\(782\) 0 0
\(783\) −26.4225 −0.944263
\(784\) 0 0
\(785\) −0.00962144 −0.000343404 0
\(786\) 0 0
\(787\) 33.9486 1.21014 0.605069 0.796173i \(-0.293146\pi\)
0.605069 + 0.796173i \(0.293146\pi\)
\(788\) 0 0
\(789\) −2.62035 −0.0932869
\(790\) 0 0
\(791\) 15.2321 0.541590
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −6.59605 −0.233938
\(796\) 0 0
\(797\) −26.6818 −0.945118 −0.472559 0.881299i \(-0.656670\pi\)
−0.472559 + 0.881299i \(0.656670\pi\)
\(798\) 0 0
\(799\) 37.1644 1.31478
\(800\) 0 0
\(801\) −0.147863 −0.00522447
\(802\) 0 0
\(803\) −53.2737 −1.87999
\(804\) 0 0
\(805\) 12.5933 0.443854
\(806\) 0 0
\(807\) −15.9578 −0.561741
\(808\) 0 0
\(809\) 26.7497 0.940469 0.470235 0.882541i \(-0.344169\pi\)
0.470235 + 0.882541i \(0.344169\pi\)
\(810\) 0 0
\(811\) 37.4354 1.31453 0.657267 0.753658i \(-0.271712\pi\)
0.657267 + 0.753658i \(0.271712\pi\)
\(812\) 0 0
\(813\) −13.5691 −0.475888
\(814\) 0 0
\(815\) −5.84995 −0.204915
\(816\) 0 0
\(817\) −0.109508 −0.00383121
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 23.8525 0.832458 0.416229 0.909260i \(-0.363352\pi\)
0.416229 + 0.909260i \(0.363352\pi\)
\(822\) 0 0
\(823\) 12.9901 0.452805 0.226402 0.974034i \(-0.427304\pi\)
0.226402 + 0.974034i \(0.427304\pi\)
\(824\) 0 0
\(825\) 10.2599 0.357203
\(826\) 0 0
\(827\) −36.2537 −1.26067 −0.630333 0.776325i \(-0.717082\pi\)
−0.630333 + 0.776325i \(0.717082\pi\)
\(828\) 0 0
\(829\) −13.3569 −0.463904 −0.231952 0.972727i \(-0.574511\pi\)
−0.231952 + 0.972727i \(0.574511\pi\)
\(830\) 0 0
\(831\) 0.889806 0.0308670
\(832\) 0 0
\(833\) 2.85457 0.0989052
\(834\) 0 0
\(835\) 20.4317 0.707069
\(836\) 0 0
\(837\) −26.8295 −0.927365
\(838\) 0 0
\(839\) −43.0223 −1.48529 −0.742647 0.669683i \(-0.766430\pi\)
−0.742647 + 0.669683i \(0.766430\pi\)
\(840\) 0 0
\(841\) 13.9690 0.481689
\(842\) 0 0
\(843\) 1.41243 0.0486468
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 11.4033 0.391823
\(848\) 0 0
\(849\) −13.9086 −0.477340
\(850\) 0 0
\(851\) −19.3869 −0.664576
\(852\) 0 0
\(853\) 19.7144 0.675008 0.337504 0.941324i \(-0.390417\pi\)
0.337504 + 0.941324i \(0.390417\pi\)
\(854\) 0 0
\(855\) 0.0434117 0.00148465
\(856\) 0 0
\(857\) 33.8090 1.15489 0.577447 0.816428i \(-0.304049\pi\)
0.577447 + 0.816428i \(0.304049\pi\)
\(858\) 0 0
\(859\) −45.0185 −1.53601 −0.768006 0.640443i \(-0.778751\pi\)
−0.768006 + 0.640443i \(0.778751\pi\)
\(860\) 0 0
\(861\) −0.840388 −0.0286403
\(862\) 0 0
\(863\) −2.68668 −0.0914557 −0.0457279 0.998954i \(-0.514561\pi\)
−0.0457279 + 0.998954i \(0.514561\pi\)
\(864\) 0 0
\(865\) 26.6289 0.905409
\(866\) 0 0
\(867\) 6.54206 0.222180
\(868\) 0 0
\(869\) −43.5695 −1.47799
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −39.3916 −1.33320
\(874\) 0 0
\(875\) −11.4056 −0.385579
\(876\) 0 0
\(877\) 30.5122 1.03032 0.515161 0.857093i \(-0.327732\pi\)
0.515161 + 0.857093i \(0.327732\pi\)
\(878\) 0 0
\(879\) −18.7485 −0.632371
\(880\) 0 0
\(881\) −29.6039 −0.997381 −0.498690 0.866780i \(-0.666186\pi\)
−0.498690 + 0.866780i \(0.666186\pi\)
\(882\) 0 0
\(883\) −31.4145 −1.05718 −0.528592 0.848876i \(-0.677280\pi\)
−0.528592 + 0.848876i \(0.677280\pi\)
\(884\) 0 0
\(885\) 8.72952 0.293440
\(886\) 0 0
\(887\) −2.91909 −0.0980134 −0.0490067 0.998798i \(-0.515606\pi\)
−0.0490067 + 0.998798i \(0.515606\pi\)
\(888\) 0 0
\(889\) −10.5724 −0.354585
\(890\) 0 0
\(891\) 20.7410 0.694850
\(892\) 0 0
\(893\) −0.160204 −0.00536103
\(894\) 0 0
\(895\) −22.0171 −0.735949
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 43.6310 1.45517
\(900\) 0 0
\(901\) 17.7187 0.590296
\(902\) 0 0
\(903\) −6.57749 −0.218885
\(904\) 0 0
\(905\) −34.9432 −1.16155
\(906\) 0 0
\(907\) 24.2232 0.804319 0.402160 0.915570i \(-0.368260\pi\)
0.402160 + 0.915570i \(0.368260\pi\)
\(908\) 0 0
\(909\) −36.4564 −1.20918
\(910\) 0 0
\(911\) −25.3807 −0.840901 −0.420450 0.907316i \(-0.638128\pi\)
−0.420450 + 0.907316i \(0.638128\pi\)
\(912\) 0 0
\(913\) −51.6106 −1.70806
\(914\) 0 0
\(915\) −8.56197 −0.283050
\(916\) 0 0
\(917\) 11.4595 0.378425
\(918\) 0 0
\(919\) −33.2005 −1.09518 −0.547591 0.836746i \(-0.684455\pi\)
−0.547591 + 0.836746i \(0.684455\pi\)
\(920\) 0 0
\(921\) −0.285286 −0.00940048
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 6.49150 0.213439
\(926\) 0 0
\(927\) 29.0603 0.954464
\(928\) 0 0
\(929\) 3.18867 0.104617 0.0523084 0.998631i \(-0.483342\pi\)
0.0523084 + 0.998631i \(0.483342\pi\)
\(930\) 0 0
\(931\) −0.0123052 −0.000403287 0
\(932\) 0 0
\(933\) 5.21806 0.170831
\(934\) 0 0
\(935\) 19.4262 0.635305
\(936\) 0 0
\(937\) −24.6622 −0.805679 −0.402840 0.915271i \(-0.631977\pi\)
−0.402840 + 0.915271i \(0.631977\pi\)
\(938\) 0 0
\(939\) 22.7407 0.742116
\(940\) 0 0
\(941\) 22.7134 0.740435 0.370218 0.928945i \(-0.379283\pi\)
0.370218 + 0.928945i \(0.379283\pi\)
\(942\) 0 0
\(943\) 9.95922 0.324317
\(944\) 0 0
\(945\) 5.79544 0.188526
\(946\) 0 0
\(947\) 29.0536 0.944114 0.472057 0.881568i \(-0.343512\pi\)
0.472057 + 0.881568i \(0.343512\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −13.4835 −0.437232
\(952\) 0 0
\(953\) 8.40319 0.272206 0.136103 0.990695i \(-0.456542\pi\)
0.136103 + 0.990695i \(0.456542\pi\)
\(954\) 0 0
\(955\) 18.8105 0.608692
\(956\) 0 0
\(957\) 22.9317 0.741276
\(958\) 0 0
\(959\) 17.2627 0.557443
\(960\) 0 0
\(961\) 13.3031 0.429133
\(962\) 0 0
\(963\) 21.0924 0.679691
\(964\) 0 0
\(965\) −10.4670 −0.336944
\(966\) 0 0
\(967\) −40.1233 −1.29028 −0.645140 0.764065i \(-0.723201\pi\)
−0.645140 + 0.764065i \(0.723201\pi\)
\(968\) 0 0
\(969\) 0.0259617 0.000834009 0
\(970\) 0 0
\(971\) −3.03848 −0.0975093 −0.0487547 0.998811i \(-0.515525\pi\)
−0.0487547 + 0.998811i \(0.515525\pi\)
\(972\) 0 0
\(973\) −9.89549 −0.317235
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −34.7205 −1.11081 −0.555403 0.831581i \(-0.687436\pi\)
−0.555403 + 0.831581i \(0.687436\pi\)
\(978\) 0 0
\(979\) 0.285225 0.00911582
\(980\) 0 0
\(981\) −11.7733 −0.375894
\(982\) 0 0
\(983\) −48.2951 −1.54037 −0.770187 0.637818i \(-0.779837\pi\)
−0.770187 + 0.637818i \(0.779837\pi\)
\(984\) 0 0
\(985\) 25.1058 0.799939
\(986\) 0 0
\(987\) −9.62249 −0.306287
\(988\) 0 0
\(989\) 77.9482 2.47861
\(990\) 0 0
\(991\) 46.7064 1.48368 0.741838 0.670579i \(-0.233954\pi\)
0.741838 + 0.670579i \(0.233954\pi\)
\(992\) 0 0
\(993\) 8.85966 0.281153
\(994\) 0 0
\(995\) −27.2183 −0.862877
\(996\) 0 0
\(997\) 57.8202 1.83118 0.915591 0.402110i \(-0.131723\pi\)
0.915591 + 0.402110i \(0.131723\pi\)
\(998\) 0 0
\(999\) −8.92191 −0.282277
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9464.2.a.bs.1.8 yes 15
13.12 even 2 9464.2.a.br.1.8 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9464.2.a.br.1.8 15 13.12 even 2
9464.2.a.bs.1.8 yes 15 1.1 even 1 trivial