Properties

Label 9464.2.a.bs.1.15
Level $9464$
Weight $2$
Character 9464.1
Self dual yes
Analytic conductor $75.570$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9464,2,Mod(1,9464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,0,-3,0,4,0,15,0,16,0,15,0,0,0,8,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5704204729\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 3 x^{14} - 26 x^{13} + 78 x^{12} + 253 x^{11} - 782 x^{10} - 1087 x^{9} + 3776 x^{8} + \cdots - 344 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Root \(-2.83411\) of defining polynomial
Character \(\chi\) \(=\) 9464.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.83411 q^{3} +1.08830 q^{5} +1.00000 q^{7} +5.03219 q^{9} +0.595045 q^{11} +3.08435 q^{15} +0.179097 q^{17} +0.901358 q^{19} +2.83411 q^{21} -3.08049 q^{23} -3.81561 q^{25} +5.75945 q^{27} +2.37949 q^{29} -0.0668924 q^{31} +1.68642 q^{33} +1.08830 q^{35} +5.61160 q^{37} +4.67510 q^{41} -5.08524 q^{43} +5.47651 q^{45} +4.63523 q^{47} +1.00000 q^{49} +0.507580 q^{51} -3.91804 q^{53} +0.647585 q^{55} +2.55455 q^{57} +8.26679 q^{59} +13.1642 q^{61} +5.03219 q^{63} +10.4840 q^{67} -8.73046 q^{69} -1.74320 q^{71} +4.20557 q^{73} -10.8139 q^{75} +0.595045 q^{77} +10.3440 q^{79} +1.22635 q^{81} +3.57005 q^{83} +0.194910 q^{85} +6.74375 q^{87} +1.87564 q^{89} -0.189580 q^{93} +0.980945 q^{95} +15.2613 q^{97} +2.99438 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 3 q^{3} + 4 q^{5} + 15 q^{7} + 16 q^{9} + 15 q^{11} + 8 q^{15} + 2 q^{17} + 13 q^{19} - 3 q^{21} - 10 q^{23} + 23 q^{25} - 9 q^{27} + 25 q^{29} + 19 q^{31} - 24 q^{33} + 4 q^{35} - 2 q^{37} + 30 q^{41}+ \cdots + 70 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.83411 1.63628 0.818138 0.575023i \(-0.195007\pi\)
0.818138 + 0.575023i \(0.195007\pi\)
\(4\) 0 0
\(5\) 1.08830 0.486701 0.243350 0.969938i \(-0.421753\pi\)
0.243350 + 0.969938i \(0.421753\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 5.03219 1.67740
\(10\) 0 0
\(11\) 0.595045 0.179413 0.0897064 0.995968i \(-0.471407\pi\)
0.0897064 + 0.995968i \(0.471407\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 3.08435 0.796377
\(16\) 0 0
\(17\) 0.179097 0.0434374 0.0217187 0.999764i \(-0.493086\pi\)
0.0217187 + 0.999764i \(0.493086\pi\)
\(18\) 0 0
\(19\) 0.901358 0.206786 0.103393 0.994641i \(-0.467030\pi\)
0.103393 + 0.994641i \(0.467030\pi\)
\(20\) 0 0
\(21\) 2.83411 0.618454
\(22\) 0 0
\(23\) −3.08049 −0.642327 −0.321164 0.947024i \(-0.604074\pi\)
−0.321164 + 0.947024i \(0.604074\pi\)
\(24\) 0 0
\(25\) −3.81561 −0.763122
\(26\) 0 0
\(27\) 5.75945 1.10841
\(28\) 0 0
\(29\) 2.37949 0.441861 0.220931 0.975290i \(-0.429091\pi\)
0.220931 + 0.975290i \(0.429091\pi\)
\(30\) 0 0
\(31\) −0.0668924 −0.0120142 −0.00600711 0.999982i \(-0.501912\pi\)
−0.00600711 + 0.999982i \(0.501912\pi\)
\(32\) 0 0
\(33\) 1.68642 0.293569
\(34\) 0 0
\(35\) 1.08830 0.183956
\(36\) 0 0
\(37\) 5.61160 0.922541 0.461270 0.887260i \(-0.347394\pi\)
0.461270 + 0.887260i \(0.347394\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.67510 0.730129 0.365064 0.930982i \(-0.381047\pi\)
0.365064 + 0.930982i \(0.381047\pi\)
\(42\) 0 0
\(43\) −5.08524 −0.775493 −0.387746 0.921766i \(-0.626746\pi\)
−0.387746 + 0.921766i \(0.626746\pi\)
\(44\) 0 0
\(45\) 5.47651 0.816390
\(46\) 0 0
\(47\) 4.63523 0.676118 0.338059 0.941125i \(-0.390230\pi\)
0.338059 + 0.941125i \(0.390230\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0.507580 0.0710755
\(52\) 0 0
\(53\) −3.91804 −0.538185 −0.269092 0.963114i \(-0.586724\pi\)
−0.269092 + 0.963114i \(0.586724\pi\)
\(54\) 0 0
\(55\) 0.647585 0.0873203
\(56\) 0 0
\(57\) 2.55455 0.338358
\(58\) 0 0
\(59\) 8.26679 1.07624 0.538122 0.842867i \(-0.319134\pi\)
0.538122 + 0.842867i \(0.319134\pi\)
\(60\) 0 0
\(61\) 13.1642 1.68551 0.842754 0.538299i \(-0.180933\pi\)
0.842754 + 0.538299i \(0.180933\pi\)
\(62\) 0 0
\(63\) 5.03219 0.633996
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 10.4840 1.28082 0.640410 0.768033i \(-0.278764\pi\)
0.640410 + 0.768033i \(0.278764\pi\)
\(68\) 0 0
\(69\) −8.73046 −1.05102
\(70\) 0 0
\(71\) −1.74320 −0.206880 −0.103440 0.994636i \(-0.532985\pi\)
−0.103440 + 0.994636i \(0.532985\pi\)
\(72\) 0 0
\(73\) 4.20557 0.492224 0.246112 0.969241i \(-0.420847\pi\)
0.246112 + 0.969241i \(0.420847\pi\)
\(74\) 0 0
\(75\) −10.8139 −1.24868
\(76\) 0 0
\(77\) 0.595045 0.0678116
\(78\) 0 0
\(79\) 10.3440 1.16379 0.581896 0.813264i \(-0.302311\pi\)
0.581896 + 0.813264i \(0.302311\pi\)
\(80\) 0 0
\(81\) 1.22635 0.136261
\(82\) 0 0
\(83\) 3.57005 0.391864 0.195932 0.980617i \(-0.437227\pi\)
0.195932 + 0.980617i \(0.437227\pi\)
\(84\) 0 0
\(85\) 0.194910 0.0211410
\(86\) 0 0
\(87\) 6.74375 0.723006
\(88\) 0 0
\(89\) 1.87564 0.198818 0.0994088 0.995047i \(-0.468305\pi\)
0.0994088 + 0.995047i \(0.468305\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.189580 −0.0196586
\(94\) 0 0
\(95\) 0.980945 0.100643
\(96\) 0 0
\(97\) 15.2613 1.54955 0.774777 0.632235i \(-0.217862\pi\)
0.774777 + 0.632235i \(0.217862\pi\)
\(98\) 0 0
\(99\) 2.99438 0.300946
\(100\) 0 0
\(101\) 11.1795 1.11240 0.556199 0.831049i \(-0.312259\pi\)
0.556199 + 0.831049i \(0.312259\pi\)
\(102\) 0 0
\(103\) 4.67220 0.460365 0.230183 0.973147i \(-0.426068\pi\)
0.230183 + 0.973147i \(0.426068\pi\)
\(104\) 0 0
\(105\) 3.08435 0.301002
\(106\) 0 0
\(107\) −7.65362 −0.739904 −0.369952 0.929051i \(-0.620626\pi\)
−0.369952 + 0.929051i \(0.620626\pi\)
\(108\) 0 0
\(109\) −11.7828 −1.12859 −0.564294 0.825574i \(-0.690852\pi\)
−0.564294 + 0.825574i \(0.690852\pi\)
\(110\) 0 0
\(111\) 15.9039 1.50953
\(112\) 0 0
\(113\) 7.93667 0.746619 0.373310 0.927707i \(-0.378223\pi\)
0.373310 + 0.927707i \(0.378223\pi\)
\(114\) 0 0
\(115\) −3.35249 −0.312621
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.179097 0.0164178
\(120\) 0 0
\(121\) −10.6459 −0.967811
\(122\) 0 0
\(123\) 13.2498 1.19469
\(124\) 0 0
\(125\) −9.59400 −0.858113
\(126\) 0 0
\(127\) −9.19647 −0.816055 −0.408027 0.912970i \(-0.633783\pi\)
−0.408027 + 0.912970i \(0.633783\pi\)
\(128\) 0 0
\(129\) −14.4122 −1.26892
\(130\) 0 0
\(131\) 15.7858 1.37921 0.689604 0.724187i \(-0.257785\pi\)
0.689604 + 0.724187i \(0.257785\pi\)
\(132\) 0 0
\(133\) 0.901358 0.0781577
\(134\) 0 0
\(135\) 6.26799 0.539462
\(136\) 0 0
\(137\) 2.38414 0.203691 0.101845 0.994800i \(-0.467525\pi\)
0.101845 + 0.994800i \(0.467525\pi\)
\(138\) 0 0
\(139\) −19.5994 −1.66240 −0.831202 0.555971i \(-0.812347\pi\)
−0.831202 + 0.555971i \(0.812347\pi\)
\(140\) 0 0
\(141\) 13.1368 1.10631
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 2.58960 0.215054
\(146\) 0 0
\(147\) 2.83411 0.233754
\(148\) 0 0
\(149\) 18.8830 1.54695 0.773477 0.633825i \(-0.218516\pi\)
0.773477 + 0.633825i \(0.218516\pi\)
\(150\) 0 0
\(151\) 17.4886 1.42320 0.711602 0.702583i \(-0.247970\pi\)
0.711602 + 0.702583i \(0.247970\pi\)
\(152\) 0 0
\(153\) 0.901249 0.0728617
\(154\) 0 0
\(155\) −0.0727987 −0.00584734
\(156\) 0 0
\(157\) 17.2851 1.37950 0.689750 0.724048i \(-0.257721\pi\)
0.689750 + 0.724048i \(0.257721\pi\)
\(158\) 0 0
\(159\) −11.1042 −0.880618
\(160\) 0 0
\(161\) −3.08049 −0.242777
\(162\) 0 0
\(163\) −0.641674 −0.0502598 −0.0251299 0.999684i \(-0.508000\pi\)
−0.0251299 + 0.999684i \(0.508000\pi\)
\(164\) 0 0
\(165\) 1.83533 0.142880
\(166\) 0 0
\(167\) −14.6880 −1.13659 −0.568297 0.822823i \(-0.692398\pi\)
−0.568297 + 0.822823i \(0.692398\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 4.53580 0.346862
\(172\) 0 0
\(173\) −12.6107 −0.958777 −0.479389 0.877603i \(-0.659142\pi\)
−0.479389 + 0.877603i \(0.659142\pi\)
\(174\) 0 0
\(175\) −3.81561 −0.288433
\(176\) 0 0
\(177\) 23.4290 1.76103
\(178\) 0 0
\(179\) −20.7799 −1.55317 −0.776583 0.630015i \(-0.783049\pi\)
−0.776583 + 0.630015i \(0.783049\pi\)
\(180\) 0 0
\(181\) −18.4978 −1.37493 −0.687466 0.726217i \(-0.741277\pi\)
−0.687466 + 0.726217i \(0.741277\pi\)
\(182\) 0 0
\(183\) 37.3089 2.75795
\(184\) 0 0
\(185\) 6.10708 0.449002
\(186\) 0 0
\(187\) 0.106571 0.00779322
\(188\) 0 0
\(189\) 5.75945 0.418938
\(190\) 0 0
\(191\) 3.47678 0.251571 0.125785 0.992057i \(-0.459855\pi\)
0.125785 + 0.992057i \(0.459855\pi\)
\(192\) 0 0
\(193\) −27.4838 −1.97833 −0.989165 0.146810i \(-0.953099\pi\)
−0.989165 + 0.146810i \(0.953099\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.0630 −1.28694 −0.643468 0.765473i \(-0.722505\pi\)
−0.643468 + 0.765473i \(0.722505\pi\)
\(198\) 0 0
\(199\) 16.5923 1.17620 0.588098 0.808790i \(-0.299877\pi\)
0.588098 + 0.808790i \(0.299877\pi\)
\(200\) 0 0
\(201\) 29.7127 2.09577
\(202\) 0 0
\(203\) 2.37949 0.167008
\(204\) 0 0
\(205\) 5.08790 0.355354
\(206\) 0 0
\(207\) −15.5016 −1.07744
\(208\) 0 0
\(209\) 0.536348 0.0371000
\(210\) 0 0
\(211\) −19.8478 −1.36638 −0.683189 0.730241i \(-0.739408\pi\)
−0.683189 + 0.730241i \(0.739408\pi\)
\(212\) 0 0
\(213\) −4.94042 −0.338512
\(214\) 0 0
\(215\) −5.53425 −0.377433
\(216\) 0 0
\(217\) −0.0668924 −0.00454095
\(218\) 0 0
\(219\) 11.9190 0.805414
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 6.97273 0.466929 0.233464 0.972365i \(-0.424994\pi\)
0.233464 + 0.972365i \(0.424994\pi\)
\(224\) 0 0
\(225\) −19.2009 −1.28006
\(226\) 0 0
\(227\) −4.22492 −0.280418 −0.140209 0.990122i \(-0.544777\pi\)
−0.140209 + 0.990122i \(0.544777\pi\)
\(228\) 0 0
\(229\) 3.90217 0.257863 0.128931 0.991654i \(-0.458845\pi\)
0.128931 + 0.991654i \(0.458845\pi\)
\(230\) 0 0
\(231\) 1.68642 0.110958
\(232\) 0 0
\(233\) 2.76932 0.181424 0.0907119 0.995877i \(-0.471086\pi\)
0.0907119 + 0.995877i \(0.471086\pi\)
\(234\) 0 0
\(235\) 5.04450 0.329067
\(236\) 0 0
\(237\) 29.3161 1.90428
\(238\) 0 0
\(239\) −13.1126 −0.848186 −0.424093 0.905619i \(-0.639407\pi\)
−0.424093 + 0.905619i \(0.639407\pi\)
\(240\) 0 0
\(241\) 4.86930 0.313659 0.156830 0.987626i \(-0.449873\pi\)
0.156830 + 0.987626i \(0.449873\pi\)
\(242\) 0 0
\(243\) −13.8027 −0.885445
\(244\) 0 0
\(245\) 1.08830 0.0695287
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 10.1179 0.641198
\(250\) 0 0
\(251\) 6.24197 0.393990 0.196995 0.980405i \(-0.436882\pi\)
0.196995 + 0.980405i \(0.436882\pi\)
\(252\) 0 0
\(253\) −1.83303 −0.115242
\(254\) 0 0
\(255\) 0.552398 0.0345925
\(256\) 0 0
\(257\) −18.5069 −1.15443 −0.577214 0.816593i \(-0.695860\pi\)
−0.577214 + 0.816593i \(0.695860\pi\)
\(258\) 0 0
\(259\) 5.61160 0.348688
\(260\) 0 0
\(261\) 11.9741 0.741176
\(262\) 0 0
\(263\) −1.47962 −0.0912371 −0.0456186 0.998959i \(-0.514526\pi\)
−0.0456186 + 0.998959i \(0.514526\pi\)
\(264\) 0 0
\(265\) −4.26399 −0.261935
\(266\) 0 0
\(267\) 5.31578 0.325320
\(268\) 0 0
\(269\) −24.2542 −1.47880 −0.739402 0.673264i \(-0.764892\pi\)
−0.739402 + 0.673264i \(0.764892\pi\)
\(270\) 0 0
\(271\) −19.8562 −1.20618 −0.603090 0.797673i \(-0.706064\pi\)
−0.603090 + 0.797673i \(0.706064\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.27046 −0.136914
\(276\) 0 0
\(277\) 2.24632 0.134968 0.0674842 0.997720i \(-0.478503\pi\)
0.0674842 + 0.997720i \(0.478503\pi\)
\(278\) 0 0
\(279\) −0.336615 −0.0201526
\(280\) 0 0
\(281\) 18.9143 1.12833 0.564167 0.825661i \(-0.309197\pi\)
0.564167 + 0.825661i \(0.309197\pi\)
\(282\) 0 0
\(283\) 3.12973 0.186043 0.0930217 0.995664i \(-0.470347\pi\)
0.0930217 + 0.995664i \(0.470347\pi\)
\(284\) 0 0
\(285\) 2.78011 0.164679
\(286\) 0 0
\(287\) 4.67510 0.275963
\(288\) 0 0
\(289\) −16.9679 −0.998113
\(290\) 0 0
\(291\) 43.2523 2.53550
\(292\) 0 0
\(293\) 28.9431 1.69087 0.845436 0.534077i \(-0.179341\pi\)
0.845436 + 0.534077i \(0.179341\pi\)
\(294\) 0 0
\(295\) 8.99672 0.523809
\(296\) 0 0
\(297\) 3.42713 0.198862
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −5.08524 −0.293109
\(302\) 0 0
\(303\) 31.6838 1.82019
\(304\) 0 0
\(305\) 14.3266 0.820338
\(306\) 0 0
\(307\) −32.1617 −1.83556 −0.917781 0.397086i \(-0.870021\pi\)
−0.917781 + 0.397086i \(0.870021\pi\)
\(308\) 0 0
\(309\) 13.2415 0.753284
\(310\) 0 0
\(311\) −7.82274 −0.443587 −0.221793 0.975094i \(-0.571191\pi\)
−0.221793 + 0.975094i \(0.571191\pi\)
\(312\) 0 0
\(313\) −12.1517 −0.686855 −0.343428 0.939179i \(-0.611588\pi\)
−0.343428 + 0.939179i \(0.611588\pi\)
\(314\) 0 0
\(315\) 5.47651 0.308567
\(316\) 0 0
\(317\) −23.6556 −1.32863 −0.664316 0.747452i \(-0.731277\pi\)
−0.664316 + 0.747452i \(0.731277\pi\)
\(318\) 0 0
\(319\) 1.41591 0.0792755
\(320\) 0 0
\(321\) −21.6912 −1.21069
\(322\) 0 0
\(323\) 0.161430 0.00898223
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −33.3938 −1.84668
\(328\) 0 0
\(329\) 4.63523 0.255548
\(330\) 0 0
\(331\) −5.56404 −0.305827 −0.152914 0.988240i \(-0.548866\pi\)
−0.152914 + 0.988240i \(0.548866\pi\)
\(332\) 0 0
\(333\) 28.2386 1.54747
\(334\) 0 0
\(335\) 11.4097 0.623376
\(336\) 0 0
\(337\) 8.23184 0.448417 0.224208 0.974541i \(-0.428020\pi\)
0.224208 + 0.974541i \(0.428020\pi\)
\(338\) 0 0
\(339\) 22.4934 1.22167
\(340\) 0 0
\(341\) −0.0398040 −0.00215551
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −9.50133 −0.511534
\(346\) 0 0
\(347\) 3.33268 0.178908 0.0894538 0.995991i \(-0.471488\pi\)
0.0894538 + 0.995991i \(0.471488\pi\)
\(348\) 0 0
\(349\) 13.5626 0.725991 0.362996 0.931791i \(-0.381754\pi\)
0.362996 + 0.931791i \(0.381754\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −10.9916 −0.585025 −0.292512 0.956262i \(-0.594491\pi\)
−0.292512 + 0.956262i \(0.594491\pi\)
\(354\) 0 0
\(355\) −1.89712 −0.100689
\(356\) 0 0
\(357\) 0.507580 0.0268640
\(358\) 0 0
\(359\) 26.3444 1.39040 0.695201 0.718815i \(-0.255315\pi\)
0.695201 + 0.718815i \(0.255315\pi\)
\(360\) 0 0
\(361\) −18.1876 −0.957240
\(362\) 0 0
\(363\) −30.1717 −1.58361
\(364\) 0 0
\(365\) 4.57690 0.239566
\(366\) 0 0
\(367\) 8.90682 0.464932 0.232466 0.972605i \(-0.425321\pi\)
0.232466 + 0.972605i \(0.425321\pi\)
\(368\) 0 0
\(369\) 23.5260 1.22471
\(370\) 0 0
\(371\) −3.91804 −0.203415
\(372\) 0 0
\(373\) 0.643889 0.0333393 0.0166697 0.999861i \(-0.494694\pi\)
0.0166697 + 0.999861i \(0.494694\pi\)
\(374\) 0 0
\(375\) −27.1905 −1.40411
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −6.53441 −0.335650 −0.167825 0.985817i \(-0.553674\pi\)
−0.167825 + 0.985817i \(0.553674\pi\)
\(380\) 0 0
\(381\) −26.0638 −1.33529
\(382\) 0 0
\(383\) 7.52143 0.384327 0.192164 0.981363i \(-0.438450\pi\)
0.192164 + 0.981363i \(0.438450\pi\)
\(384\) 0 0
\(385\) 0.647585 0.0330040
\(386\) 0 0
\(387\) −25.5899 −1.30081
\(388\) 0 0
\(389\) −10.5706 −0.535951 −0.267976 0.963426i \(-0.586355\pi\)
−0.267976 + 0.963426i \(0.586355\pi\)
\(390\) 0 0
\(391\) −0.551707 −0.0279010
\(392\) 0 0
\(393\) 44.7386 2.25676
\(394\) 0 0
\(395\) 11.2573 0.566418
\(396\) 0 0
\(397\) −4.38390 −0.220021 −0.110011 0.993930i \(-0.535089\pi\)
−0.110011 + 0.993930i \(0.535089\pi\)
\(398\) 0 0
\(399\) 2.55455 0.127887
\(400\) 0 0
\(401\) −24.1646 −1.20672 −0.603362 0.797468i \(-0.706172\pi\)
−0.603362 + 0.797468i \(0.706172\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.33464 0.0663186
\(406\) 0 0
\(407\) 3.33915 0.165516
\(408\) 0 0
\(409\) 16.4283 0.812327 0.406164 0.913800i \(-0.366866\pi\)
0.406164 + 0.913800i \(0.366866\pi\)
\(410\) 0 0
\(411\) 6.75692 0.333294
\(412\) 0 0
\(413\) 8.26679 0.406782
\(414\) 0 0
\(415\) 3.88528 0.190721
\(416\) 0 0
\(417\) −55.5470 −2.72015
\(418\) 0 0
\(419\) 16.7125 0.816461 0.408230 0.912879i \(-0.366146\pi\)
0.408230 + 0.912879i \(0.366146\pi\)
\(420\) 0 0
\(421\) 0.000826147 0 4.02639e−5 0 2.01320e−5 1.00000i \(-0.499994\pi\)
2.01320e−5 1.00000i \(0.499994\pi\)
\(422\) 0 0
\(423\) 23.3253 1.13412
\(424\) 0 0
\(425\) −0.683364 −0.0331480
\(426\) 0 0
\(427\) 13.1642 0.637062
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9.20094 0.443194 0.221597 0.975138i \(-0.428873\pi\)
0.221597 + 0.975138i \(0.428873\pi\)
\(432\) 0 0
\(433\) −1.93157 −0.0928252 −0.0464126 0.998922i \(-0.514779\pi\)
−0.0464126 + 0.998922i \(0.514779\pi\)
\(434\) 0 0
\(435\) 7.33920 0.351888
\(436\) 0 0
\(437\) −2.77663 −0.132824
\(438\) 0 0
\(439\) −9.16760 −0.437546 −0.218773 0.975776i \(-0.570205\pi\)
−0.218773 + 0.975776i \(0.570205\pi\)
\(440\) 0 0
\(441\) 5.03219 0.239628
\(442\) 0 0
\(443\) −18.9330 −0.899534 −0.449767 0.893146i \(-0.648493\pi\)
−0.449767 + 0.893146i \(0.648493\pi\)
\(444\) 0 0
\(445\) 2.04125 0.0967647
\(446\) 0 0
\(447\) 53.5165 2.53124
\(448\) 0 0
\(449\) −31.6338 −1.49289 −0.746446 0.665446i \(-0.768241\pi\)
−0.746446 + 0.665446i \(0.768241\pi\)
\(450\) 0 0
\(451\) 2.78190 0.130994
\(452\) 0 0
\(453\) 49.5647 2.32875
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7.70978 −0.360648 −0.180324 0.983607i \(-0.557715\pi\)
−0.180324 + 0.983607i \(0.557715\pi\)
\(458\) 0 0
\(459\) 1.03150 0.0481462
\(460\) 0 0
\(461\) 0.397439 0.0185106 0.00925530 0.999957i \(-0.497054\pi\)
0.00925530 + 0.999957i \(0.497054\pi\)
\(462\) 0 0
\(463\) 4.46487 0.207500 0.103750 0.994603i \(-0.466916\pi\)
0.103750 + 0.994603i \(0.466916\pi\)
\(464\) 0 0
\(465\) −0.206320 −0.00956785
\(466\) 0 0
\(467\) 16.7918 0.777032 0.388516 0.921442i \(-0.372988\pi\)
0.388516 + 0.921442i \(0.372988\pi\)
\(468\) 0 0
\(469\) 10.4840 0.484105
\(470\) 0 0
\(471\) 48.9878 2.25724
\(472\) 0 0
\(473\) −3.02595 −0.139133
\(474\) 0 0
\(475\) −3.43923 −0.157803
\(476\) 0 0
\(477\) −19.7163 −0.902749
\(478\) 0 0
\(479\) 8.25106 0.377000 0.188500 0.982073i \(-0.439637\pi\)
0.188500 + 0.982073i \(0.439637\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −8.73046 −0.397250
\(484\) 0 0
\(485\) 16.6088 0.754169
\(486\) 0 0
\(487\) 9.58778 0.434464 0.217232 0.976120i \(-0.430297\pi\)
0.217232 + 0.976120i \(0.430297\pi\)
\(488\) 0 0
\(489\) −1.81858 −0.0822388
\(490\) 0 0
\(491\) 19.9245 0.899179 0.449589 0.893235i \(-0.351570\pi\)
0.449589 + 0.893235i \(0.351570\pi\)
\(492\) 0 0
\(493\) 0.426160 0.0191933
\(494\) 0 0
\(495\) 3.25877 0.146471
\(496\) 0 0
\(497\) −1.74320 −0.0781932
\(498\) 0 0
\(499\) 27.5852 1.23488 0.617441 0.786617i \(-0.288170\pi\)
0.617441 + 0.786617i \(0.288170\pi\)
\(500\) 0 0
\(501\) −41.6275 −1.85978
\(502\) 0 0
\(503\) −34.4161 −1.53454 −0.767270 0.641324i \(-0.778385\pi\)
−0.767270 + 0.641324i \(0.778385\pi\)
\(504\) 0 0
\(505\) 12.1666 0.541405
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 22.7108 1.00664 0.503319 0.864100i \(-0.332112\pi\)
0.503319 + 0.864100i \(0.332112\pi\)
\(510\) 0 0
\(511\) 4.20557 0.186043
\(512\) 0 0
\(513\) 5.19133 0.229203
\(514\) 0 0
\(515\) 5.08473 0.224060
\(516\) 0 0
\(517\) 2.75817 0.121304
\(518\) 0 0
\(519\) −35.7403 −1.56882
\(520\) 0 0
\(521\) −9.36576 −0.410321 −0.205161 0.978728i \(-0.565772\pi\)
−0.205161 + 0.978728i \(0.565772\pi\)
\(522\) 0 0
\(523\) −40.6110 −1.77579 −0.887897 0.460042i \(-0.847834\pi\)
−0.887897 + 0.460042i \(0.847834\pi\)
\(524\) 0 0
\(525\) −10.8139 −0.471956
\(526\) 0 0
\(527\) −0.0119802 −0.000521866 0
\(528\) 0 0
\(529\) −13.5106 −0.587416
\(530\) 0 0
\(531\) 41.6001 1.80529
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −8.32941 −0.360112
\(536\) 0 0
\(537\) −58.8927 −2.54141
\(538\) 0 0
\(539\) 0.595045 0.0256304
\(540\) 0 0
\(541\) 33.7687 1.45183 0.725916 0.687784i \(-0.241416\pi\)
0.725916 + 0.687784i \(0.241416\pi\)
\(542\) 0 0
\(543\) −52.4249 −2.24977
\(544\) 0 0
\(545\) −12.8232 −0.549285
\(546\) 0 0
\(547\) 44.4102 1.89884 0.949421 0.314007i \(-0.101672\pi\)
0.949421 + 0.314007i \(0.101672\pi\)
\(548\) 0 0
\(549\) 66.2449 2.82726
\(550\) 0 0
\(551\) 2.14478 0.0913706
\(552\) 0 0
\(553\) 10.3440 0.439872
\(554\) 0 0
\(555\) 17.3082 0.734690
\(556\) 0 0
\(557\) −31.9846 −1.35523 −0.677615 0.735417i \(-0.736986\pi\)
−0.677615 + 0.735417i \(0.736986\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0.302033 0.0127518
\(562\) 0 0
\(563\) −9.09013 −0.383103 −0.191552 0.981483i \(-0.561352\pi\)
−0.191552 + 0.981483i \(0.561352\pi\)
\(564\) 0 0
\(565\) 8.63745 0.363380
\(566\) 0 0
\(567\) 1.22635 0.0515020
\(568\) 0 0
\(569\) −8.91472 −0.373725 −0.186862 0.982386i \(-0.559832\pi\)
−0.186862 + 0.982386i \(0.559832\pi\)
\(570\) 0 0
\(571\) −11.4622 −0.479678 −0.239839 0.970813i \(-0.577095\pi\)
−0.239839 + 0.970813i \(0.577095\pi\)
\(572\) 0 0
\(573\) 9.85357 0.411639
\(574\) 0 0
\(575\) 11.7540 0.490174
\(576\) 0 0
\(577\) 8.75839 0.364616 0.182308 0.983241i \(-0.441643\pi\)
0.182308 + 0.983241i \(0.441643\pi\)
\(578\) 0 0
\(579\) −77.8922 −3.23709
\(580\) 0 0
\(581\) 3.57005 0.148111
\(582\) 0 0
\(583\) −2.33141 −0.0965572
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −42.6093 −1.75868 −0.879338 0.476199i \(-0.842014\pi\)
−0.879338 + 0.476199i \(0.842014\pi\)
\(588\) 0 0
\(589\) −0.0602940 −0.00248437
\(590\) 0 0
\(591\) −51.1926 −2.10578
\(592\) 0 0
\(593\) −7.37369 −0.302801 −0.151401 0.988472i \(-0.548378\pi\)
−0.151401 + 0.988472i \(0.548378\pi\)
\(594\) 0 0
\(595\) 0.194910 0.00799055
\(596\) 0 0
\(597\) 47.0244 1.92458
\(598\) 0 0
\(599\) −44.8387 −1.83206 −0.916030 0.401110i \(-0.868625\pi\)
−0.916030 + 0.401110i \(0.868625\pi\)
\(600\) 0 0
\(601\) 23.2763 0.949462 0.474731 0.880131i \(-0.342545\pi\)
0.474731 + 0.880131i \(0.342545\pi\)
\(602\) 0 0
\(603\) 52.7573 2.14844
\(604\) 0 0
\(605\) −11.5859 −0.471035
\(606\) 0 0
\(607\) −25.6497 −1.04109 −0.520545 0.853834i \(-0.674271\pi\)
−0.520545 + 0.853834i \(0.674271\pi\)
\(608\) 0 0
\(609\) 6.74375 0.273271
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 3.02437 0.122153 0.0610765 0.998133i \(-0.480547\pi\)
0.0610765 + 0.998133i \(0.480547\pi\)
\(614\) 0 0
\(615\) 14.4197 0.581457
\(616\) 0 0
\(617\) −18.0611 −0.727112 −0.363556 0.931572i \(-0.618437\pi\)
−0.363556 + 0.931572i \(0.618437\pi\)
\(618\) 0 0
\(619\) −3.16452 −0.127193 −0.0635963 0.997976i \(-0.520257\pi\)
−0.0635963 + 0.997976i \(0.520257\pi\)
\(620\) 0 0
\(621\) −17.7419 −0.711960
\(622\) 0 0
\(623\) 1.87564 0.0751460
\(624\) 0 0
\(625\) 8.63694 0.345478
\(626\) 0 0
\(627\) 1.52007 0.0607058
\(628\) 0 0
\(629\) 1.00502 0.0400727
\(630\) 0 0
\(631\) 17.4422 0.694362 0.347181 0.937798i \(-0.387139\pi\)
0.347181 + 0.937798i \(0.387139\pi\)
\(632\) 0 0
\(633\) −56.2509 −2.23577
\(634\) 0 0
\(635\) −10.0085 −0.397175
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −8.77211 −0.347019
\(640\) 0 0
\(641\) 14.8473 0.586433 0.293216 0.956046i \(-0.405274\pi\)
0.293216 + 0.956046i \(0.405274\pi\)
\(642\) 0 0
\(643\) −11.5130 −0.454027 −0.227014 0.973892i \(-0.572896\pi\)
−0.227014 + 0.973892i \(0.572896\pi\)
\(644\) 0 0
\(645\) −15.6847 −0.617584
\(646\) 0 0
\(647\) 9.07480 0.356767 0.178384 0.983961i \(-0.442913\pi\)
0.178384 + 0.983961i \(0.442913\pi\)
\(648\) 0 0
\(649\) 4.91911 0.193092
\(650\) 0 0
\(651\) −0.189580 −0.00743024
\(652\) 0 0
\(653\) 20.5583 0.804508 0.402254 0.915528i \(-0.368227\pi\)
0.402254 + 0.915528i \(0.368227\pi\)
\(654\) 0 0
\(655\) 17.1796 0.671262
\(656\) 0 0
\(657\) 21.1632 0.825655
\(658\) 0 0
\(659\) −23.9581 −0.933274 −0.466637 0.884449i \(-0.654535\pi\)
−0.466637 + 0.884449i \(0.654535\pi\)
\(660\) 0 0
\(661\) −12.9464 −0.503555 −0.251778 0.967785i \(-0.581015\pi\)
−0.251778 + 0.967785i \(0.581015\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.980945 0.0380394
\(666\) 0 0
\(667\) −7.33002 −0.283819
\(668\) 0 0
\(669\) 19.7615 0.764024
\(670\) 0 0
\(671\) 7.83331 0.302402
\(672\) 0 0
\(673\) 37.6151 1.44996 0.724978 0.688772i \(-0.241850\pi\)
0.724978 + 0.688772i \(0.241850\pi\)
\(674\) 0 0
\(675\) −21.9758 −0.845849
\(676\) 0 0
\(677\) 5.60130 0.215275 0.107638 0.994190i \(-0.465671\pi\)
0.107638 + 0.994190i \(0.465671\pi\)
\(678\) 0 0
\(679\) 15.2613 0.585676
\(680\) 0 0
\(681\) −11.9739 −0.458841
\(682\) 0 0
\(683\) −46.7612 −1.78927 −0.894634 0.446800i \(-0.852564\pi\)
−0.894634 + 0.446800i \(0.852564\pi\)
\(684\) 0 0
\(685\) 2.59465 0.0991366
\(686\) 0 0
\(687\) 11.0592 0.421934
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −4.77400 −0.181612 −0.0908058 0.995869i \(-0.528944\pi\)
−0.0908058 + 0.995869i \(0.528944\pi\)
\(692\) 0 0
\(693\) 2.99438 0.113747
\(694\) 0 0
\(695\) −21.3300 −0.809093
\(696\) 0 0
\(697\) 0.837296 0.0317149
\(698\) 0 0
\(699\) 7.84855 0.296859
\(700\) 0 0
\(701\) 41.7541 1.57703 0.788515 0.615015i \(-0.210850\pi\)
0.788515 + 0.615015i \(0.210850\pi\)
\(702\) 0 0
\(703\) 5.05806 0.190768
\(704\) 0 0
\(705\) 14.2967 0.538444
\(706\) 0 0
\(707\) 11.1795 0.420447
\(708\) 0 0
\(709\) −3.96643 −0.148962 −0.0744812 0.997222i \(-0.523730\pi\)
−0.0744812 + 0.997222i \(0.523730\pi\)
\(710\) 0 0
\(711\) 52.0530 1.95214
\(712\) 0 0
\(713\) 0.206062 0.00771707
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −37.1627 −1.38787
\(718\) 0 0
\(719\) 48.6818 1.81553 0.907763 0.419483i \(-0.137789\pi\)
0.907763 + 0.419483i \(0.137789\pi\)
\(720\) 0 0
\(721\) 4.67220 0.174002
\(722\) 0 0
\(723\) 13.8001 0.513233
\(724\) 0 0
\(725\) −9.07922 −0.337194
\(726\) 0 0
\(727\) 9.67959 0.358996 0.179498 0.983758i \(-0.442553\pi\)
0.179498 + 0.983758i \(0.442553\pi\)
\(728\) 0 0
\(729\) −42.7975 −1.58509
\(730\) 0 0
\(731\) −0.910751 −0.0336854
\(732\) 0 0
\(733\) 5.48902 0.202742 0.101371 0.994849i \(-0.467677\pi\)
0.101371 + 0.994849i \(0.467677\pi\)
\(734\) 0 0
\(735\) 3.08435 0.113768
\(736\) 0 0
\(737\) 6.23843 0.229795
\(738\) 0 0
\(739\) −5.82812 −0.214391 −0.107195 0.994238i \(-0.534187\pi\)
−0.107195 + 0.994238i \(0.534187\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −22.3078 −0.818395 −0.409197 0.912446i \(-0.634191\pi\)
−0.409197 + 0.912446i \(0.634191\pi\)
\(744\) 0 0
\(745\) 20.5503 0.752904
\(746\) 0 0
\(747\) 17.9652 0.657312
\(748\) 0 0
\(749\) −7.65362 −0.279657
\(750\) 0 0
\(751\) −15.8840 −0.579616 −0.289808 0.957085i \(-0.593591\pi\)
−0.289808 + 0.957085i \(0.593591\pi\)
\(752\) 0 0
\(753\) 17.6904 0.644675
\(754\) 0 0
\(755\) 19.0328 0.692674
\(756\) 0 0
\(757\) 8.32857 0.302707 0.151354 0.988480i \(-0.451637\pi\)
0.151354 + 0.988480i \(0.451637\pi\)
\(758\) 0 0
\(759\) −5.19502 −0.188567
\(760\) 0 0
\(761\) −32.6299 −1.18283 −0.591416 0.806366i \(-0.701431\pi\)
−0.591416 + 0.806366i \(0.701431\pi\)
\(762\) 0 0
\(763\) −11.7828 −0.426566
\(764\) 0 0
\(765\) 0.980826 0.0354618
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 16.7621 0.604457 0.302228 0.953236i \(-0.402270\pi\)
0.302228 + 0.953236i \(0.402270\pi\)
\(770\) 0 0
\(771\) −52.4505 −1.88896
\(772\) 0 0
\(773\) −17.8859 −0.643312 −0.321656 0.946857i \(-0.604239\pi\)
−0.321656 + 0.946857i \(0.604239\pi\)
\(774\) 0 0
\(775\) 0.255235 0.00916832
\(776\) 0 0
\(777\) 15.9039 0.570549
\(778\) 0 0
\(779\) 4.21394 0.150980
\(780\) 0 0
\(781\) −1.03728 −0.0371168
\(782\) 0 0
\(783\) 13.7046 0.489762
\(784\) 0 0
\(785\) 18.8113 0.671404
\(786\) 0 0
\(787\) 23.9820 0.854866 0.427433 0.904047i \(-0.359418\pi\)
0.427433 + 0.904047i \(0.359418\pi\)
\(788\) 0 0
\(789\) −4.19340 −0.149289
\(790\) 0 0
\(791\) 7.93667 0.282196
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −12.0846 −0.428598
\(796\) 0 0
\(797\) 7.00894 0.248270 0.124135 0.992265i \(-0.460384\pi\)
0.124135 + 0.992265i \(0.460384\pi\)
\(798\) 0 0
\(799\) 0.830155 0.0293688
\(800\) 0 0
\(801\) 9.43858 0.333496
\(802\) 0 0
\(803\) 2.50250 0.0883113
\(804\) 0 0
\(805\) −3.35249 −0.118160
\(806\) 0 0
\(807\) −68.7391 −2.41973
\(808\) 0 0
\(809\) −12.8384 −0.451375 −0.225688 0.974200i \(-0.572463\pi\)
−0.225688 + 0.974200i \(0.572463\pi\)
\(810\) 0 0
\(811\) −25.5350 −0.896655 −0.448328 0.893869i \(-0.647980\pi\)
−0.448328 + 0.893869i \(0.647980\pi\)
\(812\) 0 0
\(813\) −56.2748 −1.97364
\(814\) 0 0
\(815\) −0.698331 −0.0244615
\(816\) 0 0
\(817\) −4.58363 −0.160361
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −26.6109 −0.928728 −0.464364 0.885644i \(-0.653717\pi\)
−0.464364 + 0.885644i \(0.653717\pi\)
\(822\) 0 0
\(823\) 7.53951 0.262811 0.131405 0.991329i \(-0.458051\pi\)
0.131405 + 0.991329i \(0.458051\pi\)
\(824\) 0 0
\(825\) −6.43473 −0.224029
\(826\) 0 0
\(827\) 4.45894 0.155053 0.0775263 0.996990i \(-0.475298\pi\)
0.0775263 + 0.996990i \(0.475298\pi\)
\(828\) 0 0
\(829\) 34.4919 1.19795 0.598976 0.800767i \(-0.295574\pi\)
0.598976 + 0.800767i \(0.295574\pi\)
\(830\) 0 0
\(831\) 6.36633 0.220846
\(832\) 0 0
\(833\) 0.179097 0.00620534
\(834\) 0 0
\(835\) −15.9849 −0.553182
\(836\) 0 0
\(837\) −0.385263 −0.0133166
\(838\) 0 0
\(839\) 12.4388 0.429436 0.214718 0.976676i \(-0.431117\pi\)
0.214718 + 0.976676i \(0.431117\pi\)
\(840\) 0 0
\(841\) −23.3380 −0.804759
\(842\) 0 0
\(843\) 53.6053 1.84627
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −10.6459 −0.365798
\(848\) 0 0
\(849\) 8.87001 0.304418
\(850\) 0 0
\(851\) −17.2865 −0.592573
\(852\) 0 0
\(853\) −20.6629 −0.707486 −0.353743 0.935343i \(-0.615091\pi\)
−0.353743 + 0.935343i \(0.615091\pi\)
\(854\) 0 0
\(855\) 4.93630 0.168818
\(856\) 0 0
\(857\) 31.4121 1.07302 0.536509 0.843894i \(-0.319743\pi\)
0.536509 + 0.843894i \(0.319743\pi\)
\(858\) 0 0
\(859\) −18.7844 −0.640915 −0.320458 0.947263i \(-0.603837\pi\)
−0.320458 + 0.947263i \(0.603837\pi\)
\(860\) 0 0
\(861\) 13.2498 0.451551
\(862\) 0 0
\(863\) −30.3150 −1.03194 −0.515968 0.856608i \(-0.672568\pi\)
−0.515968 + 0.856608i \(0.672568\pi\)
\(864\) 0 0
\(865\) −13.7242 −0.466638
\(866\) 0 0
\(867\) −48.0890 −1.63319
\(868\) 0 0
\(869\) 6.15514 0.208799
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 76.7979 2.59921
\(874\) 0 0
\(875\) −9.59400 −0.324336
\(876\) 0 0
\(877\) 56.0288 1.89196 0.945979 0.324227i \(-0.105104\pi\)
0.945979 + 0.324227i \(0.105104\pi\)
\(878\) 0 0
\(879\) 82.0279 2.76673
\(880\) 0 0
\(881\) 54.5718 1.83857 0.919285 0.393593i \(-0.128768\pi\)
0.919285 + 0.393593i \(0.128768\pi\)
\(882\) 0 0
\(883\) −14.7425 −0.496124 −0.248062 0.968744i \(-0.579794\pi\)
−0.248062 + 0.968744i \(0.579794\pi\)
\(884\) 0 0
\(885\) 25.4977 0.857096
\(886\) 0 0
\(887\) −23.7979 −0.799055 −0.399528 0.916721i \(-0.630826\pi\)
−0.399528 + 0.916721i \(0.630826\pi\)
\(888\) 0 0
\(889\) −9.19647 −0.308440
\(890\) 0 0
\(891\) 0.729735 0.0244470
\(892\) 0 0
\(893\) 4.17800 0.139812
\(894\) 0 0
\(895\) −22.6147 −0.755927
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.159170 −0.00530862
\(900\) 0 0
\(901\) −0.701709 −0.0233773
\(902\) 0 0
\(903\) −14.4122 −0.479606
\(904\) 0 0
\(905\) −20.1311 −0.669181
\(906\) 0 0
\(907\) −52.0706 −1.72897 −0.864487 0.502654i \(-0.832357\pi\)
−0.864487 + 0.502654i \(0.832357\pi\)
\(908\) 0 0
\(909\) 56.2572 1.86593
\(910\) 0 0
\(911\) 41.3085 1.36861 0.684306 0.729195i \(-0.260105\pi\)
0.684306 + 0.729195i \(0.260105\pi\)
\(912\) 0 0
\(913\) 2.12434 0.0703054
\(914\) 0 0
\(915\) 40.6032 1.34230
\(916\) 0 0
\(917\) 15.7858 0.521291
\(918\) 0 0
\(919\) −8.32080 −0.274478 −0.137239 0.990538i \(-0.543823\pi\)
−0.137239 + 0.990538i \(0.543823\pi\)
\(920\) 0 0
\(921\) −91.1497 −3.00349
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −21.4117 −0.704012
\(926\) 0 0
\(927\) 23.5114 0.772215
\(928\) 0 0
\(929\) 40.1526 1.31737 0.658683 0.752421i \(-0.271114\pi\)
0.658683 + 0.752421i \(0.271114\pi\)
\(930\) 0 0
\(931\) 0.901358 0.0295408
\(932\) 0 0
\(933\) −22.1705 −0.725830
\(934\) 0 0
\(935\) 0.115980 0.00379297
\(936\) 0 0
\(937\) 44.1238 1.44146 0.720730 0.693215i \(-0.243807\pi\)
0.720730 + 0.693215i \(0.243807\pi\)
\(938\) 0 0
\(939\) −34.4393 −1.12388
\(940\) 0 0
\(941\) −6.77543 −0.220873 −0.110436 0.993883i \(-0.535225\pi\)
−0.110436 + 0.993883i \(0.535225\pi\)
\(942\) 0 0
\(943\) −14.4016 −0.468982
\(944\) 0 0
\(945\) 6.26799 0.203898
\(946\) 0 0
\(947\) −21.6953 −0.705001 −0.352501 0.935812i \(-0.614669\pi\)
−0.352501 + 0.935812i \(0.614669\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −67.0427 −2.17401
\(952\) 0 0
\(953\) 26.3993 0.855157 0.427578 0.903978i \(-0.359367\pi\)
0.427578 + 0.903978i \(0.359367\pi\)
\(954\) 0 0
\(955\) 3.78376 0.122440
\(956\) 0 0
\(957\) 4.01283 0.129717
\(958\) 0 0
\(959\) 2.38414 0.0769879
\(960\) 0 0
\(961\) −30.9955 −0.999856
\(962\) 0 0
\(963\) −38.5145 −1.24111
\(964\) 0 0
\(965\) −29.9106 −0.962855
\(966\) 0 0
\(967\) −58.9553 −1.89587 −0.947937 0.318457i \(-0.896835\pi\)
−0.947937 + 0.318457i \(0.896835\pi\)
\(968\) 0 0
\(969\) 0.457512 0.0146974
\(970\) 0 0
\(971\) −59.3437 −1.90443 −0.952216 0.305427i \(-0.901201\pi\)
−0.952216 + 0.305427i \(0.901201\pi\)
\(972\) 0 0
\(973\) −19.5994 −0.628330
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −51.0853 −1.63436 −0.817182 0.576380i \(-0.804465\pi\)
−0.817182 + 0.576380i \(0.804465\pi\)
\(978\) 0 0
\(979\) 1.11609 0.0356704
\(980\) 0 0
\(981\) −59.2933 −1.89309
\(982\) 0 0
\(983\) 30.6800 0.978540 0.489270 0.872132i \(-0.337263\pi\)
0.489270 + 0.872132i \(0.337263\pi\)
\(984\) 0 0
\(985\) −19.6579 −0.626353
\(986\) 0 0
\(987\) 13.1368 0.418148
\(988\) 0 0
\(989\) 15.6651 0.498120
\(990\) 0 0
\(991\) −16.8960 −0.536718 −0.268359 0.963319i \(-0.586481\pi\)
−0.268359 + 0.963319i \(0.586481\pi\)
\(992\) 0 0
\(993\) −15.7691 −0.500417
\(994\) 0 0
\(995\) 18.0573 0.572456
\(996\) 0 0
\(997\) 10.0971 0.319780 0.159890 0.987135i \(-0.448886\pi\)
0.159890 + 0.987135i \(0.448886\pi\)
\(998\) 0 0
\(999\) 32.3197 1.02255
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9464.2.a.bs.1.15 yes 15
13.12 even 2 9464.2.a.br.1.15 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9464.2.a.br.1.15 15 13.12 even 2
9464.2.a.bs.1.15 yes 15 1.1 even 1 trivial