Properties

Label 9464.2.a.br.1.7
Level $9464$
Weight $2$
Character 9464.1
Self dual yes
Analytic conductor $75.570$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9464,2,Mod(1,9464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,0,-3,0,-4,0,-15,0,16,0,-15,0,0,0,-8,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5704204729\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 3 x^{14} - 26 x^{13} + 78 x^{12} + 253 x^{11} - 782 x^{10} - 1087 x^{9} + 3776 x^{8} + \cdots - 344 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(0.790243\) of defining polynomial
Character \(\chi\) \(=\) 9464.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.790243 q^{3} -3.98493 q^{5} -1.00000 q^{7} -2.37552 q^{9} +2.16572 q^{11} +3.14906 q^{15} -6.76042 q^{17} -5.16512 q^{19} +0.790243 q^{21} +1.26855 q^{23} +10.8797 q^{25} +4.24797 q^{27} +4.34492 q^{29} +9.78216 q^{31} -1.71144 q^{33} +3.98493 q^{35} -9.20584 q^{37} +6.34464 q^{41} +1.37775 q^{43} +9.46626 q^{45} -9.38688 q^{47} +1.00000 q^{49} +5.34238 q^{51} +9.55478 q^{53} -8.63022 q^{55} +4.08170 q^{57} +9.44610 q^{59} -4.85435 q^{61} +2.37552 q^{63} +11.7193 q^{67} -1.00246 q^{69} +1.82940 q^{71} -11.0511 q^{73} -8.59757 q^{75} -2.16572 q^{77} +5.73877 q^{79} +3.76962 q^{81} +10.4567 q^{83} +26.9398 q^{85} -3.43354 q^{87} -7.44390 q^{89} -7.73029 q^{93} +20.5826 q^{95} -11.8539 q^{97} -5.14469 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 3 q^{3} - 4 q^{5} - 15 q^{7} + 16 q^{9} - 15 q^{11} - 8 q^{15} + 2 q^{17} - 13 q^{19} + 3 q^{21} - 10 q^{23} + 23 q^{25} - 9 q^{27} + 25 q^{29} - 19 q^{31} + 24 q^{33} + 4 q^{35} + 2 q^{37} - 30 q^{41}+ \cdots - 70 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.790243 −0.456247 −0.228124 0.973632i \(-0.573259\pi\)
−0.228124 + 0.973632i \(0.573259\pi\)
\(4\) 0 0
\(5\) −3.98493 −1.78211 −0.891057 0.453891i \(-0.850035\pi\)
−0.891057 + 0.453891i \(0.850035\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −2.37552 −0.791838
\(10\) 0 0
\(11\) 2.16572 0.652988 0.326494 0.945199i \(-0.394133\pi\)
0.326494 + 0.945199i \(0.394133\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 3.14906 0.813085
\(16\) 0 0
\(17\) −6.76042 −1.63964 −0.819822 0.572619i \(-0.805927\pi\)
−0.819822 + 0.572619i \(0.805927\pi\)
\(18\) 0 0
\(19\) −5.16512 −1.18496 −0.592480 0.805585i \(-0.701851\pi\)
−0.592480 + 0.805585i \(0.701851\pi\)
\(20\) 0 0
\(21\) 0.790243 0.172445
\(22\) 0 0
\(23\) 1.26855 0.264511 0.132255 0.991216i \(-0.457778\pi\)
0.132255 + 0.991216i \(0.457778\pi\)
\(24\) 0 0
\(25\) 10.8797 2.17593
\(26\) 0 0
\(27\) 4.24797 0.817521
\(28\) 0 0
\(29\) 4.34492 0.806831 0.403415 0.915017i \(-0.367823\pi\)
0.403415 + 0.915017i \(0.367823\pi\)
\(30\) 0 0
\(31\) 9.78216 1.75693 0.878464 0.477809i \(-0.158569\pi\)
0.878464 + 0.477809i \(0.158569\pi\)
\(32\) 0 0
\(33\) −1.71144 −0.297924
\(34\) 0 0
\(35\) 3.98493 0.673576
\(36\) 0 0
\(37\) −9.20584 −1.51343 −0.756716 0.653744i \(-0.773197\pi\)
−0.756716 + 0.653744i \(0.773197\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.34464 0.990866 0.495433 0.868646i \(-0.335009\pi\)
0.495433 + 0.868646i \(0.335009\pi\)
\(42\) 0 0
\(43\) 1.37775 0.210104 0.105052 0.994467i \(-0.466499\pi\)
0.105052 + 0.994467i \(0.466499\pi\)
\(44\) 0 0
\(45\) 9.46626 1.41115
\(46\) 0 0
\(47\) −9.38688 −1.36922 −0.684608 0.728911i \(-0.740027\pi\)
−0.684608 + 0.728911i \(0.740027\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 5.34238 0.748083
\(52\) 0 0
\(53\) 9.55478 1.31245 0.656225 0.754566i \(-0.272152\pi\)
0.656225 + 0.754566i \(0.272152\pi\)
\(54\) 0 0
\(55\) −8.63022 −1.16370
\(56\) 0 0
\(57\) 4.08170 0.540635
\(58\) 0 0
\(59\) 9.44610 1.22978 0.614889 0.788614i \(-0.289201\pi\)
0.614889 + 0.788614i \(0.289201\pi\)
\(60\) 0 0
\(61\) −4.85435 −0.621536 −0.310768 0.950486i \(-0.600586\pi\)
−0.310768 + 0.950486i \(0.600586\pi\)
\(62\) 0 0
\(63\) 2.37552 0.299287
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 11.7193 1.43175 0.715873 0.698231i \(-0.246029\pi\)
0.715873 + 0.698231i \(0.246029\pi\)
\(68\) 0 0
\(69\) −1.00246 −0.120682
\(70\) 0 0
\(71\) 1.82940 0.217110 0.108555 0.994090i \(-0.465378\pi\)
0.108555 + 0.994090i \(0.465378\pi\)
\(72\) 0 0
\(73\) −11.0511 −1.29344 −0.646720 0.762728i \(-0.723860\pi\)
−0.646720 + 0.762728i \(0.723860\pi\)
\(74\) 0 0
\(75\) −8.59757 −0.992762
\(76\) 0 0
\(77\) −2.16572 −0.246806
\(78\) 0 0
\(79\) 5.73877 0.645662 0.322831 0.946457i \(-0.395365\pi\)
0.322831 + 0.946457i \(0.395365\pi\)
\(80\) 0 0
\(81\) 3.76962 0.418847
\(82\) 0 0
\(83\) 10.4567 1.14778 0.573888 0.818934i \(-0.305435\pi\)
0.573888 + 0.818934i \(0.305435\pi\)
\(84\) 0 0
\(85\) 26.9398 2.92203
\(86\) 0 0
\(87\) −3.43354 −0.368114
\(88\) 0 0
\(89\) −7.44390 −0.789052 −0.394526 0.918885i \(-0.629091\pi\)
−0.394526 + 0.918885i \(0.629091\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −7.73029 −0.801593
\(94\) 0 0
\(95\) 20.5826 2.11173
\(96\) 0 0
\(97\) −11.8539 −1.20358 −0.601792 0.798653i \(-0.705546\pi\)
−0.601792 + 0.798653i \(0.705546\pi\)
\(98\) 0 0
\(99\) −5.14469 −0.517061
\(100\) 0 0
\(101\) −12.8928 −1.28288 −0.641442 0.767171i \(-0.721664\pi\)
−0.641442 + 0.767171i \(0.721664\pi\)
\(102\) 0 0
\(103\) 19.2254 1.89434 0.947169 0.320736i \(-0.103930\pi\)
0.947169 + 0.320736i \(0.103930\pi\)
\(104\) 0 0
\(105\) −3.14906 −0.307317
\(106\) 0 0
\(107\) 5.05012 0.488213 0.244107 0.969748i \(-0.421505\pi\)
0.244107 + 0.969748i \(0.421505\pi\)
\(108\) 0 0
\(109\) −12.9198 −1.23749 −0.618747 0.785591i \(-0.712359\pi\)
−0.618747 + 0.785591i \(0.712359\pi\)
\(110\) 0 0
\(111\) 7.27486 0.690499
\(112\) 0 0
\(113\) 15.8160 1.48785 0.743923 0.668265i \(-0.232963\pi\)
0.743923 + 0.668265i \(0.232963\pi\)
\(114\) 0 0
\(115\) −5.05507 −0.471388
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.76042 0.619727
\(120\) 0 0
\(121\) −6.30968 −0.573607
\(122\) 0 0
\(123\) −5.01381 −0.452080
\(124\) 0 0
\(125\) −23.4300 −2.09564
\(126\) 0 0
\(127\) 15.8537 1.40679 0.703395 0.710800i \(-0.251667\pi\)
0.703395 + 0.710800i \(0.251667\pi\)
\(128\) 0 0
\(129\) −1.08876 −0.0958596
\(130\) 0 0
\(131\) −3.34838 −0.292549 −0.146275 0.989244i \(-0.546728\pi\)
−0.146275 + 0.989244i \(0.546728\pi\)
\(132\) 0 0
\(133\) 5.16512 0.447873
\(134\) 0 0
\(135\) −16.9278 −1.45692
\(136\) 0 0
\(137\) −3.33968 −0.285328 −0.142664 0.989771i \(-0.545567\pi\)
−0.142664 + 0.989771i \(0.545567\pi\)
\(138\) 0 0
\(139\) 0.920194 0.0780499 0.0390249 0.999238i \(-0.487575\pi\)
0.0390249 + 0.999238i \(0.487575\pi\)
\(140\) 0 0
\(141\) 7.41792 0.624701
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −17.3142 −1.43786
\(146\) 0 0
\(147\) −0.790243 −0.0651782
\(148\) 0 0
\(149\) −2.65862 −0.217803 −0.108901 0.994053i \(-0.534733\pi\)
−0.108901 + 0.994053i \(0.534733\pi\)
\(150\) 0 0
\(151\) −3.44556 −0.280395 −0.140198 0.990124i \(-0.544774\pi\)
−0.140198 + 0.990124i \(0.544774\pi\)
\(152\) 0 0
\(153\) 16.0595 1.29833
\(154\) 0 0
\(155\) −38.9812 −3.13104
\(156\) 0 0
\(157\) 5.37075 0.428633 0.214316 0.976764i \(-0.431248\pi\)
0.214316 + 0.976764i \(0.431248\pi\)
\(158\) 0 0
\(159\) −7.55060 −0.598801
\(160\) 0 0
\(161\) −1.26855 −0.0999756
\(162\) 0 0
\(163\) −14.6048 −1.14394 −0.571969 0.820275i \(-0.693820\pi\)
−0.571969 + 0.820275i \(0.693820\pi\)
\(164\) 0 0
\(165\) 6.81997 0.530934
\(166\) 0 0
\(167\) −10.7468 −0.831612 −0.415806 0.909453i \(-0.636501\pi\)
−0.415806 + 0.909453i \(0.636501\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 12.2698 0.938297
\(172\) 0 0
\(173\) 16.7477 1.27331 0.636654 0.771150i \(-0.280318\pi\)
0.636654 + 0.771150i \(0.280318\pi\)
\(174\) 0 0
\(175\) −10.8797 −0.822424
\(176\) 0 0
\(177\) −7.46472 −0.561083
\(178\) 0 0
\(179\) −3.64304 −0.272293 −0.136147 0.990689i \(-0.543472\pi\)
−0.136147 + 0.990689i \(0.543472\pi\)
\(180\) 0 0
\(181\) 12.4673 0.926687 0.463344 0.886179i \(-0.346650\pi\)
0.463344 + 0.886179i \(0.346650\pi\)
\(182\) 0 0
\(183\) 3.83612 0.283574
\(184\) 0 0
\(185\) 36.6846 2.69711
\(186\) 0 0
\(187\) −14.6411 −1.07067
\(188\) 0 0
\(189\) −4.24797 −0.308994
\(190\) 0 0
\(191\) −17.8833 −1.29399 −0.646995 0.762494i \(-0.723975\pi\)
−0.646995 + 0.762494i \(0.723975\pi\)
\(192\) 0 0
\(193\) −0.876450 −0.0630883 −0.0315441 0.999502i \(-0.510042\pi\)
−0.0315441 + 0.999502i \(0.510042\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.57548 0.610978 0.305489 0.952196i \(-0.401180\pi\)
0.305489 + 0.952196i \(0.401180\pi\)
\(198\) 0 0
\(199\) −16.5257 −1.17148 −0.585740 0.810499i \(-0.699196\pi\)
−0.585740 + 0.810499i \(0.699196\pi\)
\(200\) 0 0
\(201\) −9.26114 −0.653230
\(202\) 0 0
\(203\) −4.34492 −0.304953
\(204\) 0 0
\(205\) −25.2829 −1.76584
\(206\) 0 0
\(207\) −3.01346 −0.209450
\(208\) 0 0
\(209\) −11.1862 −0.773764
\(210\) 0 0
\(211\) −0.0498291 −0.00343038 −0.00171519 0.999999i \(-0.500546\pi\)
−0.00171519 + 0.999999i \(0.500546\pi\)
\(212\) 0 0
\(213\) −1.44567 −0.0990559
\(214\) 0 0
\(215\) −5.49022 −0.374430
\(216\) 0 0
\(217\) −9.78216 −0.664056
\(218\) 0 0
\(219\) 8.73310 0.590128
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 24.2739 1.62550 0.812749 0.582614i \(-0.197970\pi\)
0.812749 + 0.582614i \(0.197970\pi\)
\(224\) 0 0
\(225\) −25.8448 −1.72299
\(226\) 0 0
\(227\) 14.7348 0.977982 0.488991 0.872289i \(-0.337365\pi\)
0.488991 + 0.872289i \(0.337365\pi\)
\(228\) 0 0
\(229\) 15.1678 1.00232 0.501159 0.865355i \(-0.332907\pi\)
0.501159 + 0.865355i \(0.332907\pi\)
\(230\) 0 0
\(231\) 1.71144 0.112605
\(232\) 0 0
\(233\) 14.6680 0.960930 0.480465 0.877014i \(-0.340468\pi\)
0.480465 + 0.877014i \(0.340468\pi\)
\(234\) 0 0
\(235\) 37.4060 2.44010
\(236\) 0 0
\(237\) −4.53502 −0.294581
\(238\) 0 0
\(239\) −9.69605 −0.627185 −0.313593 0.949558i \(-0.601533\pi\)
−0.313593 + 0.949558i \(0.601533\pi\)
\(240\) 0 0
\(241\) −19.2099 −1.23742 −0.618710 0.785620i \(-0.712344\pi\)
−0.618710 + 0.785620i \(0.712344\pi\)
\(242\) 0 0
\(243\) −15.7228 −1.00862
\(244\) 0 0
\(245\) −3.98493 −0.254588
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −8.26336 −0.523669
\(250\) 0 0
\(251\) 0.209152 0.0132016 0.00660078 0.999978i \(-0.497899\pi\)
0.00660078 + 0.999978i \(0.497899\pi\)
\(252\) 0 0
\(253\) 2.74731 0.172722
\(254\) 0 0
\(255\) −21.2890 −1.33317
\(256\) 0 0
\(257\) 10.1678 0.634250 0.317125 0.948384i \(-0.397283\pi\)
0.317125 + 0.948384i \(0.397283\pi\)
\(258\) 0 0
\(259\) 9.20584 0.572023
\(260\) 0 0
\(261\) −10.3214 −0.638880
\(262\) 0 0
\(263\) 11.2382 0.692976 0.346488 0.938054i \(-0.387374\pi\)
0.346488 + 0.938054i \(0.387374\pi\)
\(264\) 0 0
\(265\) −38.0751 −2.33893
\(266\) 0 0
\(267\) 5.88249 0.360003
\(268\) 0 0
\(269\) 16.2608 0.991438 0.495719 0.868483i \(-0.334905\pi\)
0.495719 + 0.868483i \(0.334905\pi\)
\(270\) 0 0
\(271\) −22.2898 −1.35401 −0.677004 0.735979i \(-0.736722\pi\)
−0.677004 + 0.735979i \(0.736722\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 23.5622 1.42086
\(276\) 0 0
\(277\) −1.19610 −0.0718665 −0.0359333 0.999354i \(-0.511440\pi\)
−0.0359333 + 0.999354i \(0.511440\pi\)
\(278\) 0 0
\(279\) −23.2377 −1.39120
\(280\) 0 0
\(281\) −3.99346 −0.238230 −0.119115 0.992880i \(-0.538006\pi\)
−0.119115 + 0.992880i \(0.538006\pi\)
\(282\) 0 0
\(283\) −5.54700 −0.329735 −0.164867 0.986316i \(-0.552720\pi\)
−0.164867 + 0.986316i \(0.552720\pi\)
\(284\) 0 0
\(285\) −16.2653 −0.963473
\(286\) 0 0
\(287\) −6.34464 −0.374512
\(288\) 0 0
\(289\) 28.7033 1.68843
\(290\) 0 0
\(291\) 9.36748 0.549132
\(292\) 0 0
\(293\) 7.73762 0.452037 0.226018 0.974123i \(-0.427429\pi\)
0.226018 + 0.974123i \(0.427429\pi\)
\(294\) 0 0
\(295\) −37.6420 −2.19160
\(296\) 0 0
\(297\) 9.19988 0.533831
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −1.37775 −0.0794120
\(302\) 0 0
\(303\) 10.1885 0.585313
\(304\) 0 0
\(305\) 19.3442 1.10765
\(306\) 0 0
\(307\) 1.63579 0.0933595 0.0466798 0.998910i \(-0.485136\pi\)
0.0466798 + 0.998910i \(0.485136\pi\)
\(308\) 0 0
\(309\) −15.1928 −0.864286
\(310\) 0 0
\(311\) −27.7416 −1.57308 −0.786540 0.617540i \(-0.788130\pi\)
−0.786540 + 0.617540i \(0.788130\pi\)
\(312\) 0 0
\(313\) 9.68881 0.547644 0.273822 0.961780i \(-0.411712\pi\)
0.273822 + 0.961780i \(0.411712\pi\)
\(314\) 0 0
\(315\) −9.46626 −0.533363
\(316\) 0 0
\(317\) 8.47999 0.476284 0.238142 0.971230i \(-0.423462\pi\)
0.238142 + 0.971230i \(0.423462\pi\)
\(318\) 0 0
\(319\) 9.40985 0.526851
\(320\) 0 0
\(321\) −3.99082 −0.222746
\(322\) 0 0
\(323\) 34.9184 1.94291
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 10.2098 0.564603
\(328\) 0 0
\(329\) 9.38688 0.517515
\(330\) 0 0
\(331\) −16.4126 −0.902118 −0.451059 0.892494i \(-0.648954\pi\)
−0.451059 + 0.892494i \(0.648954\pi\)
\(332\) 0 0
\(333\) 21.8686 1.19839
\(334\) 0 0
\(335\) −46.7007 −2.55153
\(336\) 0 0
\(337\) −25.6374 −1.39656 −0.698279 0.715826i \(-0.746051\pi\)
−0.698279 + 0.715826i \(0.746051\pi\)
\(338\) 0 0
\(339\) −12.4985 −0.678826
\(340\) 0 0
\(341\) 21.1854 1.14725
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 3.99474 0.215069
\(346\) 0 0
\(347\) 1.40073 0.0751952 0.0375976 0.999293i \(-0.488029\pi\)
0.0375976 + 0.999293i \(0.488029\pi\)
\(348\) 0 0
\(349\) −25.9125 −1.38706 −0.693532 0.720426i \(-0.743946\pi\)
−0.693532 + 0.720426i \(0.743946\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.48493 −0.345158 −0.172579 0.984996i \(-0.555210\pi\)
−0.172579 + 0.984996i \(0.555210\pi\)
\(354\) 0 0
\(355\) −7.29003 −0.386915
\(356\) 0 0
\(357\) −5.34238 −0.282749
\(358\) 0 0
\(359\) 28.6317 1.51112 0.755562 0.655077i \(-0.227364\pi\)
0.755562 + 0.655077i \(0.227364\pi\)
\(360\) 0 0
\(361\) 7.67848 0.404130
\(362\) 0 0
\(363\) 4.98618 0.261707
\(364\) 0 0
\(365\) 44.0380 2.30506
\(366\) 0 0
\(367\) −18.2503 −0.952660 −0.476330 0.879267i \(-0.658033\pi\)
−0.476330 + 0.879267i \(0.658033\pi\)
\(368\) 0 0
\(369\) −15.0718 −0.784606
\(370\) 0 0
\(371\) −9.55478 −0.496059
\(372\) 0 0
\(373\) 16.9749 0.878926 0.439463 0.898261i \(-0.355169\pi\)
0.439463 + 0.898261i \(0.355169\pi\)
\(374\) 0 0
\(375\) 18.5154 0.956131
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −28.7507 −1.47682 −0.738412 0.674350i \(-0.764424\pi\)
−0.738412 + 0.674350i \(0.764424\pi\)
\(380\) 0 0
\(381\) −12.5283 −0.641844
\(382\) 0 0
\(383\) −13.6961 −0.699838 −0.349919 0.936780i \(-0.613791\pi\)
−0.349919 + 0.936780i \(0.613791\pi\)
\(384\) 0 0
\(385\) 8.63022 0.439837
\(386\) 0 0
\(387\) −3.27286 −0.166369
\(388\) 0 0
\(389\) −17.7145 −0.898163 −0.449081 0.893491i \(-0.648249\pi\)
−0.449081 + 0.893491i \(0.648249\pi\)
\(390\) 0 0
\(391\) −8.57592 −0.433703
\(392\) 0 0
\(393\) 2.64603 0.133475
\(394\) 0 0
\(395\) −22.8686 −1.15064
\(396\) 0 0
\(397\) 5.82013 0.292104 0.146052 0.989277i \(-0.453343\pi\)
0.146052 + 0.989277i \(0.453343\pi\)
\(398\) 0 0
\(399\) −4.08170 −0.204341
\(400\) 0 0
\(401\) 11.8537 0.591944 0.295972 0.955197i \(-0.404356\pi\)
0.295972 + 0.955197i \(0.404356\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −15.0217 −0.746432
\(406\) 0 0
\(407\) −19.9372 −0.988252
\(408\) 0 0
\(409\) −34.4258 −1.70225 −0.851123 0.524967i \(-0.824078\pi\)
−0.851123 + 0.524967i \(0.824078\pi\)
\(410\) 0 0
\(411\) 2.63916 0.130180
\(412\) 0 0
\(413\) −9.44610 −0.464812
\(414\) 0 0
\(415\) −41.6693 −2.04547
\(416\) 0 0
\(417\) −0.727178 −0.0356100
\(418\) 0 0
\(419\) 20.3825 0.995748 0.497874 0.867249i \(-0.334114\pi\)
0.497874 + 0.867249i \(0.334114\pi\)
\(420\) 0 0
\(421\) 16.8702 0.822203 0.411102 0.911589i \(-0.365144\pi\)
0.411102 + 0.911589i \(0.365144\pi\)
\(422\) 0 0
\(423\) 22.2987 1.08420
\(424\) 0 0
\(425\) −73.5510 −3.56775
\(426\) 0 0
\(427\) 4.85435 0.234918
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.80712 0.135214 0.0676070 0.997712i \(-0.478464\pi\)
0.0676070 + 0.997712i \(0.478464\pi\)
\(432\) 0 0
\(433\) 7.36252 0.353820 0.176910 0.984227i \(-0.443390\pi\)
0.176910 + 0.984227i \(0.443390\pi\)
\(434\) 0 0
\(435\) 13.6824 0.656022
\(436\) 0 0
\(437\) −6.55220 −0.313434
\(438\) 0 0
\(439\) −13.7775 −0.657563 −0.328781 0.944406i \(-0.606638\pi\)
−0.328781 + 0.944406i \(0.606638\pi\)
\(440\) 0 0
\(441\) −2.37552 −0.113120
\(442\) 0 0
\(443\) −23.9378 −1.13732 −0.568659 0.822573i \(-0.692538\pi\)
−0.568659 + 0.822573i \(0.692538\pi\)
\(444\) 0 0
\(445\) 29.6634 1.40618
\(446\) 0 0
\(447\) 2.10096 0.0993720
\(448\) 0 0
\(449\) −11.5378 −0.544504 −0.272252 0.962226i \(-0.587768\pi\)
−0.272252 + 0.962226i \(0.587768\pi\)
\(450\) 0 0
\(451\) 13.7407 0.647023
\(452\) 0 0
\(453\) 2.72283 0.127930
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −9.53357 −0.445961 −0.222981 0.974823i \(-0.571579\pi\)
−0.222981 + 0.974823i \(0.571579\pi\)
\(458\) 0 0
\(459\) −28.7180 −1.34044
\(460\) 0 0
\(461\) −39.7483 −1.85126 −0.925632 0.378426i \(-0.876465\pi\)
−0.925632 + 0.378426i \(0.876465\pi\)
\(462\) 0 0
\(463\) −36.3393 −1.68883 −0.844416 0.535688i \(-0.820052\pi\)
−0.844416 + 0.535688i \(0.820052\pi\)
\(464\) 0 0
\(465\) 30.8046 1.42853
\(466\) 0 0
\(467\) −18.0265 −0.834167 −0.417083 0.908868i \(-0.636948\pi\)
−0.417083 + 0.908868i \(0.636948\pi\)
\(468\) 0 0
\(469\) −11.7193 −0.541149
\(470\) 0 0
\(471\) −4.24420 −0.195563
\(472\) 0 0
\(473\) 2.98381 0.137196
\(474\) 0 0
\(475\) −56.1947 −2.57839
\(476\) 0 0
\(477\) −22.6975 −1.03925
\(478\) 0 0
\(479\) 8.06276 0.368397 0.184199 0.982889i \(-0.441031\pi\)
0.184199 + 0.982889i \(0.441031\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 1.00246 0.0456136
\(484\) 0 0
\(485\) 47.2370 2.14492
\(486\) 0 0
\(487\) 34.2378 1.55146 0.775730 0.631064i \(-0.217382\pi\)
0.775730 + 0.631064i \(0.217382\pi\)
\(488\) 0 0
\(489\) 11.5414 0.521918
\(490\) 0 0
\(491\) 19.2464 0.868579 0.434290 0.900773i \(-0.356999\pi\)
0.434290 + 0.900773i \(0.356999\pi\)
\(492\) 0 0
\(493\) −29.3735 −1.32291
\(494\) 0 0
\(495\) 20.5012 0.921461
\(496\) 0 0
\(497\) −1.82940 −0.0820599
\(498\) 0 0
\(499\) −6.09231 −0.272729 −0.136365 0.990659i \(-0.543542\pi\)
−0.136365 + 0.990659i \(0.543542\pi\)
\(500\) 0 0
\(501\) 8.49259 0.379421
\(502\) 0 0
\(503\) −27.7308 −1.23646 −0.618228 0.785999i \(-0.712149\pi\)
−0.618228 + 0.785999i \(0.712149\pi\)
\(504\) 0 0
\(505\) 51.3770 2.28625
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.19215 −0.0528409 −0.0264205 0.999651i \(-0.508411\pi\)
−0.0264205 + 0.999651i \(0.508411\pi\)
\(510\) 0 0
\(511\) 11.0511 0.488874
\(512\) 0 0
\(513\) −21.9413 −0.968730
\(514\) 0 0
\(515\) −76.6119 −3.37593
\(516\) 0 0
\(517\) −20.3293 −0.894082
\(518\) 0 0
\(519\) −13.2348 −0.580943
\(520\) 0 0
\(521\) −1.07966 −0.0473008 −0.0236504 0.999720i \(-0.507529\pi\)
−0.0236504 + 0.999720i \(0.507529\pi\)
\(522\) 0 0
\(523\) −17.4831 −0.764484 −0.382242 0.924062i \(-0.624848\pi\)
−0.382242 + 0.924062i \(0.624848\pi\)
\(524\) 0 0
\(525\) 8.59757 0.375229
\(526\) 0 0
\(527\) −66.1315 −2.88073
\(528\) 0 0
\(529\) −21.3908 −0.930034
\(530\) 0 0
\(531\) −22.4394 −0.973786
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −20.1244 −0.870052
\(536\) 0 0
\(537\) 2.87888 0.124233
\(538\) 0 0
\(539\) 2.16572 0.0932840
\(540\) 0 0
\(541\) −43.7984 −1.88304 −0.941520 0.336958i \(-0.890602\pi\)
−0.941520 + 0.336958i \(0.890602\pi\)
\(542\) 0 0
\(543\) −9.85220 −0.422799
\(544\) 0 0
\(545\) 51.4845 2.20535
\(546\) 0 0
\(547\) 2.98369 0.127573 0.0637866 0.997964i \(-0.479682\pi\)
0.0637866 + 0.997964i \(0.479682\pi\)
\(548\) 0 0
\(549\) 11.5316 0.492156
\(550\) 0 0
\(551\) −22.4420 −0.956062
\(552\) 0 0
\(553\) −5.73877 −0.244037
\(554\) 0 0
\(555\) −28.9898 −1.23055
\(556\) 0 0
\(557\) 26.0114 1.10214 0.551069 0.834459i \(-0.314220\pi\)
0.551069 + 0.834459i \(0.314220\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 11.5701 0.488489
\(562\) 0 0
\(563\) 36.1233 1.52241 0.761207 0.648509i \(-0.224607\pi\)
0.761207 + 0.648509i \(0.224607\pi\)
\(564\) 0 0
\(565\) −63.0257 −2.65151
\(566\) 0 0
\(567\) −3.76962 −0.158309
\(568\) 0 0
\(569\) 1.74691 0.0732344 0.0366172 0.999329i \(-0.488342\pi\)
0.0366172 + 0.999329i \(0.488342\pi\)
\(570\) 0 0
\(571\) −33.0744 −1.38412 −0.692061 0.721839i \(-0.743297\pi\)
−0.692061 + 0.721839i \(0.743297\pi\)
\(572\) 0 0
\(573\) 14.1322 0.590380
\(574\) 0 0
\(575\) 13.8014 0.575556
\(576\) 0 0
\(577\) −41.2766 −1.71837 −0.859184 0.511667i \(-0.829028\pi\)
−0.859184 + 0.511667i \(0.829028\pi\)
\(578\) 0 0
\(579\) 0.692609 0.0287838
\(580\) 0 0
\(581\) −10.4567 −0.433818
\(582\) 0 0
\(583\) 20.6929 0.857013
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −23.6087 −0.974434 −0.487217 0.873281i \(-0.661988\pi\)
−0.487217 + 0.873281i \(0.661988\pi\)
\(588\) 0 0
\(589\) −50.5260 −2.08189
\(590\) 0 0
\(591\) −6.77672 −0.278757
\(592\) 0 0
\(593\) 15.4602 0.634875 0.317437 0.948279i \(-0.397178\pi\)
0.317437 + 0.948279i \(0.397178\pi\)
\(594\) 0 0
\(595\) −26.9398 −1.10442
\(596\) 0 0
\(597\) 13.0594 0.534484
\(598\) 0 0
\(599\) −6.71997 −0.274570 −0.137285 0.990532i \(-0.543838\pi\)
−0.137285 + 0.990532i \(0.543838\pi\)
\(600\) 0 0
\(601\) −26.8322 −1.09451 −0.547253 0.836967i \(-0.684327\pi\)
−0.547253 + 0.836967i \(0.684327\pi\)
\(602\) 0 0
\(603\) −27.8395 −1.13371
\(604\) 0 0
\(605\) 25.1436 1.02223
\(606\) 0 0
\(607\) 39.1892 1.59064 0.795320 0.606190i \(-0.207303\pi\)
0.795320 + 0.606190i \(0.207303\pi\)
\(608\) 0 0
\(609\) 3.43354 0.139134
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 20.2562 0.818142 0.409071 0.912503i \(-0.365853\pi\)
0.409071 + 0.912503i \(0.365853\pi\)
\(614\) 0 0
\(615\) 19.9797 0.805658
\(616\) 0 0
\(617\) 23.0963 0.929823 0.464912 0.885357i \(-0.346086\pi\)
0.464912 + 0.885357i \(0.346086\pi\)
\(618\) 0 0
\(619\) −4.41122 −0.177302 −0.0886510 0.996063i \(-0.528256\pi\)
−0.0886510 + 0.996063i \(0.528256\pi\)
\(620\) 0 0
\(621\) 5.38875 0.216243
\(622\) 0 0
\(623\) 7.44390 0.298234
\(624\) 0 0
\(625\) 38.9685 1.55874
\(626\) 0 0
\(627\) 8.83981 0.353028
\(628\) 0 0
\(629\) 62.2354 2.48149
\(630\) 0 0
\(631\) 23.0673 0.918295 0.459148 0.888360i \(-0.348155\pi\)
0.459148 + 0.888360i \(0.348155\pi\)
\(632\) 0 0
\(633\) 0.0393771 0.00156510
\(634\) 0 0
\(635\) −63.1759 −2.50706
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −4.34577 −0.171916
\(640\) 0 0
\(641\) −31.0018 −1.22450 −0.612249 0.790665i \(-0.709735\pi\)
−0.612249 + 0.790665i \(0.709735\pi\)
\(642\) 0 0
\(643\) 19.2476 0.759051 0.379526 0.925181i \(-0.376087\pi\)
0.379526 + 0.925181i \(0.376087\pi\)
\(644\) 0 0
\(645\) 4.33861 0.170833
\(646\) 0 0
\(647\) 2.23421 0.0878358 0.0439179 0.999035i \(-0.486016\pi\)
0.0439179 + 0.999035i \(0.486016\pi\)
\(648\) 0 0
\(649\) 20.4576 0.803030
\(650\) 0 0
\(651\) 7.73029 0.302974
\(652\) 0 0
\(653\) 15.5215 0.607405 0.303702 0.952767i \(-0.401777\pi\)
0.303702 + 0.952767i \(0.401777\pi\)
\(654\) 0 0
\(655\) 13.3430 0.521356
\(656\) 0 0
\(657\) 26.2522 1.02419
\(658\) 0 0
\(659\) 48.4355 1.88678 0.943390 0.331685i \(-0.107617\pi\)
0.943390 + 0.331685i \(0.107617\pi\)
\(660\) 0 0
\(661\) 39.6239 1.54119 0.770596 0.637324i \(-0.219959\pi\)
0.770596 + 0.637324i \(0.219959\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −20.5826 −0.798160
\(666\) 0 0
\(667\) 5.51174 0.213415
\(668\) 0 0
\(669\) −19.1823 −0.741629
\(670\) 0 0
\(671\) −10.5131 −0.405855
\(672\) 0 0
\(673\) 33.1518 1.27791 0.638953 0.769246i \(-0.279368\pi\)
0.638953 + 0.769246i \(0.279368\pi\)
\(674\) 0 0
\(675\) 46.2164 1.77887
\(676\) 0 0
\(677\) −7.44837 −0.286264 −0.143132 0.989704i \(-0.545717\pi\)
−0.143132 + 0.989704i \(0.545717\pi\)
\(678\) 0 0
\(679\) 11.8539 0.454912
\(680\) 0 0
\(681\) −11.6441 −0.446202
\(682\) 0 0
\(683\) −42.2326 −1.61599 −0.807993 0.589193i \(-0.799446\pi\)
−0.807993 + 0.589193i \(0.799446\pi\)
\(684\) 0 0
\(685\) 13.3084 0.508487
\(686\) 0 0
\(687\) −11.9863 −0.457305
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 14.1462 0.538148 0.269074 0.963119i \(-0.413282\pi\)
0.269074 + 0.963119i \(0.413282\pi\)
\(692\) 0 0
\(693\) 5.14469 0.195431
\(694\) 0 0
\(695\) −3.66691 −0.139094
\(696\) 0 0
\(697\) −42.8924 −1.62467
\(698\) 0 0
\(699\) −11.5913 −0.438422
\(700\) 0 0
\(701\) 28.3144 1.06942 0.534710 0.845035i \(-0.320421\pi\)
0.534710 + 0.845035i \(0.320421\pi\)
\(702\) 0 0
\(703\) 47.5493 1.79336
\(704\) 0 0
\(705\) −29.5599 −1.11329
\(706\) 0 0
\(707\) 12.8928 0.484885
\(708\) 0 0
\(709\) 30.4395 1.14318 0.571591 0.820539i \(-0.306327\pi\)
0.571591 + 0.820539i \(0.306327\pi\)
\(710\) 0 0
\(711\) −13.6325 −0.511260
\(712\) 0 0
\(713\) 12.4091 0.464726
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 7.66224 0.286151
\(718\) 0 0
\(719\) −25.6272 −0.955734 −0.477867 0.878432i \(-0.658590\pi\)
−0.477867 + 0.878432i \(0.658590\pi\)
\(720\) 0 0
\(721\) −19.2254 −0.715992
\(722\) 0 0
\(723\) 15.1805 0.564569
\(724\) 0 0
\(725\) 47.2712 1.75561
\(726\) 0 0
\(727\) −34.2130 −1.26889 −0.634444 0.772969i \(-0.718771\pi\)
−0.634444 + 0.772969i \(0.718771\pi\)
\(728\) 0 0
\(729\) 1.11599 0.0413331
\(730\) 0 0
\(731\) −9.31415 −0.344496
\(732\) 0 0
\(733\) 42.0876 1.55454 0.777271 0.629166i \(-0.216603\pi\)
0.777271 + 0.629166i \(0.216603\pi\)
\(734\) 0 0
\(735\) 3.14906 0.116155
\(736\) 0 0
\(737\) 25.3808 0.934912
\(738\) 0 0
\(739\) −33.7021 −1.23975 −0.619877 0.784699i \(-0.712817\pi\)
−0.619877 + 0.784699i \(0.712817\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 44.1050 1.61806 0.809028 0.587771i \(-0.199994\pi\)
0.809028 + 0.587771i \(0.199994\pi\)
\(744\) 0 0
\(745\) 10.5944 0.388150
\(746\) 0 0
\(747\) −24.8401 −0.908852
\(748\) 0 0
\(749\) −5.05012 −0.184527
\(750\) 0 0
\(751\) 28.2245 1.02993 0.514963 0.857212i \(-0.327805\pi\)
0.514963 + 0.857212i \(0.327805\pi\)
\(752\) 0 0
\(753\) −0.165281 −0.00602317
\(754\) 0 0
\(755\) 13.7303 0.499697
\(756\) 0 0
\(757\) −9.15179 −0.332627 −0.166314 0.986073i \(-0.553186\pi\)
−0.166314 + 0.986073i \(0.553186\pi\)
\(758\) 0 0
\(759\) −2.17105 −0.0788040
\(760\) 0 0
\(761\) −25.4695 −0.923268 −0.461634 0.887071i \(-0.652737\pi\)
−0.461634 + 0.887071i \(0.652737\pi\)
\(762\) 0 0
\(763\) 12.9198 0.467728
\(764\) 0 0
\(765\) −63.9959 −2.31378
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −6.02093 −0.217120 −0.108560 0.994090i \(-0.534624\pi\)
−0.108560 + 0.994090i \(0.534624\pi\)
\(770\) 0 0
\(771\) −8.03504 −0.289375
\(772\) 0 0
\(773\) −3.65274 −0.131380 −0.0656900 0.997840i \(-0.520925\pi\)
−0.0656900 + 0.997840i \(0.520925\pi\)
\(774\) 0 0
\(775\) 106.426 3.82295
\(776\) 0 0
\(777\) −7.27486 −0.260984
\(778\) 0 0
\(779\) −32.7708 −1.17414
\(780\) 0 0
\(781\) 3.96196 0.141770
\(782\) 0 0
\(783\) 18.4571 0.659602
\(784\) 0 0
\(785\) −21.4021 −0.763873
\(786\) 0 0
\(787\) 34.3751 1.22534 0.612670 0.790339i \(-0.290096\pi\)
0.612670 + 0.790339i \(0.290096\pi\)
\(788\) 0 0
\(789\) −8.88089 −0.316168
\(790\) 0 0
\(791\) −15.8160 −0.562353
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 30.0886 1.06713
\(796\) 0 0
\(797\) 32.4388 1.14904 0.574520 0.818490i \(-0.305189\pi\)
0.574520 + 0.818490i \(0.305189\pi\)
\(798\) 0 0
\(799\) 63.4593 2.24503
\(800\) 0 0
\(801\) 17.6831 0.624802
\(802\) 0 0
\(803\) −23.9336 −0.844600
\(804\) 0 0
\(805\) 5.05507 0.178168
\(806\) 0 0
\(807\) −12.8500 −0.452341
\(808\) 0 0
\(809\) 37.9210 1.33323 0.666615 0.745402i \(-0.267742\pi\)
0.666615 + 0.745402i \(0.267742\pi\)
\(810\) 0 0
\(811\) −31.2365 −1.09686 −0.548431 0.836196i \(-0.684775\pi\)
−0.548431 + 0.836196i \(0.684775\pi\)
\(812\) 0 0
\(813\) 17.6144 0.617763
\(814\) 0 0
\(815\) 58.1991 2.03863
\(816\) 0 0
\(817\) −7.11623 −0.248965
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 47.0884 1.64340 0.821699 0.569922i \(-0.193026\pi\)
0.821699 + 0.569922i \(0.193026\pi\)
\(822\) 0 0
\(823\) 2.33731 0.0814733 0.0407367 0.999170i \(-0.487030\pi\)
0.0407367 + 0.999170i \(0.487030\pi\)
\(824\) 0 0
\(825\) −18.6199 −0.648261
\(826\) 0 0
\(827\) −13.6433 −0.474425 −0.237213 0.971458i \(-0.576234\pi\)
−0.237213 + 0.971458i \(0.576234\pi\)
\(828\) 0 0
\(829\) −28.9610 −1.00586 −0.502929 0.864327i \(-0.667744\pi\)
−0.502929 + 0.864327i \(0.667744\pi\)
\(830\) 0 0
\(831\) 0.945208 0.0327889
\(832\) 0 0
\(833\) −6.76042 −0.234235
\(834\) 0 0
\(835\) 42.8252 1.48203
\(836\) 0 0
\(837\) 41.5543 1.43633
\(838\) 0 0
\(839\) 22.5924 0.779978 0.389989 0.920820i \(-0.372479\pi\)
0.389989 + 0.920820i \(0.372479\pi\)
\(840\) 0 0
\(841\) −10.1217 −0.349024
\(842\) 0 0
\(843\) 3.15581 0.108692
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 6.30968 0.216803
\(848\) 0 0
\(849\) 4.38348 0.150441
\(850\) 0 0
\(851\) −11.6781 −0.400319
\(852\) 0 0
\(853\) 10.8220 0.370539 0.185269 0.982688i \(-0.440684\pi\)
0.185269 + 0.982688i \(0.440684\pi\)
\(854\) 0 0
\(855\) −48.8944 −1.67215
\(856\) 0 0
\(857\) −35.4224 −1.21001 −0.605004 0.796223i \(-0.706828\pi\)
−0.605004 + 0.796223i \(0.706828\pi\)
\(858\) 0 0
\(859\) 15.1785 0.517884 0.258942 0.965893i \(-0.416626\pi\)
0.258942 + 0.965893i \(0.416626\pi\)
\(860\) 0 0
\(861\) 5.01381 0.170870
\(862\) 0 0
\(863\) 12.9661 0.441372 0.220686 0.975345i \(-0.429170\pi\)
0.220686 + 0.975345i \(0.429170\pi\)
\(864\) 0 0
\(865\) −66.7385 −2.26918
\(866\) 0 0
\(867\) −22.6826 −0.770342
\(868\) 0 0
\(869\) 12.4285 0.421609
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 28.1592 0.953044
\(874\) 0 0
\(875\) 23.4300 0.792078
\(876\) 0 0
\(877\) −34.3085 −1.15852 −0.579258 0.815144i \(-0.696658\pi\)
−0.579258 + 0.815144i \(0.696658\pi\)
\(878\) 0 0
\(879\) −6.11460 −0.206240
\(880\) 0 0
\(881\) −29.1949 −0.983601 −0.491800 0.870708i \(-0.663661\pi\)
−0.491800 + 0.870708i \(0.663661\pi\)
\(882\) 0 0
\(883\) −35.0623 −1.17994 −0.589970 0.807425i \(-0.700860\pi\)
−0.589970 + 0.807425i \(0.700860\pi\)
\(884\) 0 0
\(885\) 29.7464 0.999914
\(886\) 0 0
\(887\) −15.4554 −0.518943 −0.259471 0.965751i \(-0.583548\pi\)
−0.259471 + 0.965751i \(0.583548\pi\)
\(888\) 0 0
\(889\) −15.8537 −0.531716
\(890\) 0 0
\(891\) 8.16392 0.273502
\(892\) 0 0
\(893\) 48.4844 1.62247
\(894\) 0 0
\(895\) 14.5172 0.485258
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 42.5027 1.41754
\(900\) 0 0
\(901\) −64.5943 −2.15195
\(902\) 0 0
\(903\) 1.08876 0.0362315
\(904\) 0 0
\(905\) −49.6813 −1.65146
\(906\) 0 0
\(907\) 17.8916 0.594081 0.297041 0.954865i \(-0.404000\pi\)
0.297041 + 0.954865i \(0.404000\pi\)
\(908\) 0 0
\(909\) 30.6271 1.01584
\(910\) 0 0
\(911\) 0.535509 0.0177422 0.00887110 0.999961i \(-0.497176\pi\)
0.00887110 + 0.999961i \(0.497176\pi\)
\(912\) 0 0
\(913\) 22.6463 0.749483
\(914\) 0 0
\(915\) −15.2866 −0.505361
\(916\) 0 0
\(917\) 3.34838 0.110573
\(918\) 0 0
\(919\) 38.5396 1.27130 0.635652 0.771976i \(-0.280731\pi\)
0.635652 + 0.771976i \(0.280731\pi\)
\(920\) 0 0
\(921\) −1.29267 −0.0425950
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −100.156 −3.29312
\(926\) 0 0
\(927\) −45.6703 −1.50001
\(928\) 0 0
\(929\) −11.6669 −0.382778 −0.191389 0.981514i \(-0.561299\pi\)
−0.191389 + 0.981514i \(0.561299\pi\)
\(930\) 0 0
\(931\) −5.16512 −0.169280
\(932\) 0 0
\(933\) 21.9226 0.717713
\(934\) 0 0
\(935\) 58.3439 1.90805
\(936\) 0 0
\(937\) 41.2645 1.34805 0.674027 0.738707i \(-0.264563\pi\)
0.674027 + 0.738707i \(0.264563\pi\)
\(938\) 0 0
\(939\) −7.65652 −0.249861
\(940\) 0 0
\(941\) 14.1891 0.462550 0.231275 0.972888i \(-0.425710\pi\)
0.231275 + 0.972888i \(0.425710\pi\)
\(942\) 0 0
\(943\) 8.04848 0.262095
\(944\) 0 0
\(945\) 16.9278 0.550663
\(946\) 0 0
\(947\) −14.0264 −0.455797 −0.227899 0.973685i \(-0.573186\pi\)
−0.227899 + 0.973685i \(0.573186\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −6.70126 −0.217303
\(952\) 0 0
\(953\) −39.7628 −1.28804 −0.644021 0.765007i \(-0.722735\pi\)
−0.644021 + 0.765007i \(0.722735\pi\)
\(954\) 0 0
\(955\) 71.2637 2.30604
\(956\) 0 0
\(957\) −7.43608 −0.240374
\(958\) 0 0
\(959\) 3.33968 0.107844
\(960\) 0 0
\(961\) 64.6906 2.08679
\(962\) 0 0
\(963\) −11.9966 −0.386586
\(964\) 0 0
\(965\) 3.49259 0.112430
\(966\) 0 0
\(967\) −47.2674 −1.52002 −0.760009 0.649912i \(-0.774806\pi\)
−0.760009 + 0.649912i \(0.774806\pi\)
\(968\) 0 0
\(969\) −27.5940 −0.886448
\(970\) 0 0
\(971\) 18.0869 0.580437 0.290219 0.956960i \(-0.406272\pi\)
0.290219 + 0.956960i \(0.406272\pi\)
\(972\) 0 0
\(973\) −0.920194 −0.0295001
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −32.6963 −1.04605 −0.523024 0.852318i \(-0.675196\pi\)
−0.523024 + 0.852318i \(0.675196\pi\)
\(978\) 0 0
\(979\) −16.1214 −0.515241
\(980\) 0 0
\(981\) 30.6912 0.979895
\(982\) 0 0
\(983\) −59.5124 −1.89815 −0.949076 0.315047i \(-0.897980\pi\)
−0.949076 + 0.315047i \(0.897980\pi\)
\(984\) 0 0
\(985\) −34.1727 −1.08883
\(986\) 0 0
\(987\) −7.41792 −0.236115
\(988\) 0 0
\(989\) 1.74774 0.0555748
\(990\) 0 0
\(991\) −52.3822 −1.66397 −0.831987 0.554795i \(-0.812797\pi\)
−0.831987 + 0.554795i \(0.812797\pi\)
\(992\) 0 0
\(993\) 12.9699 0.411589
\(994\) 0 0
\(995\) 65.8539 2.08771
\(996\) 0 0
\(997\) −36.3479 −1.15115 −0.575575 0.817749i \(-0.695222\pi\)
−0.575575 + 0.817749i \(0.695222\pi\)
\(998\) 0 0
\(999\) −39.1061 −1.23726
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9464.2.a.br.1.7 15
13.12 even 2 9464.2.a.bs.1.7 yes 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9464.2.a.br.1.7 15 1.1 even 1 trivial
9464.2.a.bs.1.7 yes 15 13.12 even 2