Properties

Label 9464.2.a.br.1.5
Level $9464$
Weight $2$
Character 9464.1
Self dual yes
Analytic conductor $75.570$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9464,2,Mod(1,9464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,0,-3,0,-4,0,-15,0,16,0,-15,0,0,0,-8,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5704204729\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 3 x^{14} - 26 x^{13} + 78 x^{12} + 253 x^{11} - 782 x^{10} - 1087 x^{9} + 3776 x^{8} + \cdots - 344 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.05916\) of defining polynomial
Character \(\chi\) \(=\) 9464.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.05916 q^{3} +1.23771 q^{5} -1.00000 q^{7} -1.87817 q^{9} +1.37211 q^{11} -1.31094 q^{15} +1.41900 q^{17} +6.61988 q^{19} +1.05916 q^{21} -5.86724 q^{23} -3.46807 q^{25} +5.16678 q^{27} -5.41201 q^{29} +3.88551 q^{31} -1.45329 q^{33} -1.23771 q^{35} -0.373505 q^{37} +1.42901 q^{41} -5.83736 q^{43} -2.32464 q^{45} +0.595667 q^{47} +1.00000 q^{49} -1.50295 q^{51} +4.15776 q^{53} +1.69828 q^{55} -7.01153 q^{57} -0.154867 q^{59} +2.86393 q^{61} +1.87817 q^{63} -13.3682 q^{67} +6.21436 q^{69} -2.63494 q^{71} -3.56409 q^{73} +3.67325 q^{75} -1.37211 q^{77} -6.55447 q^{79} +0.162065 q^{81} -0.649696 q^{83} +1.75631 q^{85} +5.73220 q^{87} +6.18665 q^{89} -4.11539 q^{93} +8.19350 q^{95} +18.1559 q^{97} -2.57707 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 3 q^{3} - 4 q^{5} - 15 q^{7} + 16 q^{9} - 15 q^{11} - 8 q^{15} + 2 q^{17} - 13 q^{19} + 3 q^{21} - 10 q^{23} + 23 q^{25} - 9 q^{27} + 25 q^{29} - 19 q^{31} + 24 q^{33} + 4 q^{35} + 2 q^{37} - 30 q^{41}+ \cdots - 70 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.05916 −0.611508 −0.305754 0.952111i \(-0.598908\pi\)
−0.305754 + 0.952111i \(0.598908\pi\)
\(4\) 0 0
\(5\) 1.23771 0.553521 0.276760 0.960939i \(-0.410739\pi\)
0.276760 + 0.960939i \(0.410739\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −1.87817 −0.626058
\(10\) 0 0
\(11\) 1.37211 0.413707 0.206854 0.978372i \(-0.433678\pi\)
0.206854 + 0.978372i \(0.433678\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −1.31094 −0.338482
\(16\) 0 0
\(17\) 1.41900 0.344159 0.172079 0.985083i \(-0.444951\pi\)
0.172079 + 0.985083i \(0.444951\pi\)
\(18\) 0 0
\(19\) 6.61988 1.51871 0.759353 0.650679i \(-0.225516\pi\)
0.759353 + 0.650679i \(0.225516\pi\)
\(20\) 0 0
\(21\) 1.05916 0.231128
\(22\) 0 0
\(23\) −5.86724 −1.22340 −0.611702 0.791089i \(-0.709515\pi\)
−0.611702 + 0.791089i \(0.709515\pi\)
\(24\) 0 0
\(25\) −3.46807 −0.693615
\(26\) 0 0
\(27\) 5.16678 0.994347
\(28\) 0 0
\(29\) −5.41201 −1.00498 −0.502492 0.864582i \(-0.667584\pi\)
−0.502492 + 0.864582i \(0.667584\pi\)
\(30\) 0 0
\(31\) 3.88551 0.697859 0.348929 0.937149i \(-0.386545\pi\)
0.348929 + 0.937149i \(0.386545\pi\)
\(32\) 0 0
\(33\) −1.45329 −0.252985
\(34\) 0 0
\(35\) −1.23771 −0.209211
\(36\) 0 0
\(37\) −0.373505 −0.0614038 −0.0307019 0.999529i \(-0.509774\pi\)
−0.0307019 + 0.999529i \(0.509774\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.42901 0.223174 0.111587 0.993755i \(-0.464407\pi\)
0.111587 + 0.993755i \(0.464407\pi\)
\(42\) 0 0
\(43\) −5.83736 −0.890189 −0.445095 0.895484i \(-0.646830\pi\)
−0.445095 + 0.895484i \(0.646830\pi\)
\(44\) 0 0
\(45\) −2.32464 −0.346536
\(46\) 0 0
\(47\) 0.595667 0.0868869 0.0434435 0.999056i \(-0.486167\pi\)
0.0434435 + 0.999056i \(0.486167\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −1.50295 −0.210456
\(52\) 0 0
\(53\) 4.15776 0.571112 0.285556 0.958362i \(-0.407822\pi\)
0.285556 + 0.958362i \(0.407822\pi\)
\(54\) 0 0
\(55\) 1.69828 0.228996
\(56\) 0 0
\(57\) −7.01153 −0.928700
\(58\) 0 0
\(59\) −0.154867 −0.0201619 −0.0100810 0.999949i \(-0.503209\pi\)
−0.0100810 + 0.999949i \(0.503209\pi\)
\(60\) 0 0
\(61\) 2.86393 0.366688 0.183344 0.983049i \(-0.441308\pi\)
0.183344 + 0.983049i \(0.441308\pi\)
\(62\) 0 0
\(63\) 1.87817 0.236628
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −13.3682 −1.63319 −0.816595 0.577211i \(-0.804141\pi\)
−0.816595 + 0.577211i \(0.804141\pi\)
\(68\) 0 0
\(69\) 6.21436 0.748121
\(70\) 0 0
\(71\) −2.63494 −0.312710 −0.156355 0.987701i \(-0.549974\pi\)
−0.156355 + 0.987701i \(0.549974\pi\)
\(72\) 0 0
\(73\) −3.56409 −0.417145 −0.208572 0.978007i \(-0.566882\pi\)
−0.208572 + 0.978007i \(0.566882\pi\)
\(74\) 0 0
\(75\) 3.67325 0.424151
\(76\) 0 0
\(77\) −1.37211 −0.156367
\(78\) 0 0
\(79\) −6.55447 −0.737436 −0.368718 0.929541i \(-0.620203\pi\)
−0.368718 + 0.929541i \(0.620203\pi\)
\(80\) 0 0
\(81\) 0.162065 0.0180072
\(82\) 0 0
\(83\) −0.649696 −0.0713134 −0.0356567 0.999364i \(-0.511352\pi\)
−0.0356567 + 0.999364i \(0.511352\pi\)
\(84\) 0 0
\(85\) 1.75631 0.190499
\(86\) 0 0
\(87\) 5.73220 0.614556
\(88\) 0 0
\(89\) 6.18665 0.655783 0.327892 0.944715i \(-0.393662\pi\)
0.327892 + 0.944715i \(0.393662\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −4.11539 −0.426746
\(94\) 0 0
\(95\) 8.19350 0.840635
\(96\) 0 0
\(97\) 18.1559 1.84346 0.921728 0.387836i \(-0.126777\pi\)
0.921728 + 0.387836i \(0.126777\pi\)
\(98\) 0 0
\(99\) −2.57707 −0.259005
\(100\) 0 0
\(101\) −7.85848 −0.781948 −0.390974 0.920402i \(-0.627862\pi\)
−0.390974 + 0.920402i \(0.627862\pi\)
\(102\) 0 0
\(103\) 15.9947 1.57601 0.788004 0.615670i \(-0.211115\pi\)
0.788004 + 0.615670i \(0.211115\pi\)
\(104\) 0 0
\(105\) 1.31094 0.127934
\(106\) 0 0
\(107\) 0.184176 0.0178050 0.00890248 0.999960i \(-0.497166\pi\)
0.00890248 + 0.999960i \(0.497166\pi\)
\(108\) 0 0
\(109\) 0.0168999 0.00161872 0.000809360 1.00000i \(-0.499742\pi\)
0.000809360 1.00000i \(0.499742\pi\)
\(110\) 0 0
\(111\) 0.395602 0.0375489
\(112\) 0 0
\(113\) 15.2006 1.42996 0.714978 0.699147i \(-0.246437\pi\)
0.714978 + 0.699147i \(0.246437\pi\)
\(114\) 0 0
\(115\) −7.26194 −0.677179
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.41900 −0.130080
\(120\) 0 0
\(121\) −9.11731 −0.828846
\(122\) 0 0
\(123\) −1.51355 −0.136472
\(124\) 0 0
\(125\) −10.4810 −0.937451
\(126\) 0 0
\(127\) −18.1868 −1.61382 −0.806910 0.590675i \(-0.798862\pi\)
−0.806910 + 0.590675i \(0.798862\pi\)
\(128\) 0 0
\(129\) 6.18271 0.544358
\(130\) 0 0
\(131\) −12.4168 −1.08486 −0.542430 0.840101i \(-0.682495\pi\)
−0.542430 + 0.840101i \(0.682495\pi\)
\(132\) 0 0
\(133\) −6.61988 −0.574017
\(134\) 0 0
\(135\) 6.39498 0.550392
\(136\) 0 0
\(137\) 3.95141 0.337592 0.168796 0.985651i \(-0.446012\pi\)
0.168796 + 0.985651i \(0.446012\pi\)
\(138\) 0 0
\(139\) −12.7364 −1.08028 −0.540142 0.841574i \(-0.681630\pi\)
−0.540142 + 0.841574i \(0.681630\pi\)
\(140\) 0 0
\(141\) −0.630908 −0.0531320
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −6.69850 −0.556280
\(146\) 0 0
\(147\) −1.05916 −0.0873583
\(148\) 0 0
\(149\) 15.2204 1.24691 0.623453 0.781861i \(-0.285729\pi\)
0.623453 + 0.781861i \(0.285729\pi\)
\(150\) 0 0
\(151\) −2.99459 −0.243697 −0.121848 0.992549i \(-0.538882\pi\)
−0.121848 + 0.992549i \(0.538882\pi\)
\(152\) 0 0
\(153\) −2.66514 −0.215463
\(154\) 0 0
\(155\) 4.80914 0.386279
\(156\) 0 0
\(157\) 23.6841 1.89020 0.945098 0.326786i \(-0.105966\pi\)
0.945098 + 0.326786i \(0.105966\pi\)
\(158\) 0 0
\(159\) −4.40374 −0.349239
\(160\) 0 0
\(161\) 5.86724 0.462403
\(162\) 0 0
\(163\) −22.3927 −1.75393 −0.876965 0.480555i \(-0.840435\pi\)
−0.876965 + 0.480555i \(0.840435\pi\)
\(164\) 0 0
\(165\) −1.79875 −0.140033
\(166\) 0 0
\(167\) 6.87488 0.531994 0.265997 0.963974i \(-0.414299\pi\)
0.265997 + 0.963974i \(0.414299\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −12.4333 −0.950798
\(172\) 0 0
\(173\) 1.08791 0.0827123 0.0413562 0.999144i \(-0.486832\pi\)
0.0413562 + 0.999144i \(0.486832\pi\)
\(174\) 0 0
\(175\) 3.46807 0.262162
\(176\) 0 0
\(177\) 0.164029 0.0123292
\(178\) 0 0
\(179\) −9.78052 −0.731030 −0.365515 0.930805i \(-0.619107\pi\)
−0.365515 + 0.930805i \(0.619107\pi\)
\(180\) 0 0
\(181\) 3.60262 0.267781 0.133890 0.990996i \(-0.457253\pi\)
0.133890 + 0.990996i \(0.457253\pi\)
\(182\) 0 0
\(183\) −3.03336 −0.224233
\(184\) 0 0
\(185\) −0.462291 −0.0339883
\(186\) 0 0
\(187\) 1.94703 0.142381
\(188\) 0 0
\(189\) −5.16678 −0.375828
\(190\) 0 0
\(191\) −12.2511 −0.886457 −0.443228 0.896409i \(-0.646167\pi\)
−0.443228 + 0.896409i \(0.646167\pi\)
\(192\) 0 0
\(193\) −1.07798 −0.0775948 −0.0387974 0.999247i \(-0.512353\pi\)
−0.0387974 + 0.999247i \(0.512353\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −9.50815 −0.677427 −0.338714 0.940890i \(-0.609992\pi\)
−0.338714 + 0.940890i \(0.609992\pi\)
\(198\) 0 0
\(199\) −0.893041 −0.0633060 −0.0316530 0.999499i \(-0.510077\pi\)
−0.0316530 + 0.999499i \(0.510077\pi\)
\(200\) 0 0
\(201\) 14.1591 0.998708
\(202\) 0 0
\(203\) 5.41201 0.379849
\(204\) 0 0
\(205\) 1.76870 0.123531
\(206\) 0 0
\(207\) 11.0197 0.765922
\(208\) 0 0
\(209\) 9.08322 0.628299
\(210\) 0 0
\(211\) −13.7160 −0.944248 −0.472124 0.881532i \(-0.656513\pi\)
−0.472124 + 0.881532i \(0.656513\pi\)
\(212\) 0 0
\(213\) 2.79083 0.191224
\(214\) 0 0
\(215\) −7.22496 −0.492738
\(216\) 0 0
\(217\) −3.88551 −0.263766
\(218\) 0 0
\(219\) 3.77495 0.255087
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 12.6297 0.845744 0.422872 0.906189i \(-0.361022\pi\)
0.422872 + 0.906189i \(0.361022\pi\)
\(224\) 0 0
\(225\) 6.51365 0.434243
\(226\) 0 0
\(227\) −16.1615 −1.07268 −0.536339 0.844003i \(-0.680193\pi\)
−0.536339 + 0.844003i \(0.680193\pi\)
\(228\) 0 0
\(229\) −5.98521 −0.395514 −0.197757 0.980251i \(-0.563366\pi\)
−0.197757 + 0.980251i \(0.563366\pi\)
\(230\) 0 0
\(231\) 1.45329 0.0956194
\(232\) 0 0
\(233\) 22.5399 1.47664 0.738319 0.674451i \(-0.235620\pi\)
0.738319 + 0.674451i \(0.235620\pi\)
\(234\) 0 0
\(235\) 0.737263 0.0480937
\(236\) 0 0
\(237\) 6.94225 0.450948
\(238\) 0 0
\(239\) 3.97115 0.256873 0.128436 0.991718i \(-0.459004\pi\)
0.128436 + 0.991718i \(0.459004\pi\)
\(240\) 0 0
\(241\) −24.2510 −1.56214 −0.781071 0.624442i \(-0.785327\pi\)
−0.781071 + 0.624442i \(0.785327\pi\)
\(242\) 0 0
\(243\) −15.6720 −1.00536
\(244\) 0 0
\(245\) 1.23771 0.0790744
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0.688134 0.0436087
\(250\) 0 0
\(251\) 9.40345 0.593541 0.296770 0.954949i \(-0.404090\pi\)
0.296770 + 0.954949i \(0.404090\pi\)
\(252\) 0 0
\(253\) −8.05050 −0.506131
\(254\) 0 0
\(255\) −1.86022 −0.116492
\(256\) 0 0
\(257\) −20.1983 −1.25993 −0.629967 0.776622i \(-0.716932\pi\)
−0.629967 + 0.776622i \(0.716932\pi\)
\(258\) 0 0
\(259\) 0.373505 0.0232085
\(260\) 0 0
\(261\) 10.1647 0.629179
\(262\) 0 0
\(263\) −12.6854 −0.782213 −0.391107 0.920345i \(-0.627908\pi\)
−0.391107 + 0.920345i \(0.627908\pi\)
\(264\) 0 0
\(265\) 5.14610 0.316122
\(266\) 0 0
\(267\) −6.55266 −0.401017
\(268\) 0 0
\(269\) −17.7217 −1.08051 −0.540255 0.841502i \(-0.681672\pi\)
−0.540255 + 0.841502i \(0.681672\pi\)
\(270\) 0 0
\(271\) −18.5887 −1.12918 −0.564591 0.825371i \(-0.690966\pi\)
−0.564591 + 0.825371i \(0.690966\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.75858 −0.286953
\(276\) 0 0
\(277\) 17.0438 1.02406 0.512032 0.858966i \(-0.328893\pi\)
0.512032 + 0.858966i \(0.328893\pi\)
\(278\) 0 0
\(279\) −7.29767 −0.436900
\(280\) 0 0
\(281\) −21.0737 −1.25715 −0.628575 0.777749i \(-0.716361\pi\)
−0.628575 + 0.777749i \(0.716361\pi\)
\(282\) 0 0
\(283\) 7.01726 0.417133 0.208566 0.978008i \(-0.433120\pi\)
0.208566 + 0.978008i \(0.433120\pi\)
\(284\) 0 0
\(285\) −8.67825 −0.514055
\(286\) 0 0
\(287\) −1.42901 −0.0843517
\(288\) 0 0
\(289\) −14.9864 −0.881555
\(290\) 0 0
\(291\) −19.2301 −1.12729
\(292\) 0 0
\(293\) −14.2645 −0.833342 −0.416671 0.909057i \(-0.636803\pi\)
−0.416671 + 0.909057i \(0.636803\pi\)
\(294\) 0 0
\(295\) −0.191680 −0.0111600
\(296\) 0 0
\(297\) 7.08940 0.411369
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 5.83736 0.336460
\(302\) 0 0
\(303\) 8.32341 0.478168
\(304\) 0 0
\(305\) 3.54471 0.202970
\(306\) 0 0
\(307\) −9.89226 −0.564581 −0.282291 0.959329i \(-0.591094\pi\)
−0.282291 + 0.959329i \(0.591094\pi\)
\(308\) 0 0
\(309\) −16.9410 −0.963741
\(310\) 0 0
\(311\) 6.47324 0.367064 0.183532 0.983014i \(-0.441247\pi\)
0.183532 + 0.983014i \(0.441247\pi\)
\(312\) 0 0
\(313\) −3.66440 −0.207124 −0.103562 0.994623i \(-0.533024\pi\)
−0.103562 + 0.994623i \(0.533024\pi\)
\(314\) 0 0
\(315\) 2.32464 0.130978
\(316\) 0 0
\(317\) −3.91107 −0.219668 −0.109834 0.993950i \(-0.535032\pi\)
−0.109834 + 0.993950i \(0.535032\pi\)
\(318\) 0 0
\(319\) −7.42588 −0.415770
\(320\) 0 0
\(321\) −0.195072 −0.0108879
\(322\) 0 0
\(323\) 9.39363 0.522676
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −0.0178998 −0.000989860 0
\(328\) 0 0
\(329\) −0.595667 −0.0328402
\(330\) 0 0
\(331\) −15.1164 −0.830874 −0.415437 0.909622i \(-0.636371\pi\)
−0.415437 + 0.909622i \(0.636371\pi\)
\(332\) 0 0
\(333\) 0.701507 0.0384424
\(334\) 0 0
\(335\) −16.5460 −0.904005
\(336\) 0 0
\(337\) −18.6325 −1.01498 −0.507488 0.861659i \(-0.669426\pi\)
−0.507488 + 0.861659i \(0.669426\pi\)
\(338\) 0 0
\(339\) −16.1000 −0.874429
\(340\) 0 0
\(341\) 5.33136 0.288709
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 7.69157 0.414100
\(346\) 0 0
\(347\) 8.93281 0.479539 0.239769 0.970830i \(-0.422928\pi\)
0.239769 + 0.970830i \(0.422928\pi\)
\(348\) 0 0
\(349\) 9.08280 0.486191 0.243096 0.970002i \(-0.421837\pi\)
0.243096 + 0.970002i \(0.421837\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.80414 −0.362148 −0.181074 0.983469i \(-0.557957\pi\)
−0.181074 + 0.983469i \(0.557957\pi\)
\(354\) 0 0
\(355\) −3.26129 −0.173091
\(356\) 0 0
\(357\) 1.50295 0.0795448
\(358\) 0 0
\(359\) 12.1227 0.639813 0.319906 0.947449i \(-0.396349\pi\)
0.319906 + 0.947449i \(0.396349\pi\)
\(360\) 0 0
\(361\) 24.8228 1.30647
\(362\) 0 0
\(363\) 9.65671 0.506846
\(364\) 0 0
\(365\) −4.41131 −0.230898
\(366\) 0 0
\(367\) −7.97685 −0.416388 −0.208194 0.978088i \(-0.566759\pi\)
−0.208194 + 0.978088i \(0.566759\pi\)
\(368\) 0 0
\(369\) −2.68393 −0.139720
\(370\) 0 0
\(371\) −4.15776 −0.215860
\(372\) 0 0
\(373\) 23.3848 1.21082 0.605409 0.795915i \(-0.293010\pi\)
0.605409 + 0.795915i \(0.293010\pi\)
\(374\) 0 0
\(375\) 11.1011 0.573259
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −13.4075 −0.688700 −0.344350 0.938841i \(-0.611901\pi\)
−0.344350 + 0.938841i \(0.611901\pi\)
\(380\) 0 0
\(381\) 19.2628 0.986863
\(382\) 0 0
\(383\) 15.6316 0.798737 0.399369 0.916790i \(-0.369229\pi\)
0.399369 + 0.916790i \(0.369229\pi\)
\(384\) 0 0
\(385\) −1.69828 −0.0865522
\(386\) 0 0
\(387\) 10.9636 0.557310
\(388\) 0 0
\(389\) 28.0188 1.42061 0.710306 0.703893i \(-0.248557\pi\)
0.710306 + 0.703893i \(0.248557\pi\)
\(390\) 0 0
\(391\) −8.32562 −0.421045
\(392\) 0 0
\(393\) 13.1514 0.663400
\(394\) 0 0
\(395\) −8.11254 −0.408186
\(396\) 0 0
\(397\) 2.48649 0.124793 0.0623966 0.998051i \(-0.480126\pi\)
0.0623966 + 0.998051i \(0.480126\pi\)
\(398\) 0 0
\(399\) 7.01153 0.351016
\(400\) 0 0
\(401\) −21.1731 −1.05734 −0.528668 0.848829i \(-0.677308\pi\)
−0.528668 + 0.848829i \(0.677308\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.200589 0.00996734
\(406\) 0 0
\(407\) −0.512490 −0.0254032
\(408\) 0 0
\(409\) 3.01891 0.149276 0.0746378 0.997211i \(-0.476220\pi\)
0.0746378 + 0.997211i \(0.476220\pi\)
\(410\) 0 0
\(411\) −4.18519 −0.206440
\(412\) 0 0
\(413\) 0.154867 0.00762049
\(414\) 0 0
\(415\) −0.804136 −0.0394735
\(416\) 0 0
\(417\) 13.4899 0.660603
\(418\) 0 0
\(419\) −25.5288 −1.24716 −0.623582 0.781758i \(-0.714323\pi\)
−0.623582 + 0.781758i \(0.714323\pi\)
\(420\) 0 0
\(421\) −17.7108 −0.863169 −0.431585 0.902072i \(-0.642045\pi\)
−0.431585 + 0.902072i \(0.642045\pi\)
\(422\) 0 0
\(423\) −1.11877 −0.0543963
\(424\) 0 0
\(425\) −4.92121 −0.238714
\(426\) 0 0
\(427\) −2.86393 −0.138595
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −24.4492 −1.17768 −0.588838 0.808251i \(-0.700414\pi\)
−0.588838 + 0.808251i \(0.700414\pi\)
\(432\) 0 0
\(433\) 27.0243 1.29870 0.649351 0.760489i \(-0.275040\pi\)
0.649351 + 0.760489i \(0.275040\pi\)
\(434\) 0 0
\(435\) 7.09480 0.340170
\(436\) 0 0
\(437\) −38.8404 −1.85799
\(438\) 0 0
\(439\) −18.7592 −0.895326 −0.447663 0.894202i \(-0.647744\pi\)
−0.447663 + 0.894202i \(0.647744\pi\)
\(440\) 0 0
\(441\) −1.87817 −0.0894369
\(442\) 0 0
\(443\) 11.7308 0.557346 0.278673 0.960386i \(-0.410105\pi\)
0.278673 + 0.960386i \(0.410105\pi\)
\(444\) 0 0
\(445\) 7.65728 0.362990
\(446\) 0 0
\(447\) −16.1209 −0.762493
\(448\) 0 0
\(449\) −28.1773 −1.32977 −0.664884 0.746947i \(-0.731519\pi\)
−0.664884 + 0.746947i \(0.731519\pi\)
\(450\) 0 0
\(451\) 1.96076 0.0923285
\(452\) 0 0
\(453\) 3.17176 0.149022
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −30.8561 −1.44339 −0.721694 0.692213i \(-0.756636\pi\)
−0.721694 + 0.692213i \(0.756636\pi\)
\(458\) 0 0
\(459\) 7.33168 0.342213
\(460\) 0 0
\(461\) −14.3631 −0.668954 −0.334477 0.942404i \(-0.608560\pi\)
−0.334477 + 0.942404i \(0.608560\pi\)
\(462\) 0 0
\(463\) −7.95490 −0.369696 −0.184848 0.982767i \(-0.559179\pi\)
−0.184848 + 0.982767i \(0.559179\pi\)
\(464\) 0 0
\(465\) −5.09366 −0.236213
\(466\) 0 0
\(467\) 20.4167 0.944770 0.472385 0.881392i \(-0.343393\pi\)
0.472385 + 0.881392i \(0.343393\pi\)
\(468\) 0 0
\(469\) 13.3682 0.617288
\(470\) 0 0
\(471\) −25.0853 −1.15587
\(472\) 0 0
\(473\) −8.00951 −0.368278
\(474\) 0 0
\(475\) −22.9582 −1.05340
\(476\) 0 0
\(477\) −7.80900 −0.357549
\(478\) 0 0
\(479\) 27.6412 1.26296 0.631480 0.775393i \(-0.282448\pi\)
0.631480 + 0.775393i \(0.282448\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −6.21436 −0.282763
\(484\) 0 0
\(485\) 22.4718 1.02039
\(486\) 0 0
\(487\) 22.5413 1.02144 0.510722 0.859746i \(-0.329378\pi\)
0.510722 + 0.859746i \(0.329378\pi\)
\(488\) 0 0
\(489\) 23.7175 1.07254
\(490\) 0 0
\(491\) −20.2460 −0.913690 −0.456845 0.889546i \(-0.651021\pi\)
−0.456845 + 0.889546i \(0.651021\pi\)
\(492\) 0 0
\(493\) −7.67966 −0.345874
\(494\) 0 0
\(495\) −3.18966 −0.143365
\(496\) 0 0
\(497\) 2.63494 0.118193
\(498\) 0 0
\(499\) 2.39238 0.107098 0.0535489 0.998565i \(-0.482947\pi\)
0.0535489 + 0.998565i \(0.482947\pi\)
\(500\) 0 0
\(501\) −7.28161 −0.325319
\(502\) 0 0
\(503\) −26.6591 −1.18867 −0.594335 0.804217i \(-0.702585\pi\)
−0.594335 + 0.804217i \(0.702585\pi\)
\(504\) 0 0
\(505\) −9.72653 −0.432825
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 41.2970 1.83046 0.915228 0.402937i \(-0.132011\pi\)
0.915228 + 0.402937i \(0.132011\pi\)
\(510\) 0 0
\(511\) 3.56409 0.157666
\(512\) 0 0
\(513\) 34.2035 1.51012
\(514\) 0 0
\(515\) 19.7969 0.872354
\(516\) 0 0
\(517\) 0.817321 0.0359458
\(518\) 0 0
\(519\) −1.15227 −0.0505792
\(520\) 0 0
\(521\) −12.4060 −0.543516 −0.271758 0.962366i \(-0.587605\pi\)
−0.271758 + 0.962366i \(0.587605\pi\)
\(522\) 0 0
\(523\) −22.2391 −0.972448 −0.486224 0.873834i \(-0.661626\pi\)
−0.486224 + 0.873834i \(0.661626\pi\)
\(524\) 0 0
\(525\) −3.67325 −0.160314
\(526\) 0 0
\(527\) 5.51355 0.240174
\(528\) 0 0
\(529\) 11.4245 0.496715
\(530\) 0 0
\(531\) 0.290867 0.0126225
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0.227957 0.00985542
\(536\) 0 0
\(537\) 10.3592 0.447031
\(538\) 0 0
\(539\) 1.37211 0.0591010
\(540\) 0 0
\(541\) −26.9699 −1.15953 −0.579764 0.814785i \(-0.696855\pi\)
−0.579764 + 0.814785i \(0.696855\pi\)
\(542\) 0 0
\(543\) −3.81576 −0.163750
\(544\) 0 0
\(545\) 0.0209172 0.000895996 0
\(546\) 0 0
\(547\) −13.6736 −0.584642 −0.292321 0.956320i \(-0.594428\pi\)
−0.292321 + 0.956320i \(0.594428\pi\)
\(548\) 0 0
\(549\) −5.37895 −0.229568
\(550\) 0 0
\(551\) −35.8269 −1.52628
\(552\) 0 0
\(553\) 6.55447 0.278725
\(554\) 0 0
\(555\) 0.489641 0.0207841
\(556\) 0 0
\(557\) −15.3542 −0.650577 −0.325288 0.945615i \(-0.605461\pi\)
−0.325288 + 0.945615i \(0.605461\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −2.06222 −0.0870671
\(562\) 0 0
\(563\) 6.00693 0.253162 0.126581 0.991956i \(-0.459600\pi\)
0.126581 + 0.991956i \(0.459600\pi\)
\(564\) 0 0
\(565\) 18.8140 0.791511
\(566\) 0 0
\(567\) −0.162065 −0.00680607
\(568\) 0 0
\(569\) 27.8052 1.16565 0.582827 0.812596i \(-0.301947\pi\)
0.582827 + 0.812596i \(0.301947\pi\)
\(570\) 0 0
\(571\) 35.0285 1.46590 0.732948 0.680285i \(-0.238144\pi\)
0.732948 + 0.680285i \(0.238144\pi\)
\(572\) 0 0
\(573\) 12.9759 0.542075
\(574\) 0 0
\(575\) 20.3480 0.848570
\(576\) 0 0
\(577\) 5.03316 0.209533 0.104767 0.994497i \(-0.466590\pi\)
0.104767 + 0.994497i \(0.466590\pi\)
\(578\) 0 0
\(579\) 1.14176 0.0474498
\(580\) 0 0
\(581\) 0.649696 0.0269539
\(582\) 0 0
\(583\) 5.70491 0.236273
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.7257 0.649067 0.324534 0.945874i \(-0.394793\pi\)
0.324534 + 0.945874i \(0.394793\pi\)
\(588\) 0 0
\(589\) 25.7216 1.05984
\(590\) 0 0
\(591\) 10.0707 0.414252
\(592\) 0 0
\(593\) −42.8984 −1.76162 −0.880812 0.473466i \(-0.843003\pi\)
−0.880812 + 0.473466i \(0.843003\pi\)
\(594\) 0 0
\(595\) −1.75631 −0.0720019
\(596\) 0 0
\(597\) 0.945876 0.0387121
\(598\) 0 0
\(599\) −38.6509 −1.57923 −0.789617 0.613600i \(-0.789721\pi\)
−0.789617 + 0.613600i \(0.789721\pi\)
\(600\) 0 0
\(601\) 0.845721 0.0344977 0.0172488 0.999851i \(-0.494509\pi\)
0.0172488 + 0.999851i \(0.494509\pi\)
\(602\) 0 0
\(603\) 25.1079 1.02247
\(604\) 0 0
\(605\) −11.2846 −0.458784
\(606\) 0 0
\(607\) −8.66279 −0.351612 −0.175806 0.984425i \(-0.556253\pi\)
−0.175806 + 0.984425i \(0.556253\pi\)
\(608\) 0 0
\(609\) −5.73220 −0.232280
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −8.03586 −0.324565 −0.162283 0.986744i \(-0.551886\pi\)
−0.162283 + 0.986744i \(0.551886\pi\)
\(614\) 0 0
\(615\) −1.87334 −0.0755403
\(616\) 0 0
\(617\) 40.7197 1.63931 0.819657 0.572855i \(-0.194164\pi\)
0.819657 + 0.572855i \(0.194164\pi\)
\(618\) 0 0
\(619\) 15.6247 0.628010 0.314005 0.949421i \(-0.398329\pi\)
0.314005 + 0.949421i \(0.398329\pi\)
\(620\) 0 0
\(621\) −30.3147 −1.21649
\(622\) 0 0
\(623\) −6.18665 −0.247863
\(624\) 0 0
\(625\) 4.36789 0.174716
\(626\) 0 0
\(627\) −9.62060 −0.384210
\(628\) 0 0
\(629\) −0.530005 −0.0211327
\(630\) 0 0
\(631\) −38.9641 −1.55114 −0.775568 0.631265i \(-0.782536\pi\)
−0.775568 + 0.631265i \(0.782536\pi\)
\(632\) 0 0
\(633\) 14.5275 0.577415
\(634\) 0 0
\(635\) −22.5100 −0.893283
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 4.94887 0.195774
\(640\) 0 0
\(641\) 12.2964 0.485680 0.242840 0.970066i \(-0.421921\pi\)
0.242840 + 0.970066i \(0.421921\pi\)
\(642\) 0 0
\(643\) −32.1534 −1.26801 −0.634003 0.773330i \(-0.718589\pi\)
−0.634003 + 0.773330i \(0.718589\pi\)
\(644\) 0 0
\(645\) 7.65241 0.301313
\(646\) 0 0
\(647\) −10.8447 −0.426348 −0.213174 0.977014i \(-0.568380\pi\)
−0.213174 + 0.977014i \(0.568380\pi\)
\(648\) 0 0
\(649\) −0.212494 −0.00834113
\(650\) 0 0
\(651\) 4.11539 0.161295
\(652\) 0 0
\(653\) −12.4228 −0.486143 −0.243071 0.970008i \(-0.578155\pi\)
−0.243071 + 0.970008i \(0.578155\pi\)
\(654\) 0 0
\(655\) −15.3684 −0.600492
\(656\) 0 0
\(657\) 6.69398 0.261157
\(658\) 0 0
\(659\) −16.0704 −0.626016 −0.313008 0.949751i \(-0.601337\pi\)
−0.313008 + 0.949751i \(0.601337\pi\)
\(660\) 0 0
\(661\) −26.2977 −1.02286 −0.511431 0.859324i \(-0.670884\pi\)
−0.511431 + 0.859324i \(0.670884\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.19350 −0.317730
\(666\) 0 0
\(667\) 31.7535 1.22950
\(668\) 0 0
\(669\) −13.3769 −0.517179
\(670\) 0 0
\(671\) 3.92963 0.151702
\(672\) 0 0
\(673\) 26.6022 1.02544 0.512719 0.858556i \(-0.328638\pi\)
0.512719 + 0.858556i \(0.328638\pi\)
\(674\) 0 0
\(675\) −17.9188 −0.689694
\(676\) 0 0
\(677\) 33.9152 1.30347 0.651734 0.758447i \(-0.274042\pi\)
0.651734 + 0.758447i \(0.274042\pi\)
\(678\) 0 0
\(679\) −18.1559 −0.696761
\(680\) 0 0
\(681\) 17.1177 0.655951
\(682\) 0 0
\(683\) −9.67363 −0.370151 −0.185076 0.982724i \(-0.559253\pi\)
−0.185076 + 0.982724i \(0.559253\pi\)
\(684\) 0 0
\(685\) 4.89070 0.186864
\(686\) 0 0
\(687\) 6.33931 0.241860
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 41.8284 1.59123 0.795614 0.605804i \(-0.207149\pi\)
0.795614 + 0.605804i \(0.207149\pi\)
\(692\) 0 0
\(693\) 2.57707 0.0978946
\(694\) 0 0
\(695\) −15.7639 −0.597960
\(696\) 0 0
\(697\) 2.02777 0.0768071
\(698\) 0 0
\(699\) −23.8734 −0.902976
\(700\) 0 0
\(701\) −49.1577 −1.85666 −0.928329 0.371759i \(-0.878755\pi\)
−0.928329 + 0.371759i \(0.878755\pi\)
\(702\) 0 0
\(703\) −2.47256 −0.0932543
\(704\) 0 0
\(705\) −0.780881 −0.0294097
\(706\) 0 0
\(707\) 7.85848 0.295549
\(708\) 0 0
\(709\) −9.67548 −0.363370 −0.181685 0.983357i \(-0.558155\pi\)
−0.181685 + 0.983357i \(0.558155\pi\)
\(710\) 0 0
\(711\) 12.3104 0.461678
\(712\) 0 0
\(713\) −22.7972 −0.853763
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −4.20610 −0.157080
\(718\) 0 0
\(719\) −47.0901 −1.75617 −0.878083 0.478509i \(-0.841177\pi\)
−0.878083 + 0.478509i \(0.841177\pi\)
\(720\) 0 0
\(721\) −15.9947 −0.595675
\(722\) 0 0
\(723\) 25.6857 0.955263
\(724\) 0 0
\(725\) 18.7692 0.697072
\(726\) 0 0
\(727\) −10.5312 −0.390581 −0.195291 0.980745i \(-0.562565\pi\)
−0.195291 + 0.980745i \(0.562565\pi\)
\(728\) 0 0
\(729\) 16.1130 0.596778
\(730\) 0 0
\(731\) −8.28323 −0.306366
\(732\) 0 0
\(733\) −39.5113 −1.45938 −0.729692 0.683776i \(-0.760336\pi\)
−0.729692 + 0.683776i \(0.760336\pi\)
\(734\) 0 0
\(735\) −1.31094 −0.0483546
\(736\) 0 0
\(737\) −18.3427 −0.675662
\(738\) 0 0
\(739\) 7.50842 0.276202 0.138101 0.990418i \(-0.455900\pi\)
0.138101 + 0.990418i \(0.455900\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 4.15873 0.152569 0.0762845 0.997086i \(-0.475694\pi\)
0.0762845 + 0.997086i \(0.475694\pi\)
\(744\) 0 0
\(745\) 18.8385 0.690189
\(746\) 0 0
\(747\) 1.22024 0.0446464
\(748\) 0 0
\(749\) −0.184176 −0.00672964
\(750\) 0 0
\(751\) 9.26056 0.337923 0.168961 0.985623i \(-0.445959\pi\)
0.168961 + 0.985623i \(0.445959\pi\)
\(752\) 0 0
\(753\) −9.95978 −0.362955
\(754\) 0 0
\(755\) −3.70644 −0.134891
\(756\) 0 0
\(757\) 28.8481 1.04850 0.524251 0.851564i \(-0.324345\pi\)
0.524251 + 0.851564i \(0.324345\pi\)
\(758\) 0 0
\(759\) 8.52679 0.309503
\(760\) 0 0
\(761\) 8.91399 0.323132 0.161566 0.986862i \(-0.448346\pi\)
0.161566 + 0.986862i \(0.448346\pi\)
\(762\) 0 0
\(763\) −0.0168999 −0.000611819 0
\(764\) 0 0
\(765\) −3.29867 −0.119264
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 9.64102 0.347664 0.173832 0.984775i \(-0.444385\pi\)
0.173832 + 0.984775i \(0.444385\pi\)
\(770\) 0 0
\(771\) 21.3933 0.770460
\(772\) 0 0
\(773\) −6.24691 −0.224686 −0.112343 0.993670i \(-0.535835\pi\)
−0.112343 + 0.993670i \(0.535835\pi\)
\(774\) 0 0
\(775\) −13.4752 −0.484045
\(776\) 0 0
\(777\) −0.395602 −0.0141922
\(778\) 0 0
\(779\) 9.45986 0.338935
\(780\) 0 0
\(781\) −3.61543 −0.129370
\(782\) 0 0
\(783\) −27.9627 −0.999304
\(784\) 0 0
\(785\) 29.3141 1.04626
\(786\) 0 0
\(787\) −23.4253 −0.835020 −0.417510 0.908672i \(-0.637097\pi\)
−0.417510 + 0.908672i \(0.637097\pi\)
\(788\) 0 0
\(789\) 13.4359 0.478330
\(790\) 0 0
\(791\) −15.2006 −0.540473
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −5.45056 −0.193311
\(796\) 0 0
\(797\) −44.9075 −1.59070 −0.795352 0.606147i \(-0.792714\pi\)
−0.795352 + 0.606147i \(0.792714\pi\)
\(798\) 0 0
\(799\) 0.845253 0.0299029
\(800\) 0 0
\(801\) −11.6196 −0.410558
\(802\) 0 0
\(803\) −4.89033 −0.172576
\(804\) 0 0
\(805\) 7.26194 0.255950
\(806\) 0 0
\(807\) 18.7701 0.660740
\(808\) 0 0
\(809\) 10.2072 0.358865 0.179433 0.983770i \(-0.442574\pi\)
0.179433 + 0.983770i \(0.442574\pi\)
\(810\) 0 0
\(811\) −4.52825 −0.159008 −0.0795041 0.996835i \(-0.525334\pi\)
−0.0795041 + 0.996835i \(0.525334\pi\)
\(812\) 0 0
\(813\) 19.6884 0.690503
\(814\) 0 0
\(815\) −27.7156 −0.970836
\(816\) 0 0
\(817\) −38.6426 −1.35193
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −25.0809 −0.875331 −0.437665 0.899138i \(-0.644195\pi\)
−0.437665 + 0.899138i \(0.644195\pi\)
\(822\) 0 0
\(823\) 25.3258 0.882801 0.441400 0.897310i \(-0.354482\pi\)
0.441400 + 0.897310i \(0.354482\pi\)
\(824\) 0 0
\(825\) 5.04011 0.175474
\(826\) 0 0
\(827\) −28.5573 −0.993035 −0.496517 0.868027i \(-0.665388\pi\)
−0.496517 + 0.868027i \(0.665388\pi\)
\(828\) 0 0
\(829\) 9.91533 0.344374 0.172187 0.985064i \(-0.444917\pi\)
0.172187 + 0.985064i \(0.444917\pi\)
\(830\) 0 0
\(831\) −18.0522 −0.626223
\(832\) 0 0
\(833\) 1.41900 0.0491655
\(834\) 0 0
\(835\) 8.50911 0.294470
\(836\) 0 0
\(837\) 20.0756 0.693914
\(838\) 0 0
\(839\) −49.2813 −1.70138 −0.850690 0.525668i \(-0.823816\pi\)
−0.850690 + 0.525668i \(0.823816\pi\)
\(840\) 0 0
\(841\) 0.289845 0.00999466
\(842\) 0 0
\(843\) 22.3204 0.768757
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 9.11731 0.313274
\(848\) 0 0
\(849\) −7.43241 −0.255080
\(850\) 0 0
\(851\) 2.19144 0.0751216
\(852\) 0 0
\(853\) −37.8435 −1.29574 −0.647869 0.761752i \(-0.724340\pi\)
−0.647869 + 0.761752i \(0.724340\pi\)
\(854\) 0 0
\(855\) −15.3888 −0.526287
\(856\) 0 0
\(857\) −19.8967 −0.679659 −0.339830 0.940487i \(-0.610369\pi\)
−0.339830 + 0.940487i \(0.610369\pi\)
\(858\) 0 0
\(859\) −34.4152 −1.17423 −0.587115 0.809503i \(-0.699736\pi\)
−0.587115 + 0.809503i \(0.699736\pi\)
\(860\) 0 0
\(861\) 1.51355 0.0515817
\(862\) 0 0
\(863\) −23.8186 −0.810794 −0.405397 0.914141i \(-0.632867\pi\)
−0.405397 + 0.914141i \(0.632867\pi\)
\(864\) 0 0
\(865\) 1.34652 0.0457830
\(866\) 0 0
\(867\) 15.8731 0.539078
\(868\) 0 0
\(869\) −8.99347 −0.305083
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −34.1000 −1.15411
\(874\) 0 0
\(875\) 10.4810 0.354323
\(876\) 0 0
\(877\) −27.3355 −0.923054 −0.461527 0.887126i \(-0.652698\pi\)
−0.461527 + 0.887126i \(0.652698\pi\)
\(878\) 0 0
\(879\) 15.1084 0.509595
\(880\) 0 0
\(881\) −50.6952 −1.70796 −0.853982 0.520303i \(-0.825819\pi\)
−0.853982 + 0.520303i \(0.825819\pi\)
\(882\) 0 0
\(883\) 12.1465 0.408762 0.204381 0.978891i \(-0.434482\pi\)
0.204381 + 0.978891i \(0.434482\pi\)
\(884\) 0 0
\(885\) 0.203020 0.00682445
\(886\) 0 0
\(887\) 36.0249 1.20960 0.604799 0.796378i \(-0.293253\pi\)
0.604799 + 0.796378i \(0.293253\pi\)
\(888\) 0 0
\(889\) 18.1868 0.609966
\(890\) 0 0
\(891\) 0.222371 0.00744970
\(892\) 0 0
\(893\) 3.94324 0.131956
\(894\) 0 0
\(895\) −12.1054 −0.404640
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −21.0284 −0.701337
\(900\) 0 0
\(901\) 5.89987 0.196553
\(902\) 0 0
\(903\) −6.18271 −0.205748
\(904\) 0 0
\(905\) 4.45900 0.148222
\(906\) 0 0
\(907\) 58.5463 1.94400 0.971999 0.234984i \(-0.0755038\pi\)
0.971999 + 0.234984i \(0.0755038\pi\)
\(908\) 0 0
\(909\) 14.7596 0.489545
\(910\) 0 0
\(911\) −25.2015 −0.834962 −0.417481 0.908686i \(-0.637087\pi\)
−0.417481 + 0.908686i \(0.637087\pi\)
\(912\) 0 0
\(913\) −0.891456 −0.0295029
\(914\) 0 0
\(915\) −3.75442 −0.124117
\(916\) 0 0
\(917\) 12.4168 0.410038
\(918\) 0 0
\(919\) 41.0864 1.35531 0.677657 0.735378i \(-0.262995\pi\)
0.677657 + 0.735378i \(0.262995\pi\)
\(920\) 0 0
\(921\) 10.4775 0.345246
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 1.29534 0.0425906
\(926\) 0 0
\(927\) −30.0409 −0.986673
\(928\) 0 0
\(929\) 38.9384 1.27753 0.638764 0.769402i \(-0.279446\pi\)
0.638764 + 0.769402i \(0.279446\pi\)
\(930\) 0 0
\(931\) 6.61988 0.216958
\(932\) 0 0
\(933\) −6.85622 −0.224463
\(934\) 0 0
\(935\) 2.40986 0.0788109
\(936\) 0 0
\(937\) 3.23744 0.105763 0.0528813 0.998601i \(-0.483160\pi\)
0.0528813 + 0.998601i \(0.483160\pi\)
\(938\) 0 0
\(939\) 3.88120 0.126658
\(940\) 0 0
\(941\) 2.10528 0.0686303 0.0343151 0.999411i \(-0.489075\pi\)
0.0343151 + 0.999411i \(0.489075\pi\)
\(942\) 0 0
\(943\) −8.38432 −0.273031
\(944\) 0 0
\(945\) −6.39498 −0.208029
\(946\) 0 0
\(947\) −15.0716 −0.489760 −0.244880 0.969553i \(-0.578749\pi\)
−0.244880 + 0.969553i \(0.578749\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 4.14246 0.134329
\(952\) 0 0
\(953\) −59.5826 −1.93007 −0.965035 0.262121i \(-0.915578\pi\)
−0.965035 + 0.262121i \(0.915578\pi\)
\(954\) 0 0
\(955\) −15.1633 −0.490672
\(956\) 0 0
\(957\) 7.86522 0.254246
\(958\) 0 0
\(959\) −3.95141 −0.127598
\(960\) 0 0
\(961\) −15.9028 −0.512993
\(962\) 0 0
\(963\) −0.345915 −0.0111469
\(964\) 0 0
\(965\) −1.33423 −0.0429504
\(966\) 0 0
\(967\) −37.0692 −1.19207 −0.596033 0.802960i \(-0.703257\pi\)
−0.596033 + 0.802960i \(0.703257\pi\)
\(968\) 0 0
\(969\) −9.94938 −0.319620
\(970\) 0 0
\(971\) 51.7412 1.66045 0.830227 0.557426i \(-0.188211\pi\)
0.830227 + 0.557426i \(0.188211\pi\)
\(972\) 0 0
\(973\) 12.7364 0.408309
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −58.0716 −1.85787 −0.928937 0.370237i \(-0.879277\pi\)
−0.928937 + 0.370237i \(0.879277\pi\)
\(978\) 0 0
\(979\) 8.48877 0.271302
\(980\) 0 0
\(981\) −0.0317410 −0.00101341
\(982\) 0 0
\(983\) 48.4068 1.54394 0.771969 0.635661i \(-0.219272\pi\)
0.771969 + 0.635661i \(0.219272\pi\)
\(984\) 0 0
\(985\) −11.7683 −0.374970
\(986\) 0 0
\(987\) 0.630908 0.0200820
\(988\) 0 0
\(989\) 34.2492 1.08906
\(990\) 0 0
\(991\) −25.7527 −0.818060 −0.409030 0.912521i \(-0.634133\pi\)
−0.409030 + 0.912521i \(0.634133\pi\)
\(992\) 0 0
\(993\) 16.0108 0.508086
\(994\) 0 0
\(995\) −1.10533 −0.0350412
\(996\) 0 0
\(997\) −41.9505 −1.32859 −0.664293 0.747472i \(-0.731267\pi\)
−0.664293 + 0.747472i \(0.731267\pi\)
\(998\) 0 0
\(999\) −1.92982 −0.0610567
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9464.2.a.br.1.5 15
13.12 even 2 9464.2.a.bs.1.5 yes 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9464.2.a.br.1.5 15 1.1 even 1 trivial
9464.2.a.bs.1.5 yes 15 13.12 even 2