Properties

Label 9464.2.a.br.1.14
Level $9464$
Weight $2$
Character 9464.1
Self dual yes
Analytic conductor $75.570$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9464,2,Mod(1,9464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,0,-3,0,-4,0,-15,0,16,0,-15,0,0,0,-8,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5704204729\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 3 x^{14} - 26 x^{13} + 78 x^{12} + 253 x^{11} - 782 x^{10} - 1087 x^{9} + 3776 x^{8} + \cdots - 344 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(-2.57537\) of defining polynomial
Character \(\chi\) \(=\) 9464.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.57537 q^{3} -3.57643 q^{5} -1.00000 q^{7} +3.63254 q^{9} -1.05933 q^{11} -9.21063 q^{15} -2.94347 q^{17} +2.74342 q^{19} -2.57537 q^{21} +2.27885 q^{23} +7.79083 q^{25} +1.62902 q^{27} +8.96305 q^{29} +0.354625 q^{31} -2.72817 q^{33} +3.57643 q^{35} +5.93395 q^{37} -11.0770 q^{41} -4.68820 q^{43} -12.9915 q^{45} +7.27967 q^{47} +1.00000 q^{49} -7.58052 q^{51} +11.3686 q^{53} +3.78863 q^{55} +7.06533 q^{57} -6.73376 q^{59} -10.8691 q^{61} -3.63254 q^{63} -0.482358 q^{67} +5.86890 q^{69} -7.81356 q^{71} -12.2692 q^{73} +20.0643 q^{75} +1.05933 q^{77} +0.649730 q^{79} -6.70229 q^{81} -12.6355 q^{83} +10.5271 q^{85} +23.0832 q^{87} +15.4274 q^{89} +0.913291 q^{93} -9.81164 q^{95} -3.60537 q^{97} -3.84806 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 3 q^{3} - 4 q^{5} - 15 q^{7} + 16 q^{9} - 15 q^{11} - 8 q^{15} + 2 q^{17} - 13 q^{19} + 3 q^{21} - 10 q^{23} + 23 q^{25} - 9 q^{27} + 25 q^{29} - 19 q^{31} + 24 q^{33} + 4 q^{35} + 2 q^{37} - 30 q^{41}+ \cdots - 70 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.57537 1.48689 0.743446 0.668796i \(-0.233190\pi\)
0.743446 + 0.668796i \(0.233190\pi\)
\(4\) 0 0
\(5\) −3.57643 −1.59943 −0.799714 0.600382i \(-0.795015\pi\)
−0.799714 + 0.600382i \(0.795015\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 3.63254 1.21085
\(10\) 0 0
\(11\) −1.05933 −0.319401 −0.159700 0.987166i \(-0.551053\pi\)
−0.159700 + 0.987166i \(0.551053\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −9.21063 −2.37817
\(16\) 0 0
\(17\) −2.94347 −0.713896 −0.356948 0.934124i \(-0.616183\pi\)
−0.356948 + 0.934124i \(0.616183\pi\)
\(18\) 0 0
\(19\) 2.74342 0.629384 0.314692 0.949194i \(-0.398099\pi\)
0.314692 + 0.949194i \(0.398099\pi\)
\(20\) 0 0
\(21\) −2.57537 −0.561992
\(22\) 0 0
\(23\) 2.27885 0.475174 0.237587 0.971366i \(-0.423644\pi\)
0.237587 + 0.971366i \(0.423644\pi\)
\(24\) 0 0
\(25\) 7.79083 1.55817
\(26\) 0 0
\(27\) 1.62902 0.313504
\(28\) 0 0
\(29\) 8.96305 1.66440 0.832198 0.554479i \(-0.187082\pi\)
0.832198 + 0.554479i \(0.187082\pi\)
\(30\) 0 0
\(31\) 0.354625 0.0636926 0.0318463 0.999493i \(-0.489861\pi\)
0.0318463 + 0.999493i \(0.489861\pi\)
\(32\) 0 0
\(33\) −2.72817 −0.474914
\(34\) 0 0
\(35\) 3.57643 0.604527
\(36\) 0 0
\(37\) 5.93395 0.975535 0.487767 0.872974i \(-0.337811\pi\)
0.487767 + 0.872974i \(0.337811\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −11.0770 −1.72994 −0.864971 0.501822i \(-0.832663\pi\)
−0.864971 + 0.501822i \(0.832663\pi\)
\(42\) 0 0
\(43\) −4.68820 −0.714944 −0.357472 0.933924i \(-0.616361\pi\)
−0.357472 + 0.933924i \(0.616361\pi\)
\(44\) 0 0
\(45\) −12.9915 −1.93666
\(46\) 0 0
\(47\) 7.27967 1.06185 0.530924 0.847419i \(-0.321845\pi\)
0.530924 + 0.847419i \(0.321845\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −7.58052 −1.06149
\(52\) 0 0
\(53\) 11.3686 1.56160 0.780799 0.624782i \(-0.214812\pi\)
0.780799 + 0.624782i \(0.214812\pi\)
\(54\) 0 0
\(55\) 3.78863 0.510858
\(56\) 0 0
\(57\) 7.06533 0.935825
\(58\) 0 0
\(59\) −6.73376 −0.876660 −0.438330 0.898814i \(-0.644430\pi\)
−0.438330 + 0.898814i \(0.644430\pi\)
\(60\) 0 0
\(61\) −10.8691 −1.39165 −0.695824 0.718212i \(-0.744961\pi\)
−0.695824 + 0.718212i \(0.744961\pi\)
\(62\) 0 0
\(63\) −3.63254 −0.457657
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −0.482358 −0.0589294 −0.0294647 0.999566i \(-0.509380\pi\)
−0.0294647 + 0.999566i \(0.509380\pi\)
\(68\) 0 0
\(69\) 5.86890 0.706532
\(70\) 0 0
\(71\) −7.81356 −0.927299 −0.463650 0.886019i \(-0.653460\pi\)
−0.463650 + 0.886019i \(0.653460\pi\)
\(72\) 0 0
\(73\) −12.2692 −1.43600 −0.718002 0.696041i \(-0.754943\pi\)
−0.718002 + 0.696041i \(0.754943\pi\)
\(74\) 0 0
\(75\) 20.0643 2.31682
\(76\) 0 0
\(77\) 1.05933 0.120722
\(78\) 0 0
\(79\) 0.649730 0.0731003 0.0365502 0.999332i \(-0.488363\pi\)
0.0365502 + 0.999332i \(0.488363\pi\)
\(80\) 0 0
\(81\) −6.70229 −0.744699
\(82\) 0 0
\(83\) −12.6355 −1.38692 −0.693462 0.720493i \(-0.743916\pi\)
−0.693462 + 0.720493i \(0.743916\pi\)
\(84\) 0 0
\(85\) 10.5271 1.14182
\(86\) 0 0
\(87\) 23.0832 2.47478
\(88\) 0 0
\(89\) 15.4274 1.63530 0.817650 0.575715i \(-0.195276\pi\)
0.817650 + 0.575715i \(0.195276\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0.913291 0.0947039
\(94\) 0 0
\(95\) −9.81164 −1.00665
\(96\) 0 0
\(97\) −3.60537 −0.366070 −0.183035 0.983106i \(-0.558592\pi\)
−0.183035 + 0.983106i \(0.558592\pi\)
\(98\) 0 0
\(99\) −3.84806 −0.386745
\(100\) 0 0
\(101\) −6.06007 −0.603000 −0.301500 0.953466i \(-0.597487\pi\)
−0.301500 + 0.953466i \(0.597487\pi\)
\(102\) 0 0
\(103\) −17.6546 −1.73956 −0.869779 0.493442i \(-0.835738\pi\)
−0.869779 + 0.493442i \(0.835738\pi\)
\(104\) 0 0
\(105\) 9.21063 0.898865
\(106\) 0 0
\(107\) 5.54775 0.536321 0.268161 0.963374i \(-0.413584\pi\)
0.268161 + 0.963374i \(0.413584\pi\)
\(108\) 0 0
\(109\) −4.54906 −0.435721 −0.217860 0.975980i \(-0.569908\pi\)
−0.217860 + 0.975980i \(0.569908\pi\)
\(110\) 0 0
\(111\) 15.2821 1.45051
\(112\) 0 0
\(113\) 16.0328 1.50823 0.754117 0.656740i \(-0.228065\pi\)
0.754117 + 0.656740i \(0.228065\pi\)
\(114\) 0 0
\(115\) −8.15016 −0.760006
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.94347 0.269827
\(120\) 0 0
\(121\) −9.87781 −0.897983
\(122\) 0 0
\(123\) −28.5275 −2.57224
\(124\) 0 0
\(125\) −9.98122 −0.892747
\(126\) 0 0
\(127\) 12.2334 1.08554 0.542771 0.839881i \(-0.317375\pi\)
0.542771 + 0.839881i \(0.317375\pi\)
\(128\) 0 0
\(129\) −12.0739 −1.06304
\(130\) 0 0
\(131\) −8.30601 −0.725700 −0.362850 0.931848i \(-0.618196\pi\)
−0.362850 + 0.931848i \(0.618196\pi\)
\(132\) 0 0
\(133\) −2.74342 −0.237885
\(134\) 0 0
\(135\) −5.82606 −0.501427
\(136\) 0 0
\(137\) −3.57641 −0.305554 −0.152777 0.988261i \(-0.548822\pi\)
−0.152777 + 0.988261i \(0.548822\pi\)
\(138\) 0 0
\(139\) −18.5745 −1.57547 −0.787735 0.616015i \(-0.788746\pi\)
−0.787735 + 0.616015i \(0.788746\pi\)
\(140\) 0 0
\(141\) 18.7478 1.57885
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −32.0557 −2.66208
\(146\) 0 0
\(147\) 2.57537 0.212413
\(148\) 0 0
\(149\) −17.5119 −1.43463 −0.717316 0.696748i \(-0.754630\pi\)
−0.717316 + 0.696748i \(0.754630\pi\)
\(150\) 0 0
\(151\) 4.34030 0.353208 0.176604 0.984282i \(-0.443489\pi\)
0.176604 + 0.984282i \(0.443489\pi\)
\(152\) 0 0
\(153\) −10.6923 −0.864417
\(154\) 0 0
\(155\) −1.26829 −0.101872
\(156\) 0 0
\(157\) −13.7386 −1.09646 −0.548230 0.836327i \(-0.684698\pi\)
−0.548230 + 0.836327i \(0.684698\pi\)
\(158\) 0 0
\(159\) 29.2784 2.32193
\(160\) 0 0
\(161\) −2.27885 −0.179599
\(162\) 0 0
\(163\) −17.3389 −1.35809 −0.679044 0.734097i \(-0.737606\pi\)
−0.679044 + 0.734097i \(0.737606\pi\)
\(164\) 0 0
\(165\) 9.75712 0.759591
\(166\) 0 0
\(167\) −9.77388 −0.756326 −0.378163 0.925739i \(-0.623444\pi\)
−0.378163 + 0.925739i \(0.623444\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 9.96557 0.762086
\(172\) 0 0
\(173\) −11.8034 −0.897399 −0.448700 0.893683i \(-0.648113\pi\)
−0.448700 + 0.893683i \(0.648113\pi\)
\(174\) 0 0
\(175\) −7.79083 −0.588932
\(176\) 0 0
\(177\) −17.3419 −1.30350
\(178\) 0 0
\(179\) 22.2553 1.66344 0.831719 0.555196i \(-0.187357\pi\)
0.831719 + 0.555196i \(0.187357\pi\)
\(180\) 0 0
\(181\) −11.6707 −0.867478 −0.433739 0.901039i \(-0.642806\pi\)
−0.433739 + 0.901039i \(0.642806\pi\)
\(182\) 0 0
\(183\) −27.9920 −2.06923
\(184\) 0 0
\(185\) −21.2223 −1.56030
\(186\) 0 0
\(187\) 3.11811 0.228019
\(188\) 0 0
\(189\) −1.62902 −0.118493
\(190\) 0 0
\(191\) 7.31107 0.529010 0.264505 0.964384i \(-0.414791\pi\)
0.264505 + 0.964384i \(0.414791\pi\)
\(192\) 0 0
\(193\) −22.7522 −1.63774 −0.818871 0.573977i \(-0.805400\pi\)
−0.818871 + 0.573977i \(0.805400\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.4627 −1.31541 −0.657705 0.753275i \(-0.728473\pi\)
−0.657705 + 0.753275i \(0.728473\pi\)
\(198\) 0 0
\(199\) −19.7953 −1.40325 −0.701626 0.712546i \(-0.747542\pi\)
−0.701626 + 0.712546i \(0.747542\pi\)
\(200\) 0 0
\(201\) −1.24225 −0.0876216
\(202\) 0 0
\(203\) −8.96305 −0.629082
\(204\) 0 0
\(205\) 39.6162 2.76692
\(206\) 0 0
\(207\) 8.27802 0.575362
\(208\) 0 0
\(209\) −2.90619 −0.201026
\(210\) 0 0
\(211\) −0.531926 −0.0366193 −0.0183096 0.999832i \(-0.505828\pi\)
−0.0183096 + 0.999832i \(0.505828\pi\)
\(212\) 0 0
\(213\) −20.1228 −1.37879
\(214\) 0 0
\(215\) 16.7670 1.14350
\(216\) 0 0
\(217\) −0.354625 −0.0240735
\(218\) 0 0
\(219\) −31.5978 −2.13518
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 25.4414 1.70368 0.851841 0.523801i \(-0.175486\pi\)
0.851841 + 0.523801i \(0.175486\pi\)
\(224\) 0 0
\(225\) 28.3005 1.88670
\(226\) 0 0
\(227\) 16.4262 1.09025 0.545123 0.838356i \(-0.316483\pi\)
0.545123 + 0.838356i \(0.316483\pi\)
\(228\) 0 0
\(229\) −0.517473 −0.0341956 −0.0170978 0.999854i \(-0.505443\pi\)
−0.0170978 + 0.999854i \(0.505443\pi\)
\(230\) 0 0
\(231\) 2.72817 0.179501
\(232\) 0 0
\(233\) −10.4011 −0.681397 −0.340699 0.940173i \(-0.610664\pi\)
−0.340699 + 0.940173i \(0.610664\pi\)
\(234\) 0 0
\(235\) −26.0352 −1.69835
\(236\) 0 0
\(237\) 1.67330 0.108692
\(238\) 0 0
\(239\) 9.33883 0.604079 0.302039 0.953295i \(-0.402333\pi\)
0.302039 + 0.953295i \(0.402333\pi\)
\(240\) 0 0
\(241\) 20.1488 1.29790 0.648950 0.760831i \(-0.275208\pi\)
0.648950 + 0.760831i \(0.275208\pi\)
\(242\) 0 0
\(243\) −22.1479 −1.42079
\(244\) 0 0
\(245\) −3.57643 −0.228490
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −32.5411 −2.06221
\(250\) 0 0
\(251\) −1.32683 −0.0837487 −0.0418744 0.999123i \(-0.513333\pi\)
−0.0418744 + 0.999123i \(0.513333\pi\)
\(252\) 0 0
\(253\) −2.41406 −0.151771
\(254\) 0 0
\(255\) 27.1112 1.69777
\(256\) 0 0
\(257\) 1.99093 0.124191 0.0620954 0.998070i \(-0.480222\pi\)
0.0620954 + 0.998070i \(0.480222\pi\)
\(258\) 0 0
\(259\) −5.93395 −0.368717
\(260\) 0 0
\(261\) 32.5586 2.01533
\(262\) 0 0
\(263\) −26.2445 −1.61831 −0.809153 0.587598i \(-0.800074\pi\)
−0.809153 + 0.587598i \(0.800074\pi\)
\(264\) 0 0
\(265\) −40.6590 −2.49766
\(266\) 0 0
\(267\) 39.7313 2.43151
\(268\) 0 0
\(269\) 21.1137 1.28732 0.643662 0.765310i \(-0.277414\pi\)
0.643662 + 0.765310i \(0.277414\pi\)
\(270\) 0 0
\(271\) −4.35953 −0.264823 −0.132411 0.991195i \(-0.542272\pi\)
−0.132411 + 0.991195i \(0.542272\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.25309 −0.497680
\(276\) 0 0
\(277\) −12.9722 −0.779427 −0.389713 0.920936i \(-0.627426\pi\)
−0.389713 + 0.920936i \(0.627426\pi\)
\(278\) 0 0
\(279\) 1.28819 0.0771218
\(280\) 0 0
\(281\) 24.7109 1.47413 0.737064 0.675823i \(-0.236212\pi\)
0.737064 + 0.675823i \(0.236212\pi\)
\(282\) 0 0
\(283\) −4.70178 −0.279492 −0.139746 0.990187i \(-0.544629\pi\)
−0.139746 + 0.990187i \(0.544629\pi\)
\(284\) 0 0
\(285\) −25.2686 −1.49678
\(286\) 0 0
\(287\) 11.0770 0.653857
\(288\) 0 0
\(289\) −8.33600 −0.490353
\(290\) 0 0
\(291\) −9.28518 −0.544307
\(292\) 0 0
\(293\) 1.93786 0.113211 0.0566055 0.998397i \(-0.481972\pi\)
0.0566055 + 0.998397i \(0.481972\pi\)
\(294\) 0 0
\(295\) 24.0828 1.40215
\(296\) 0 0
\(297\) −1.72567 −0.100134
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 4.68820 0.270224
\(302\) 0 0
\(303\) −15.6069 −0.896595
\(304\) 0 0
\(305\) 38.8726 2.22584
\(306\) 0 0
\(307\) 5.46464 0.311884 0.155942 0.987766i \(-0.450159\pi\)
0.155942 + 0.987766i \(0.450159\pi\)
\(308\) 0 0
\(309\) −45.4671 −2.58653
\(310\) 0 0
\(311\) 24.5589 1.39261 0.696303 0.717748i \(-0.254827\pi\)
0.696303 + 0.717748i \(0.254827\pi\)
\(312\) 0 0
\(313\) −21.5737 −1.21942 −0.609710 0.792624i \(-0.708714\pi\)
−0.609710 + 0.792624i \(0.708714\pi\)
\(314\) 0 0
\(315\) 12.9915 0.731988
\(316\) 0 0
\(317\) −6.31679 −0.354786 −0.177393 0.984140i \(-0.556766\pi\)
−0.177393 + 0.984140i \(0.556766\pi\)
\(318\) 0 0
\(319\) −9.49485 −0.531609
\(320\) 0 0
\(321\) 14.2875 0.797451
\(322\) 0 0
\(323\) −8.07517 −0.449314
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −11.7155 −0.647869
\(328\) 0 0
\(329\) −7.27967 −0.401341
\(330\) 0 0
\(331\) 10.2865 0.565398 0.282699 0.959209i \(-0.408770\pi\)
0.282699 + 0.959209i \(0.408770\pi\)
\(332\) 0 0
\(333\) 21.5553 1.18122
\(334\) 0 0
\(335\) 1.72512 0.0942533
\(336\) 0 0
\(337\) −13.3905 −0.729429 −0.364715 0.931119i \(-0.618833\pi\)
−0.364715 + 0.931119i \(0.618833\pi\)
\(338\) 0 0
\(339\) 41.2903 2.24258
\(340\) 0 0
\(341\) −0.375666 −0.0203435
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −20.9897 −1.13005
\(346\) 0 0
\(347\) −22.0127 −1.18171 −0.590853 0.806779i \(-0.701209\pi\)
−0.590853 + 0.806779i \(0.701209\pi\)
\(348\) 0 0
\(349\) −12.9009 −0.690568 −0.345284 0.938498i \(-0.612217\pi\)
−0.345284 + 0.938498i \(0.612217\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4.60083 0.244878 0.122439 0.992476i \(-0.460928\pi\)
0.122439 + 0.992476i \(0.460928\pi\)
\(354\) 0 0
\(355\) 27.9446 1.48315
\(356\) 0 0
\(357\) 7.58052 0.401204
\(358\) 0 0
\(359\) 26.3157 1.38889 0.694445 0.719546i \(-0.255650\pi\)
0.694445 + 0.719546i \(0.255650\pi\)
\(360\) 0 0
\(361\) −11.4736 −0.603876
\(362\) 0 0
\(363\) −25.4390 −1.33520
\(364\) 0 0
\(365\) 43.8800 2.29678
\(366\) 0 0
\(367\) 25.2539 1.31824 0.659122 0.752036i \(-0.270928\pi\)
0.659122 + 0.752036i \(0.270928\pi\)
\(368\) 0 0
\(369\) −40.2377 −2.09469
\(370\) 0 0
\(371\) −11.3686 −0.590229
\(372\) 0 0
\(373\) 9.94332 0.514846 0.257423 0.966299i \(-0.417127\pi\)
0.257423 + 0.966299i \(0.417127\pi\)
\(374\) 0 0
\(375\) −25.7053 −1.32742
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 12.0770 0.620355 0.310178 0.950679i \(-0.399611\pi\)
0.310178 + 0.950679i \(0.399611\pi\)
\(380\) 0 0
\(381\) 31.5057 1.61408
\(382\) 0 0
\(383\) 35.1539 1.79628 0.898140 0.439709i \(-0.144918\pi\)
0.898140 + 0.439709i \(0.144918\pi\)
\(384\) 0 0
\(385\) −3.78863 −0.193086
\(386\) 0 0
\(387\) −17.0301 −0.865687
\(388\) 0 0
\(389\) 16.0772 0.815144 0.407572 0.913173i \(-0.366376\pi\)
0.407572 + 0.913173i \(0.366376\pi\)
\(390\) 0 0
\(391\) −6.70773 −0.339225
\(392\) 0 0
\(393\) −21.3911 −1.07904
\(394\) 0 0
\(395\) −2.32371 −0.116919
\(396\) 0 0
\(397\) 10.2166 0.512758 0.256379 0.966576i \(-0.417470\pi\)
0.256379 + 0.966576i \(0.417470\pi\)
\(398\) 0 0
\(399\) −7.06533 −0.353709
\(400\) 0 0
\(401\) −12.9365 −0.646019 −0.323009 0.946396i \(-0.604695\pi\)
−0.323009 + 0.946396i \(0.604695\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 23.9703 1.19109
\(406\) 0 0
\(407\) −6.28602 −0.311587
\(408\) 0 0
\(409\) −11.4617 −0.566745 −0.283373 0.959010i \(-0.591453\pi\)
−0.283373 + 0.959010i \(0.591453\pi\)
\(410\) 0 0
\(411\) −9.21059 −0.454325
\(412\) 0 0
\(413\) 6.73376 0.331347
\(414\) 0 0
\(415\) 45.1899 2.21828
\(416\) 0 0
\(417\) −47.8363 −2.34255
\(418\) 0 0
\(419\) −24.3559 −1.18986 −0.594932 0.803776i \(-0.702821\pi\)
−0.594932 + 0.803776i \(0.702821\pi\)
\(420\) 0 0
\(421\) 9.85062 0.480090 0.240045 0.970762i \(-0.422838\pi\)
0.240045 + 0.970762i \(0.422838\pi\)
\(422\) 0 0
\(423\) 26.4437 1.28573
\(424\) 0 0
\(425\) −22.9321 −1.11237
\(426\) 0 0
\(427\) 10.8691 0.525994
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −37.7790 −1.81975 −0.909875 0.414883i \(-0.863822\pi\)
−0.909875 + 0.414883i \(0.863822\pi\)
\(432\) 0 0
\(433\) 7.54725 0.362698 0.181349 0.983419i \(-0.441954\pi\)
0.181349 + 0.983419i \(0.441954\pi\)
\(434\) 0 0
\(435\) −82.5553 −3.95822
\(436\) 0 0
\(437\) 6.25186 0.299067
\(438\) 0 0
\(439\) 14.8551 0.708997 0.354499 0.935057i \(-0.384652\pi\)
0.354499 + 0.935057i \(0.384652\pi\)
\(440\) 0 0
\(441\) 3.63254 0.172978
\(442\) 0 0
\(443\) −7.56304 −0.359331 −0.179665 0.983728i \(-0.557501\pi\)
−0.179665 + 0.983728i \(0.557501\pi\)
\(444\) 0 0
\(445\) −55.1750 −2.61554
\(446\) 0 0
\(447\) −45.0997 −2.13314
\(448\) 0 0
\(449\) −1.83155 −0.0864363 −0.0432181 0.999066i \(-0.513761\pi\)
−0.0432181 + 0.999066i \(0.513761\pi\)
\(450\) 0 0
\(451\) 11.7343 0.552545
\(452\) 0 0
\(453\) 11.1779 0.525183
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −29.0406 −1.35846 −0.679232 0.733923i \(-0.737687\pi\)
−0.679232 + 0.733923i \(0.737687\pi\)
\(458\) 0 0
\(459\) −4.79495 −0.223809
\(460\) 0 0
\(461\) 21.7793 1.01436 0.507181 0.861840i \(-0.330688\pi\)
0.507181 + 0.861840i \(0.330688\pi\)
\(462\) 0 0
\(463\) 27.4979 1.27794 0.638969 0.769233i \(-0.279361\pi\)
0.638969 + 0.769233i \(0.279361\pi\)
\(464\) 0 0
\(465\) −3.26632 −0.151472
\(466\) 0 0
\(467\) −33.1236 −1.53278 −0.766388 0.642377i \(-0.777948\pi\)
−0.766388 + 0.642377i \(0.777948\pi\)
\(468\) 0 0
\(469\) 0.482358 0.0222732
\(470\) 0 0
\(471\) −35.3820 −1.63032
\(472\) 0 0
\(473\) 4.96637 0.228354
\(474\) 0 0
\(475\) 21.3735 0.980685
\(476\) 0 0
\(477\) 41.2969 1.89085
\(478\) 0 0
\(479\) −41.2448 −1.88452 −0.942262 0.334877i \(-0.891305\pi\)
−0.942262 + 0.334877i \(0.891305\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −5.86890 −0.267044
\(484\) 0 0
\(485\) 12.8944 0.585503
\(486\) 0 0
\(487\) 2.67905 0.121399 0.0606997 0.998156i \(-0.480667\pi\)
0.0606997 + 0.998156i \(0.480667\pi\)
\(488\) 0 0
\(489\) −44.6541 −2.01933
\(490\) 0 0
\(491\) −15.2033 −0.686117 −0.343059 0.939314i \(-0.611463\pi\)
−0.343059 + 0.939314i \(0.611463\pi\)
\(492\) 0 0
\(493\) −26.3824 −1.18820
\(494\) 0 0
\(495\) 13.7623 0.618570
\(496\) 0 0
\(497\) 7.81356 0.350486
\(498\) 0 0
\(499\) −4.05625 −0.181583 −0.0907914 0.995870i \(-0.528940\pi\)
−0.0907914 + 0.995870i \(0.528940\pi\)
\(500\) 0 0
\(501\) −25.1714 −1.12457
\(502\) 0 0
\(503\) −10.0159 −0.446588 −0.223294 0.974751i \(-0.571681\pi\)
−0.223294 + 0.974751i \(0.571681\pi\)
\(504\) 0 0
\(505\) 21.6734 0.964454
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20.1836 0.894621 0.447311 0.894379i \(-0.352382\pi\)
0.447311 + 0.894379i \(0.352382\pi\)
\(510\) 0 0
\(511\) 12.2692 0.542759
\(512\) 0 0
\(513\) 4.46907 0.197314
\(514\) 0 0
\(515\) 63.1403 2.78229
\(516\) 0 0
\(517\) −7.71159 −0.339155
\(518\) 0 0
\(519\) −30.3983 −1.33434
\(520\) 0 0
\(521\) −36.1789 −1.58502 −0.792512 0.609856i \(-0.791227\pi\)
−0.792512 + 0.609856i \(0.791227\pi\)
\(522\) 0 0
\(523\) −14.9033 −0.651675 −0.325837 0.945426i \(-0.605646\pi\)
−0.325837 + 0.945426i \(0.605646\pi\)
\(524\) 0 0
\(525\) −20.0643 −0.875677
\(526\) 0 0
\(527\) −1.04383 −0.0454698
\(528\) 0 0
\(529\) −17.8068 −0.774210
\(530\) 0 0
\(531\) −24.4606 −1.06150
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −19.8411 −0.857807
\(536\) 0 0
\(537\) 57.3156 2.47335
\(538\) 0 0
\(539\) −1.05933 −0.0456287
\(540\) 0 0
\(541\) −28.6548 −1.23197 −0.615983 0.787760i \(-0.711241\pi\)
−0.615983 + 0.787760i \(0.711241\pi\)
\(542\) 0 0
\(543\) −30.0564 −1.28985
\(544\) 0 0
\(545\) 16.2694 0.696904
\(546\) 0 0
\(547\) −21.8783 −0.935449 −0.467724 0.883874i \(-0.654926\pi\)
−0.467724 + 0.883874i \(0.654926\pi\)
\(548\) 0 0
\(549\) −39.4825 −1.68507
\(550\) 0 0
\(551\) 24.5894 1.04754
\(552\) 0 0
\(553\) −0.649730 −0.0276293
\(554\) 0 0
\(555\) −54.6554 −2.31999
\(556\) 0 0
\(557\) 32.9482 1.39606 0.698030 0.716069i \(-0.254060\pi\)
0.698030 + 0.716069i \(0.254060\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 8.03029 0.339039
\(562\) 0 0
\(563\) 31.8406 1.34192 0.670960 0.741493i \(-0.265882\pi\)
0.670960 + 0.741493i \(0.265882\pi\)
\(564\) 0 0
\(565\) −57.3400 −2.41231
\(566\) 0 0
\(567\) 6.70229 0.281470
\(568\) 0 0
\(569\) 8.19684 0.343629 0.171815 0.985129i \(-0.445037\pi\)
0.171815 + 0.985129i \(0.445037\pi\)
\(570\) 0 0
\(571\) −17.6032 −0.736671 −0.368336 0.929693i \(-0.620072\pi\)
−0.368336 + 0.929693i \(0.620072\pi\)
\(572\) 0 0
\(573\) 18.8287 0.786581
\(574\) 0 0
\(575\) 17.7542 0.740400
\(576\) 0 0
\(577\) 16.9601 0.706057 0.353028 0.935613i \(-0.385152\pi\)
0.353028 + 0.935613i \(0.385152\pi\)
\(578\) 0 0
\(579\) −58.5955 −2.43514
\(580\) 0 0
\(581\) 12.6355 0.524208
\(582\) 0 0
\(583\) −12.0431 −0.498776
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 21.6288 0.892715 0.446357 0.894855i \(-0.352721\pi\)
0.446357 + 0.894855i \(0.352721\pi\)
\(588\) 0 0
\(589\) 0.972886 0.0400871
\(590\) 0 0
\(591\) −47.5482 −1.95587
\(592\) 0 0
\(593\) −39.5099 −1.62248 −0.811238 0.584717i \(-0.801206\pi\)
−0.811238 + 0.584717i \(0.801206\pi\)
\(594\) 0 0
\(595\) −10.5271 −0.431569
\(596\) 0 0
\(597\) −50.9802 −2.08648
\(598\) 0 0
\(599\) 45.8876 1.87492 0.937459 0.348097i \(-0.113172\pi\)
0.937459 + 0.348097i \(0.113172\pi\)
\(600\) 0 0
\(601\) 12.3263 0.502801 0.251401 0.967883i \(-0.419109\pi\)
0.251401 + 0.967883i \(0.419109\pi\)
\(602\) 0 0
\(603\) −1.75218 −0.0713544
\(604\) 0 0
\(605\) 35.3273 1.43626
\(606\) 0 0
\(607\) −31.3785 −1.27361 −0.636807 0.771023i \(-0.719745\pi\)
−0.636807 + 0.771023i \(0.719745\pi\)
\(608\) 0 0
\(609\) −23.0832 −0.935377
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −14.1252 −0.570513 −0.285256 0.958451i \(-0.592079\pi\)
−0.285256 + 0.958451i \(0.592079\pi\)
\(614\) 0 0
\(615\) 102.026 4.11410
\(616\) 0 0
\(617\) 16.0488 0.646101 0.323051 0.946382i \(-0.395292\pi\)
0.323051 + 0.946382i \(0.395292\pi\)
\(618\) 0 0
\(619\) −7.67934 −0.308659 −0.154329 0.988019i \(-0.549322\pi\)
−0.154329 + 0.988019i \(0.549322\pi\)
\(620\) 0 0
\(621\) 3.71229 0.148969
\(622\) 0 0
\(623\) −15.4274 −0.618085
\(624\) 0 0
\(625\) −3.25707 −0.130283
\(626\) 0 0
\(627\) −7.48453 −0.298903
\(628\) 0 0
\(629\) −17.4664 −0.696430
\(630\) 0 0
\(631\) −1.56385 −0.0622560 −0.0311280 0.999515i \(-0.509910\pi\)
−0.0311280 + 0.999515i \(0.509910\pi\)
\(632\) 0 0
\(633\) −1.36991 −0.0544489
\(634\) 0 0
\(635\) −43.7520 −1.73625
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −28.3830 −1.12282
\(640\) 0 0
\(641\) −35.1384 −1.38788 −0.693941 0.720032i \(-0.744127\pi\)
−0.693941 + 0.720032i \(0.744127\pi\)
\(642\) 0 0
\(643\) −13.4329 −0.529742 −0.264871 0.964284i \(-0.585329\pi\)
−0.264871 + 0.964284i \(0.585329\pi\)
\(644\) 0 0
\(645\) 43.1813 1.70026
\(646\) 0 0
\(647\) −23.5426 −0.925555 −0.462777 0.886475i \(-0.653147\pi\)
−0.462777 + 0.886475i \(0.653147\pi\)
\(648\) 0 0
\(649\) 7.13329 0.280006
\(650\) 0 0
\(651\) −0.913291 −0.0357947
\(652\) 0 0
\(653\) 29.2031 1.14281 0.571403 0.820670i \(-0.306399\pi\)
0.571403 + 0.820670i \(0.306399\pi\)
\(654\) 0 0
\(655\) 29.7059 1.16070
\(656\) 0 0
\(657\) −44.5684 −1.73878
\(658\) 0 0
\(659\) 41.5054 1.61682 0.808411 0.588618i \(-0.200328\pi\)
0.808411 + 0.588618i \(0.200328\pi\)
\(660\) 0 0
\(661\) 15.8678 0.617187 0.308593 0.951194i \(-0.400142\pi\)
0.308593 + 0.951194i \(0.400142\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 9.81164 0.380479
\(666\) 0 0
\(667\) 20.4255 0.790878
\(668\) 0 0
\(669\) 65.5210 2.53319
\(670\) 0 0
\(671\) 11.5140 0.444494
\(672\) 0 0
\(673\) 22.0283 0.849127 0.424564 0.905398i \(-0.360427\pi\)
0.424564 + 0.905398i \(0.360427\pi\)
\(674\) 0 0
\(675\) 12.6914 0.488492
\(676\) 0 0
\(677\) 21.2821 0.817936 0.408968 0.912549i \(-0.365889\pi\)
0.408968 + 0.912549i \(0.365889\pi\)
\(678\) 0 0
\(679\) 3.60537 0.138362
\(680\) 0 0
\(681\) 42.3036 1.62108
\(682\) 0 0
\(683\) 1.87884 0.0718918 0.0359459 0.999354i \(-0.488556\pi\)
0.0359459 + 0.999354i \(0.488556\pi\)
\(684\) 0 0
\(685\) 12.7908 0.488711
\(686\) 0 0
\(687\) −1.33268 −0.0508451
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 29.8375 1.13507 0.567536 0.823349i \(-0.307897\pi\)
0.567536 + 0.823349i \(0.307897\pi\)
\(692\) 0 0
\(693\) 3.84806 0.146176
\(694\) 0 0
\(695\) 66.4304 2.51985
\(696\) 0 0
\(697\) 32.6049 1.23500
\(698\) 0 0
\(699\) −26.7866 −1.01316
\(700\) 0 0
\(701\) −0.215793 −0.00815037 −0.00407519 0.999992i \(-0.501297\pi\)
−0.00407519 + 0.999992i \(0.501297\pi\)
\(702\) 0 0
\(703\) 16.2793 0.613986
\(704\) 0 0
\(705\) −67.0503 −2.52526
\(706\) 0 0
\(707\) 6.06007 0.227913
\(708\) 0 0
\(709\) −4.49203 −0.168702 −0.0843509 0.996436i \(-0.526882\pi\)
−0.0843509 + 0.996436i \(0.526882\pi\)
\(710\) 0 0
\(711\) 2.36017 0.0885132
\(712\) 0 0
\(713\) 0.808139 0.0302650
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 24.0509 0.898199
\(718\) 0 0
\(719\) −36.0410 −1.34410 −0.672051 0.740505i \(-0.734586\pi\)
−0.672051 + 0.740505i \(0.734586\pi\)
\(720\) 0 0
\(721\) 17.6546 0.657491
\(722\) 0 0
\(723\) 51.8907 1.92984
\(724\) 0 0
\(725\) 69.8296 2.59341
\(726\) 0 0
\(727\) −20.4958 −0.760148 −0.380074 0.924956i \(-0.624101\pi\)
−0.380074 + 0.924956i \(0.624101\pi\)
\(728\) 0 0
\(729\) −36.9323 −1.36786
\(730\) 0 0
\(731\) 13.7996 0.510396
\(732\) 0 0
\(733\) 3.82577 0.141308 0.0706540 0.997501i \(-0.477491\pi\)
0.0706540 + 0.997501i \(0.477491\pi\)
\(734\) 0 0
\(735\) −9.21063 −0.339739
\(736\) 0 0
\(737\) 0.510978 0.0188221
\(738\) 0 0
\(739\) 48.2200 1.77380 0.886901 0.461959i \(-0.152853\pi\)
0.886901 + 0.461959i \(0.152853\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 35.1501 1.28953 0.644766 0.764380i \(-0.276955\pi\)
0.644766 + 0.764380i \(0.276955\pi\)
\(744\) 0 0
\(745\) 62.6301 2.29459
\(746\) 0 0
\(747\) −45.8988 −1.67935
\(748\) 0 0
\(749\) −5.54775 −0.202710
\(750\) 0 0
\(751\) −6.63557 −0.242136 −0.121068 0.992644i \(-0.538632\pi\)
−0.121068 + 0.992644i \(0.538632\pi\)
\(752\) 0 0
\(753\) −3.41708 −0.124525
\(754\) 0 0
\(755\) −15.5228 −0.564931
\(756\) 0 0
\(757\) −10.2035 −0.370851 −0.185426 0.982658i \(-0.559366\pi\)
−0.185426 + 0.982658i \(0.559366\pi\)
\(758\) 0 0
\(759\) −6.21711 −0.225667
\(760\) 0 0
\(761\) −44.0344 −1.59624 −0.798122 0.602495i \(-0.794173\pi\)
−0.798122 + 0.602495i \(0.794173\pi\)
\(762\) 0 0
\(763\) 4.54906 0.164687
\(764\) 0 0
\(765\) 38.2401 1.38257
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 19.1267 0.689728 0.344864 0.938653i \(-0.387925\pi\)
0.344864 + 0.938653i \(0.387925\pi\)
\(770\) 0 0
\(771\) 5.12738 0.184658
\(772\) 0 0
\(773\) 51.0736 1.83699 0.918494 0.395434i \(-0.129406\pi\)
0.918494 + 0.395434i \(0.129406\pi\)
\(774\) 0 0
\(775\) 2.76283 0.0992436
\(776\) 0 0
\(777\) −15.2821 −0.548243
\(778\) 0 0
\(779\) −30.3890 −1.08880
\(780\) 0 0
\(781\) 8.27716 0.296180
\(782\) 0 0
\(783\) 14.6009 0.521795
\(784\) 0 0
\(785\) 49.1351 1.75371
\(786\) 0 0
\(787\) 15.5313 0.553631 0.276816 0.960923i \(-0.410721\pi\)
0.276816 + 0.960923i \(0.410721\pi\)
\(788\) 0 0
\(789\) −67.5894 −2.40625
\(790\) 0 0
\(791\) −16.0328 −0.570059
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −104.712 −3.71375
\(796\) 0 0
\(797\) 18.7902 0.665583 0.332791 0.943000i \(-0.392009\pi\)
0.332791 + 0.943000i \(0.392009\pi\)
\(798\) 0 0
\(799\) −21.4275 −0.758049
\(800\) 0 0
\(801\) 56.0406 1.98010
\(802\) 0 0
\(803\) 12.9972 0.458661
\(804\) 0 0
\(805\) 8.15016 0.287255
\(806\) 0 0
\(807\) 54.3756 1.91411
\(808\) 0 0
\(809\) −14.6640 −0.515559 −0.257780 0.966204i \(-0.582991\pi\)
−0.257780 + 0.966204i \(0.582991\pi\)
\(810\) 0 0
\(811\) 20.6247 0.724230 0.362115 0.932133i \(-0.382055\pi\)
0.362115 + 0.932133i \(0.382055\pi\)
\(812\) 0 0
\(813\) −11.2274 −0.393763
\(814\) 0 0
\(815\) 62.0114 2.17216
\(816\) 0 0
\(817\) −12.8617 −0.449974
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −36.1298 −1.26094 −0.630469 0.776214i \(-0.717137\pi\)
−0.630469 + 0.776214i \(0.717137\pi\)
\(822\) 0 0
\(823\) −50.7197 −1.76798 −0.883989 0.467508i \(-0.845152\pi\)
−0.883989 + 0.467508i \(0.845152\pi\)
\(824\) 0 0
\(825\) −21.2548 −0.739996
\(826\) 0 0
\(827\) −26.0935 −0.907358 −0.453679 0.891165i \(-0.649889\pi\)
−0.453679 + 0.891165i \(0.649889\pi\)
\(828\) 0 0
\(829\) 21.3535 0.741638 0.370819 0.928705i \(-0.379077\pi\)
0.370819 + 0.928705i \(0.379077\pi\)
\(830\) 0 0
\(831\) −33.4083 −1.15892
\(832\) 0 0
\(833\) −2.94347 −0.101985
\(834\) 0 0
\(835\) 34.9556 1.20969
\(836\) 0 0
\(837\) 0.577690 0.0199679
\(838\) 0 0
\(839\) −39.4300 −1.36127 −0.680637 0.732621i \(-0.738297\pi\)
−0.680637 + 0.732621i \(0.738297\pi\)
\(840\) 0 0
\(841\) 51.3362 1.77021
\(842\) 0 0
\(843\) 63.6397 2.19187
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 9.87781 0.339406
\(848\) 0 0
\(849\) −12.1088 −0.415574
\(850\) 0 0
\(851\) 13.5226 0.463549
\(852\) 0 0
\(853\) 1.21461 0.0415876 0.0207938 0.999784i \(-0.493381\pi\)
0.0207938 + 0.999784i \(0.493381\pi\)
\(854\) 0 0
\(855\) −35.6412 −1.21890
\(856\) 0 0
\(857\) 16.4153 0.560736 0.280368 0.959893i \(-0.409543\pi\)
0.280368 + 0.959893i \(0.409543\pi\)
\(858\) 0 0
\(859\) −16.3062 −0.556361 −0.278180 0.960529i \(-0.589731\pi\)
−0.278180 + 0.960529i \(0.589731\pi\)
\(860\) 0 0
\(861\) 28.5275 0.972214
\(862\) 0 0
\(863\) −55.2725 −1.88150 −0.940749 0.339102i \(-0.889877\pi\)
−0.940749 + 0.339102i \(0.889877\pi\)
\(864\) 0 0
\(865\) 42.2142 1.43532
\(866\) 0 0
\(867\) −21.4683 −0.729102
\(868\) 0 0
\(869\) −0.688280 −0.0233483
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −13.0967 −0.443255
\(874\) 0 0
\(875\) 9.98122 0.337427
\(876\) 0 0
\(877\) 42.4634 1.43389 0.716943 0.697131i \(-0.245541\pi\)
0.716943 + 0.697131i \(0.245541\pi\)
\(878\) 0 0
\(879\) 4.99071 0.168332
\(880\) 0 0
\(881\) 25.8651 0.871418 0.435709 0.900088i \(-0.356498\pi\)
0.435709 + 0.900088i \(0.356498\pi\)
\(882\) 0 0
\(883\) 12.8108 0.431117 0.215559 0.976491i \(-0.430843\pi\)
0.215559 + 0.976491i \(0.430843\pi\)
\(884\) 0 0
\(885\) 62.0221 2.08485
\(886\) 0 0
\(887\) −50.8765 −1.70827 −0.854133 0.520054i \(-0.825912\pi\)
−0.854133 + 0.520054i \(0.825912\pi\)
\(888\) 0 0
\(889\) −12.2334 −0.410296
\(890\) 0 0
\(891\) 7.09995 0.237857
\(892\) 0 0
\(893\) 19.9712 0.668310
\(894\) 0 0
\(895\) −79.5944 −2.66055
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3.17852 0.106010
\(900\) 0 0
\(901\) −33.4631 −1.11482
\(902\) 0 0
\(903\) 12.0739 0.401793
\(904\) 0 0
\(905\) 41.7395 1.38747
\(906\) 0 0
\(907\) 10.8474 0.360183 0.180092 0.983650i \(-0.442361\pi\)
0.180092 + 0.983650i \(0.442361\pi\)
\(908\) 0 0
\(909\) −22.0134 −0.730140
\(910\) 0 0
\(911\) 21.7893 0.721912 0.360956 0.932583i \(-0.382451\pi\)
0.360956 + 0.932583i \(0.382451\pi\)
\(912\) 0 0
\(913\) 13.3852 0.442985
\(914\) 0 0
\(915\) 100.111 3.30958
\(916\) 0 0
\(917\) 8.30601 0.274289
\(918\) 0 0
\(919\) −24.8038 −0.818202 −0.409101 0.912489i \(-0.634158\pi\)
−0.409101 + 0.912489i \(0.634158\pi\)
\(920\) 0 0
\(921\) 14.0735 0.463737
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 46.2304 1.52005
\(926\) 0 0
\(927\) −64.1309 −2.10633
\(928\) 0 0
\(929\) 8.80169 0.288774 0.144387 0.989521i \(-0.453879\pi\)
0.144387 + 0.989521i \(0.453879\pi\)
\(930\) 0 0
\(931\) 2.74342 0.0899120
\(932\) 0 0
\(933\) 63.2482 2.07065
\(934\) 0 0
\(935\) −11.1517 −0.364699
\(936\) 0 0
\(937\) 34.8853 1.13965 0.569826 0.821765i \(-0.307011\pi\)
0.569826 + 0.821765i \(0.307011\pi\)
\(938\) 0 0
\(939\) −55.5604 −1.81315
\(940\) 0 0
\(941\) −3.48623 −0.113648 −0.0568240 0.998384i \(-0.518097\pi\)
−0.0568240 + 0.998384i \(0.518097\pi\)
\(942\) 0 0
\(943\) −25.2430 −0.822024
\(944\) 0 0
\(945\) 5.82606 0.189522
\(946\) 0 0
\(947\) −2.70496 −0.0878994 −0.0439497 0.999034i \(-0.513994\pi\)
−0.0439497 + 0.999034i \(0.513994\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −16.2681 −0.527529
\(952\) 0 0
\(953\) 55.8338 1.80864 0.904318 0.426860i \(-0.140380\pi\)
0.904318 + 0.426860i \(0.140380\pi\)
\(954\) 0 0
\(955\) −26.1475 −0.846113
\(956\) 0 0
\(957\) −24.4528 −0.790445
\(958\) 0 0
\(959\) 3.57641 0.115488
\(960\) 0 0
\(961\) −30.8742 −0.995943
\(962\) 0 0
\(963\) 20.1524 0.649402
\(964\) 0 0
\(965\) 81.3718 2.61945
\(966\) 0 0
\(967\) −39.5972 −1.27336 −0.636681 0.771127i \(-0.719693\pi\)
−0.636681 + 0.771127i \(0.719693\pi\)
\(968\) 0 0
\(969\) −20.7966 −0.668081
\(970\) 0 0
\(971\) 32.7975 1.05252 0.526261 0.850323i \(-0.323594\pi\)
0.526261 + 0.850323i \(0.323594\pi\)
\(972\) 0 0
\(973\) 18.5745 0.595471
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.78407 0.153056 0.0765280 0.997067i \(-0.475617\pi\)
0.0765280 + 0.997067i \(0.475617\pi\)
\(978\) 0 0
\(979\) −16.3427 −0.522316
\(980\) 0 0
\(981\) −16.5246 −0.527591
\(982\) 0 0
\(983\) −50.6466 −1.61538 −0.807688 0.589611i \(-0.799281\pi\)
−0.807688 + 0.589611i \(0.799281\pi\)
\(984\) 0 0
\(985\) 66.0304 2.10390
\(986\) 0 0
\(987\) −18.7478 −0.596750
\(988\) 0 0
\(989\) −10.6837 −0.339723
\(990\) 0 0
\(991\) 31.0230 0.985479 0.492740 0.870177i \(-0.335996\pi\)
0.492740 + 0.870177i \(0.335996\pi\)
\(992\) 0 0
\(993\) 26.4916 0.840685
\(994\) 0 0
\(995\) 70.7964 2.24440
\(996\) 0 0
\(997\) 52.6281 1.66675 0.833374 0.552710i \(-0.186406\pi\)
0.833374 + 0.552710i \(0.186406\pi\)
\(998\) 0 0
\(999\) 9.66649 0.305834
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9464.2.a.br.1.14 15
13.12 even 2 9464.2.a.bs.1.14 yes 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9464.2.a.br.1.14 15 1.1 even 1 trivial
9464.2.a.bs.1.14 yes 15 13.12 even 2