Properties

Label 9464.2.a.br.1.13
Level $9464$
Weight $2$
Character 9464.1
Self dual yes
Analytic conductor $75.570$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9464,2,Mod(1,9464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,0,-3,0,-4,0,-15,0,16,0,-15,0,0,0,-8,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5704204729\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 3 x^{14} - 26 x^{13} + 78 x^{12} + 253 x^{11} - 782 x^{10} - 1087 x^{9} + 3776 x^{8} + \cdots - 344 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Root \(-2.32680\) of defining polynomial
Character \(\chi\) \(=\) 9464.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.32680 q^{3} +1.27247 q^{5} -1.00000 q^{7} +2.41400 q^{9} -6.42384 q^{11} +2.96078 q^{15} +3.33232 q^{17} +1.32253 q^{19} -2.32680 q^{21} +0.849071 q^{23} -3.38082 q^{25} -1.36350 q^{27} +8.55156 q^{29} -1.84234 q^{31} -14.9470 q^{33} -1.27247 q^{35} -9.91958 q^{37} -2.84770 q^{41} -6.03321 q^{43} +3.07174 q^{45} -4.70658 q^{47} +1.00000 q^{49} +7.75365 q^{51} -4.57771 q^{53} -8.17414 q^{55} +3.07727 q^{57} +1.56268 q^{59} -7.50272 q^{61} -2.41400 q^{63} -1.34362 q^{67} +1.97562 q^{69} -12.0208 q^{71} +13.1954 q^{73} -7.86650 q^{75} +6.42384 q^{77} -6.31729 q^{79} -10.4146 q^{81} -5.72464 q^{83} +4.24028 q^{85} +19.8978 q^{87} -12.5426 q^{89} -4.28676 q^{93} +1.68288 q^{95} +17.6875 q^{97} -15.5072 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 3 q^{3} - 4 q^{5} - 15 q^{7} + 16 q^{9} - 15 q^{11} - 8 q^{15} + 2 q^{17} - 13 q^{19} + 3 q^{21} - 10 q^{23} + 23 q^{25} - 9 q^{27} + 25 q^{29} - 19 q^{31} + 24 q^{33} + 4 q^{35} + 2 q^{37} - 30 q^{41}+ \cdots - 70 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.32680 1.34338 0.671690 0.740833i \(-0.265569\pi\)
0.671690 + 0.740833i \(0.265569\pi\)
\(4\) 0 0
\(5\) 1.27247 0.569066 0.284533 0.958666i \(-0.408162\pi\)
0.284533 + 0.958666i \(0.408162\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 2.41400 0.804668
\(10\) 0 0
\(11\) −6.42384 −1.93686 −0.968430 0.249284i \(-0.919805\pi\)
−0.968430 + 0.249284i \(0.919805\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 2.96078 0.764471
\(16\) 0 0
\(17\) 3.33232 0.808206 0.404103 0.914713i \(-0.367584\pi\)
0.404103 + 0.914713i \(0.367584\pi\)
\(18\) 0 0
\(19\) 1.32253 0.303410 0.151705 0.988426i \(-0.451524\pi\)
0.151705 + 0.988426i \(0.451524\pi\)
\(20\) 0 0
\(21\) −2.32680 −0.507750
\(22\) 0 0
\(23\) 0.849071 0.177044 0.0885218 0.996074i \(-0.471786\pi\)
0.0885218 + 0.996074i \(0.471786\pi\)
\(24\) 0 0
\(25\) −3.38082 −0.676164
\(26\) 0 0
\(27\) −1.36350 −0.262405
\(28\) 0 0
\(29\) 8.55156 1.58798 0.793992 0.607928i \(-0.207999\pi\)
0.793992 + 0.607928i \(0.207999\pi\)
\(30\) 0 0
\(31\) −1.84234 −0.330894 −0.165447 0.986219i \(-0.552907\pi\)
−0.165447 + 0.986219i \(0.552907\pi\)
\(32\) 0 0
\(33\) −14.9470 −2.60194
\(34\) 0 0
\(35\) −1.27247 −0.215087
\(36\) 0 0
\(37\) −9.91958 −1.63077 −0.815384 0.578920i \(-0.803474\pi\)
−0.815384 + 0.578920i \(0.803474\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.84770 −0.444736 −0.222368 0.974963i \(-0.571379\pi\)
−0.222368 + 0.974963i \(0.571379\pi\)
\(42\) 0 0
\(43\) −6.03321 −0.920055 −0.460028 0.887905i \(-0.652161\pi\)
−0.460028 + 0.887905i \(0.652161\pi\)
\(44\) 0 0
\(45\) 3.07174 0.457909
\(46\) 0 0
\(47\) −4.70658 −0.686525 −0.343263 0.939239i \(-0.611532\pi\)
−0.343263 + 0.939239i \(0.611532\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 7.75365 1.08573
\(52\) 0 0
\(53\) −4.57771 −0.628797 −0.314399 0.949291i \(-0.601803\pi\)
−0.314399 + 0.949291i \(0.601803\pi\)
\(54\) 0 0
\(55\) −8.17414 −1.10220
\(56\) 0 0
\(57\) 3.07727 0.407594
\(58\) 0 0
\(59\) 1.56268 0.203443 0.101722 0.994813i \(-0.467565\pi\)
0.101722 + 0.994813i \(0.467565\pi\)
\(60\) 0 0
\(61\) −7.50272 −0.960625 −0.480313 0.877097i \(-0.659477\pi\)
−0.480313 + 0.877097i \(0.659477\pi\)
\(62\) 0 0
\(63\) −2.41400 −0.304136
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −1.34362 −0.164149 −0.0820747 0.996626i \(-0.526155\pi\)
−0.0820747 + 0.996626i \(0.526155\pi\)
\(68\) 0 0
\(69\) 1.97562 0.237837
\(70\) 0 0
\(71\) −12.0208 −1.42661 −0.713306 0.700853i \(-0.752803\pi\)
−0.713306 + 0.700853i \(0.752803\pi\)
\(72\) 0 0
\(73\) 13.1954 1.54440 0.772201 0.635378i \(-0.219156\pi\)
0.772201 + 0.635378i \(0.219156\pi\)
\(74\) 0 0
\(75\) −7.86650 −0.908345
\(76\) 0 0
\(77\) 6.42384 0.732065
\(78\) 0 0
\(79\) −6.31729 −0.710750 −0.355375 0.934724i \(-0.615647\pi\)
−0.355375 + 0.934724i \(0.615647\pi\)
\(80\) 0 0
\(81\) −10.4146 −1.15718
\(82\) 0 0
\(83\) −5.72464 −0.628360 −0.314180 0.949363i \(-0.601730\pi\)
−0.314180 + 0.949363i \(0.601730\pi\)
\(84\) 0 0
\(85\) 4.24028 0.459922
\(86\) 0 0
\(87\) 19.8978 2.13327
\(88\) 0 0
\(89\) −12.5426 −1.32951 −0.664756 0.747061i \(-0.731464\pi\)
−0.664756 + 0.747061i \(0.731464\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −4.28676 −0.444517
\(94\) 0 0
\(95\) 1.68288 0.172660
\(96\) 0 0
\(97\) 17.6875 1.79589 0.897946 0.440105i \(-0.145059\pi\)
0.897946 + 0.440105i \(0.145059\pi\)
\(98\) 0 0
\(99\) −15.5072 −1.55853
\(100\) 0 0
\(101\) −0.199640 −0.0198649 −0.00993244 0.999951i \(-0.503162\pi\)
−0.00993244 + 0.999951i \(0.503162\pi\)
\(102\) 0 0
\(103\) −12.5235 −1.23398 −0.616989 0.786972i \(-0.711648\pi\)
−0.616989 + 0.786972i \(0.711648\pi\)
\(104\) 0 0
\(105\) −2.96078 −0.288943
\(106\) 0 0
\(107\) −8.67551 −0.838693 −0.419347 0.907826i \(-0.637741\pi\)
−0.419347 + 0.907826i \(0.637741\pi\)
\(108\) 0 0
\(109\) 3.03474 0.290675 0.145338 0.989382i \(-0.453573\pi\)
0.145338 + 0.989382i \(0.453573\pi\)
\(110\) 0 0
\(111\) −23.0809 −2.19074
\(112\) 0 0
\(113\) −4.77391 −0.449091 −0.224546 0.974464i \(-0.572090\pi\)
−0.224546 + 0.974464i \(0.572090\pi\)
\(114\) 0 0
\(115\) 1.08042 0.100749
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.33232 −0.305473
\(120\) 0 0
\(121\) 30.2657 2.75143
\(122\) 0 0
\(123\) −6.62603 −0.597449
\(124\) 0 0
\(125\) −10.6643 −0.953847
\(126\) 0 0
\(127\) 22.0644 1.95790 0.978948 0.204110i \(-0.0654299\pi\)
0.978948 + 0.204110i \(0.0654299\pi\)
\(128\) 0 0
\(129\) −14.0381 −1.23598
\(130\) 0 0
\(131\) 12.8975 1.12686 0.563430 0.826164i \(-0.309481\pi\)
0.563430 + 0.826164i \(0.309481\pi\)
\(132\) 0 0
\(133\) −1.32253 −0.114678
\(134\) 0 0
\(135\) −1.73501 −0.149326
\(136\) 0 0
\(137\) 5.13983 0.439126 0.219563 0.975598i \(-0.429537\pi\)
0.219563 + 0.975598i \(0.429537\pi\)
\(138\) 0 0
\(139\) 10.5030 0.890854 0.445427 0.895318i \(-0.353052\pi\)
0.445427 + 0.895318i \(0.353052\pi\)
\(140\) 0 0
\(141\) −10.9513 −0.922264
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 10.8816 0.903668
\(146\) 0 0
\(147\) 2.32680 0.191911
\(148\) 0 0
\(149\) 11.5611 0.947122 0.473561 0.880761i \(-0.342968\pi\)
0.473561 + 0.880761i \(0.342968\pi\)
\(150\) 0 0
\(151\) −9.23704 −0.751700 −0.375850 0.926681i \(-0.622649\pi\)
−0.375850 + 0.926681i \(0.622649\pi\)
\(152\) 0 0
\(153\) 8.04423 0.650338
\(154\) 0 0
\(155\) −2.34432 −0.188301
\(156\) 0 0
\(157\) −6.14929 −0.490767 −0.245383 0.969426i \(-0.578914\pi\)
−0.245383 + 0.969426i \(0.578914\pi\)
\(158\) 0 0
\(159\) −10.6514 −0.844713
\(160\) 0 0
\(161\) −0.849071 −0.0669162
\(162\) 0 0
\(163\) −14.5021 −1.13589 −0.567945 0.823067i \(-0.692261\pi\)
−0.567945 + 0.823067i \(0.692261\pi\)
\(164\) 0 0
\(165\) −19.0196 −1.48067
\(166\) 0 0
\(167\) −15.2120 −1.17714 −0.588571 0.808446i \(-0.700309\pi\)
−0.588571 + 0.808446i \(0.700309\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 3.19259 0.244144
\(172\) 0 0
\(173\) 17.3939 1.32244 0.661218 0.750194i \(-0.270040\pi\)
0.661218 + 0.750194i \(0.270040\pi\)
\(174\) 0 0
\(175\) 3.38082 0.255566
\(176\) 0 0
\(177\) 3.63603 0.273301
\(178\) 0 0
\(179\) 2.60245 0.194516 0.0972579 0.995259i \(-0.468993\pi\)
0.0972579 + 0.995259i \(0.468993\pi\)
\(180\) 0 0
\(181\) −3.77181 −0.280357 −0.140178 0.990126i \(-0.544768\pi\)
−0.140178 + 0.990126i \(0.544768\pi\)
\(182\) 0 0
\(183\) −17.4573 −1.29048
\(184\) 0 0
\(185\) −12.6224 −0.928014
\(186\) 0 0
\(187\) −21.4063 −1.56538
\(188\) 0 0
\(189\) 1.36350 0.0991799
\(190\) 0 0
\(191\) −5.15435 −0.372956 −0.186478 0.982459i \(-0.559707\pi\)
−0.186478 + 0.982459i \(0.559707\pi\)
\(192\) 0 0
\(193\) −2.38435 −0.171629 −0.0858146 0.996311i \(-0.527349\pi\)
−0.0858146 + 0.996311i \(0.527349\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.9851 −0.925153 −0.462577 0.886579i \(-0.653075\pi\)
−0.462577 + 0.886579i \(0.653075\pi\)
\(198\) 0 0
\(199\) 15.3134 1.08554 0.542768 0.839883i \(-0.317376\pi\)
0.542768 + 0.839883i \(0.317376\pi\)
\(200\) 0 0
\(201\) −3.12634 −0.220515
\(202\) 0 0
\(203\) −8.55156 −0.600202
\(204\) 0 0
\(205\) −3.62361 −0.253084
\(206\) 0 0
\(207\) 2.04966 0.142461
\(208\) 0 0
\(209\) −8.49573 −0.587662
\(210\) 0 0
\(211\) −15.8677 −1.09237 −0.546187 0.837663i \(-0.683921\pi\)
−0.546187 + 0.837663i \(0.683921\pi\)
\(212\) 0 0
\(213\) −27.9701 −1.91648
\(214\) 0 0
\(215\) −7.67707 −0.523572
\(216\) 0 0
\(217\) 1.84234 0.125066
\(218\) 0 0
\(219\) 30.7030 2.07472
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −7.21823 −0.483369 −0.241684 0.970355i \(-0.577700\pi\)
−0.241684 + 0.970355i \(0.577700\pi\)
\(224\) 0 0
\(225\) −8.16131 −0.544088
\(226\) 0 0
\(227\) 27.8725 1.84996 0.924981 0.380014i \(-0.124081\pi\)
0.924981 + 0.380014i \(0.124081\pi\)
\(228\) 0 0
\(229\) 7.66707 0.506654 0.253327 0.967381i \(-0.418475\pi\)
0.253327 + 0.967381i \(0.418475\pi\)
\(230\) 0 0
\(231\) 14.9470 0.983440
\(232\) 0 0
\(233\) −21.4770 −1.40701 −0.703503 0.710693i \(-0.748382\pi\)
−0.703503 + 0.710693i \(0.748382\pi\)
\(234\) 0 0
\(235\) −5.98898 −0.390678
\(236\) 0 0
\(237\) −14.6991 −0.954807
\(238\) 0 0
\(239\) −28.8767 −1.86788 −0.933940 0.357430i \(-0.883653\pi\)
−0.933940 + 0.357430i \(0.883653\pi\)
\(240\) 0 0
\(241\) −15.3763 −0.990474 −0.495237 0.868758i \(-0.664919\pi\)
−0.495237 + 0.868758i \(0.664919\pi\)
\(242\) 0 0
\(243\) −20.1422 −1.29212
\(244\) 0 0
\(245\) 1.27247 0.0812951
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −13.3201 −0.844126
\(250\) 0 0
\(251\) −16.1428 −1.01892 −0.509462 0.860493i \(-0.670155\pi\)
−0.509462 + 0.860493i \(0.670155\pi\)
\(252\) 0 0
\(253\) −5.45430 −0.342909
\(254\) 0 0
\(255\) 9.86628 0.617850
\(256\) 0 0
\(257\) −23.7811 −1.48342 −0.741712 0.670719i \(-0.765986\pi\)
−0.741712 + 0.670719i \(0.765986\pi\)
\(258\) 0 0
\(259\) 9.91958 0.616372
\(260\) 0 0
\(261\) 20.6435 1.27780
\(262\) 0 0
\(263\) −7.98942 −0.492649 −0.246324 0.969187i \(-0.579223\pi\)
−0.246324 + 0.969187i \(0.579223\pi\)
\(264\) 0 0
\(265\) −5.82500 −0.357827
\(266\) 0 0
\(267\) −29.1841 −1.78604
\(268\) 0 0
\(269\) 24.4005 1.48772 0.743862 0.668333i \(-0.232992\pi\)
0.743862 + 0.668333i \(0.232992\pi\)
\(270\) 0 0
\(271\) 20.4146 1.24010 0.620048 0.784564i \(-0.287113\pi\)
0.620048 + 0.784564i \(0.287113\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 21.7179 1.30964
\(276\) 0 0
\(277\) 7.24043 0.435035 0.217518 0.976056i \(-0.430204\pi\)
0.217518 + 0.976056i \(0.430204\pi\)
\(278\) 0 0
\(279\) −4.44742 −0.266260
\(280\) 0 0
\(281\) −21.8164 −1.30146 −0.650730 0.759309i \(-0.725537\pi\)
−0.650730 + 0.759309i \(0.725537\pi\)
\(282\) 0 0
\(283\) −16.2625 −0.966705 −0.483353 0.875426i \(-0.660581\pi\)
−0.483353 + 0.875426i \(0.660581\pi\)
\(284\) 0 0
\(285\) 3.91573 0.231948
\(286\) 0 0
\(287\) 2.84770 0.168094
\(288\) 0 0
\(289\) −5.89564 −0.346802
\(290\) 0 0
\(291\) 41.1553 2.41256
\(292\) 0 0
\(293\) 19.7217 1.15215 0.576077 0.817395i \(-0.304583\pi\)
0.576077 + 0.817395i \(0.304583\pi\)
\(294\) 0 0
\(295\) 1.98846 0.115772
\(296\) 0 0
\(297\) 8.75890 0.508243
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 6.03321 0.347748
\(302\) 0 0
\(303\) −0.464521 −0.0266861
\(304\) 0 0
\(305\) −9.54699 −0.546659
\(306\) 0 0
\(307\) 4.26868 0.243627 0.121813 0.992553i \(-0.461129\pi\)
0.121813 + 0.992553i \(0.461129\pi\)
\(308\) 0 0
\(309\) −29.1397 −1.65770
\(310\) 0 0
\(311\) 7.67686 0.435315 0.217657 0.976025i \(-0.430158\pi\)
0.217657 + 0.976025i \(0.430158\pi\)
\(312\) 0 0
\(313\) −5.96026 −0.336894 −0.168447 0.985711i \(-0.553875\pi\)
−0.168447 + 0.985711i \(0.553875\pi\)
\(314\) 0 0
\(315\) −3.07174 −0.173073
\(316\) 0 0
\(317\) −5.50647 −0.309274 −0.154637 0.987971i \(-0.549421\pi\)
−0.154637 + 0.987971i \(0.549421\pi\)
\(318\) 0 0
\(319\) −54.9339 −3.07571
\(320\) 0 0
\(321\) −20.1862 −1.12668
\(322\) 0 0
\(323\) 4.40710 0.245218
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 7.06123 0.390487
\(328\) 0 0
\(329\) 4.70658 0.259482
\(330\) 0 0
\(331\) −18.6624 −1.02578 −0.512889 0.858455i \(-0.671425\pi\)
−0.512889 + 0.858455i \(0.671425\pi\)
\(332\) 0 0
\(333\) −23.9459 −1.31223
\(334\) 0 0
\(335\) −1.70972 −0.0934118
\(336\) 0 0
\(337\) 33.9443 1.84907 0.924533 0.381102i \(-0.124455\pi\)
0.924533 + 0.381102i \(0.124455\pi\)
\(338\) 0 0
\(339\) −11.1079 −0.603300
\(340\) 0 0
\(341\) 11.8349 0.640897
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 2.51391 0.135345
\(346\) 0 0
\(347\) −3.50971 −0.188411 −0.0942056 0.995553i \(-0.530031\pi\)
−0.0942056 + 0.995553i \(0.530031\pi\)
\(348\) 0 0
\(349\) −26.0776 −1.39590 −0.697950 0.716147i \(-0.745904\pi\)
−0.697950 + 0.716147i \(0.745904\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −26.5545 −1.41335 −0.706677 0.707537i \(-0.749806\pi\)
−0.706677 + 0.707537i \(0.749806\pi\)
\(354\) 0 0
\(355\) −15.2962 −0.811836
\(356\) 0 0
\(357\) −7.75365 −0.410367
\(358\) 0 0
\(359\) 13.0339 0.687901 0.343950 0.938988i \(-0.388235\pi\)
0.343950 + 0.938988i \(0.388235\pi\)
\(360\) 0 0
\(361\) −17.2509 −0.907943
\(362\) 0 0
\(363\) 70.4223 3.69621
\(364\) 0 0
\(365\) 16.7907 0.878866
\(366\) 0 0
\(367\) −1.99562 −0.104171 −0.0520854 0.998643i \(-0.516587\pi\)
−0.0520854 + 0.998643i \(0.516587\pi\)
\(368\) 0 0
\(369\) −6.87436 −0.357865
\(370\) 0 0
\(371\) 4.57771 0.237663
\(372\) 0 0
\(373\) 10.9350 0.566194 0.283097 0.959091i \(-0.408638\pi\)
0.283097 + 0.959091i \(0.408638\pi\)
\(374\) 0 0
\(375\) −24.8138 −1.28138
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −13.6921 −0.703314 −0.351657 0.936129i \(-0.614382\pi\)
−0.351657 + 0.936129i \(0.614382\pi\)
\(380\) 0 0
\(381\) 51.3394 2.63020
\(382\) 0 0
\(383\) 32.9325 1.68277 0.841387 0.540433i \(-0.181739\pi\)
0.841387 + 0.540433i \(0.181739\pi\)
\(384\) 0 0
\(385\) 8.17414 0.416593
\(386\) 0 0
\(387\) −14.5642 −0.740339
\(388\) 0 0
\(389\) −29.6277 −1.50218 −0.751092 0.660197i \(-0.770473\pi\)
−0.751092 + 0.660197i \(0.770473\pi\)
\(390\) 0 0
\(391\) 2.82938 0.143088
\(392\) 0 0
\(393\) 30.0099 1.51380
\(394\) 0 0
\(395\) −8.03855 −0.404463
\(396\) 0 0
\(397\) 19.4546 0.976397 0.488198 0.872733i \(-0.337654\pi\)
0.488198 + 0.872733i \(0.337654\pi\)
\(398\) 0 0
\(399\) −3.07727 −0.154056
\(400\) 0 0
\(401\) −14.3380 −0.716008 −0.358004 0.933720i \(-0.616543\pi\)
−0.358004 + 0.933720i \(0.616543\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −13.2523 −0.658510
\(406\) 0 0
\(407\) 63.7218 3.15857
\(408\) 0 0
\(409\) 20.0449 0.991156 0.495578 0.868564i \(-0.334956\pi\)
0.495578 + 0.868564i \(0.334956\pi\)
\(410\) 0 0
\(411\) 11.9594 0.589912
\(412\) 0 0
\(413\) −1.56268 −0.0768942
\(414\) 0 0
\(415\) −7.28442 −0.357578
\(416\) 0 0
\(417\) 24.4384 1.19676
\(418\) 0 0
\(419\) 37.8811 1.85061 0.925307 0.379219i \(-0.123807\pi\)
0.925307 + 0.379219i \(0.123807\pi\)
\(420\) 0 0
\(421\) −6.72479 −0.327746 −0.163873 0.986481i \(-0.552399\pi\)
−0.163873 + 0.986481i \(0.552399\pi\)
\(422\) 0 0
\(423\) −11.3617 −0.552425
\(424\) 0 0
\(425\) −11.2660 −0.546480
\(426\) 0 0
\(427\) 7.50272 0.363082
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5.12684 0.246951 0.123476 0.992348i \(-0.460596\pi\)
0.123476 + 0.992348i \(0.460596\pi\)
\(432\) 0 0
\(433\) −21.0031 −1.00935 −0.504673 0.863310i \(-0.668387\pi\)
−0.504673 + 0.863310i \(0.668387\pi\)
\(434\) 0 0
\(435\) 25.3193 1.21397
\(436\) 0 0
\(437\) 1.12292 0.0537167
\(438\) 0 0
\(439\) −12.2500 −0.584660 −0.292330 0.956317i \(-0.594431\pi\)
−0.292330 + 0.956317i \(0.594431\pi\)
\(440\) 0 0
\(441\) 2.41400 0.114953
\(442\) 0 0
\(443\) 13.1819 0.626290 0.313145 0.949705i \(-0.398617\pi\)
0.313145 + 0.949705i \(0.398617\pi\)
\(444\) 0 0
\(445\) −15.9601 −0.756579
\(446\) 0 0
\(447\) 26.9004 1.27234
\(448\) 0 0
\(449\) −8.58174 −0.404997 −0.202499 0.979283i \(-0.564906\pi\)
−0.202499 + 0.979283i \(0.564906\pi\)
\(450\) 0 0
\(451\) 18.2932 0.861392
\(452\) 0 0
\(453\) −21.4928 −1.00982
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6.89657 0.322608 0.161304 0.986905i \(-0.448430\pi\)
0.161304 + 0.986905i \(0.448430\pi\)
\(458\) 0 0
\(459\) −4.54361 −0.212078
\(460\) 0 0
\(461\) 12.8190 0.597041 0.298520 0.954403i \(-0.403507\pi\)
0.298520 + 0.954403i \(0.403507\pi\)
\(462\) 0 0
\(463\) −19.1638 −0.890618 −0.445309 0.895377i \(-0.646906\pi\)
−0.445309 + 0.895377i \(0.646906\pi\)
\(464\) 0 0
\(465\) −5.45478 −0.252959
\(466\) 0 0
\(467\) 6.80660 0.314972 0.157486 0.987521i \(-0.449661\pi\)
0.157486 + 0.987521i \(0.449661\pi\)
\(468\) 0 0
\(469\) 1.34362 0.0620427
\(470\) 0 0
\(471\) −14.3082 −0.659286
\(472\) 0 0
\(473\) 38.7564 1.78202
\(474\) 0 0
\(475\) −4.47124 −0.205155
\(476\) 0 0
\(477\) −11.0506 −0.505973
\(478\) 0 0
\(479\) 18.1357 0.828641 0.414320 0.910131i \(-0.364019\pi\)
0.414320 + 0.910131i \(0.364019\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −1.97562 −0.0898938
\(484\) 0 0
\(485\) 22.5068 1.02198
\(486\) 0 0
\(487\) −42.2938 −1.91651 −0.958257 0.285907i \(-0.907705\pi\)
−0.958257 + 0.285907i \(0.907705\pi\)
\(488\) 0 0
\(489\) −33.7434 −1.52593
\(490\) 0 0
\(491\) −23.0597 −1.04067 −0.520334 0.853963i \(-0.674193\pi\)
−0.520334 + 0.853963i \(0.674193\pi\)
\(492\) 0 0
\(493\) 28.4965 1.28342
\(494\) 0 0
\(495\) −19.7324 −0.886905
\(496\) 0 0
\(497\) 12.0208 0.539209
\(498\) 0 0
\(499\) −11.4377 −0.512024 −0.256012 0.966674i \(-0.582409\pi\)
−0.256012 + 0.966674i \(0.582409\pi\)
\(500\) 0 0
\(501\) −35.3954 −1.58135
\(502\) 0 0
\(503\) 21.6016 0.963167 0.481584 0.876400i \(-0.340062\pi\)
0.481584 + 0.876400i \(0.340062\pi\)
\(504\) 0 0
\(505\) −0.254035 −0.0113044
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.68536 0.429296 0.214648 0.976691i \(-0.431140\pi\)
0.214648 + 0.976691i \(0.431140\pi\)
\(510\) 0 0
\(511\) −13.1954 −0.583729
\(512\) 0 0
\(513\) −1.80327 −0.0796163
\(514\) 0 0
\(515\) −15.9358 −0.702215
\(516\) 0 0
\(517\) 30.2343 1.32970
\(518\) 0 0
\(519\) 40.4722 1.77653
\(520\) 0 0
\(521\) 37.8117 1.65656 0.828281 0.560314i \(-0.189319\pi\)
0.828281 + 0.560314i \(0.189319\pi\)
\(522\) 0 0
\(523\) 16.8832 0.738252 0.369126 0.929379i \(-0.379657\pi\)
0.369126 + 0.929379i \(0.379657\pi\)
\(524\) 0 0
\(525\) 7.86650 0.343322
\(526\) 0 0
\(527\) −6.13928 −0.267431
\(528\) 0 0
\(529\) −22.2791 −0.968656
\(530\) 0 0
\(531\) 3.77230 0.163704
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −11.0393 −0.477271
\(536\) 0 0
\(537\) 6.05537 0.261309
\(538\) 0 0
\(539\) −6.42384 −0.276694
\(540\) 0 0
\(541\) 22.0672 0.948743 0.474372 0.880325i \(-0.342675\pi\)
0.474372 + 0.880325i \(0.342675\pi\)
\(542\) 0 0
\(543\) −8.77626 −0.376625
\(544\) 0 0
\(545\) 3.86161 0.165413
\(546\) 0 0
\(547\) −36.0808 −1.54270 −0.771351 0.636410i \(-0.780419\pi\)
−0.771351 + 0.636410i \(0.780419\pi\)
\(548\) 0 0
\(549\) −18.1116 −0.772984
\(550\) 0 0
\(551\) 11.3097 0.481810
\(552\) 0 0
\(553\) 6.31729 0.268638
\(554\) 0 0
\(555\) −29.3697 −1.24667
\(556\) 0 0
\(557\) 36.7874 1.55873 0.779366 0.626569i \(-0.215542\pi\)
0.779366 + 0.626569i \(0.215542\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −49.8082 −2.10290
\(562\) 0 0
\(563\) −30.4095 −1.28161 −0.640803 0.767705i \(-0.721398\pi\)
−0.640803 + 0.767705i \(0.721398\pi\)
\(564\) 0 0
\(565\) −6.07465 −0.255562
\(566\) 0 0
\(567\) 10.4146 0.437372
\(568\) 0 0
\(569\) −20.4066 −0.855490 −0.427745 0.903899i \(-0.640692\pi\)
−0.427745 + 0.903899i \(0.640692\pi\)
\(570\) 0 0
\(571\) −4.86680 −0.203669 −0.101835 0.994801i \(-0.532471\pi\)
−0.101835 + 0.994801i \(0.532471\pi\)
\(572\) 0 0
\(573\) −11.9931 −0.501021
\(574\) 0 0
\(575\) −2.87056 −0.119711
\(576\) 0 0
\(577\) 15.1891 0.632332 0.316166 0.948704i \(-0.397604\pi\)
0.316166 + 0.948704i \(0.397604\pi\)
\(578\) 0 0
\(579\) −5.54791 −0.230563
\(580\) 0 0
\(581\) 5.72464 0.237498
\(582\) 0 0
\(583\) 29.4065 1.21789
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.24477 −0.175200 −0.0876001 0.996156i \(-0.527920\pi\)
−0.0876001 + 0.996156i \(0.527920\pi\)
\(588\) 0 0
\(589\) −2.43656 −0.100397
\(590\) 0 0
\(591\) −30.2138 −1.24283
\(592\) 0 0
\(593\) −42.1424 −1.73058 −0.865291 0.501270i \(-0.832866\pi\)
−0.865291 + 0.501270i \(0.832866\pi\)
\(594\) 0 0
\(595\) −4.24028 −0.173834
\(596\) 0 0
\(597\) 35.6312 1.45829
\(598\) 0 0
\(599\) 42.2108 1.72469 0.862343 0.506324i \(-0.168996\pi\)
0.862343 + 0.506324i \(0.168996\pi\)
\(600\) 0 0
\(601\) −33.2585 −1.35664 −0.678320 0.734766i \(-0.737292\pi\)
−0.678320 + 0.734766i \(0.737292\pi\)
\(602\) 0 0
\(603\) −3.24351 −0.132086
\(604\) 0 0
\(605\) 38.5122 1.56574
\(606\) 0 0
\(607\) 27.7681 1.12707 0.563536 0.826091i \(-0.309441\pi\)
0.563536 + 0.826091i \(0.309441\pi\)
\(608\) 0 0
\(609\) −19.8978 −0.806299
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 2.02464 0.0817746 0.0408873 0.999164i \(-0.486982\pi\)
0.0408873 + 0.999164i \(0.486982\pi\)
\(614\) 0 0
\(615\) −8.43142 −0.339988
\(616\) 0 0
\(617\) 30.8567 1.24224 0.621122 0.783714i \(-0.286677\pi\)
0.621122 + 0.783714i \(0.286677\pi\)
\(618\) 0 0
\(619\) −1.33848 −0.0537982 −0.0268991 0.999638i \(-0.508563\pi\)
−0.0268991 + 0.999638i \(0.508563\pi\)
\(620\) 0 0
\(621\) −1.15771 −0.0464572
\(622\) 0 0
\(623\) 12.5426 0.502508
\(624\) 0 0
\(625\) 3.33407 0.133363
\(626\) 0 0
\(627\) −19.7679 −0.789453
\(628\) 0 0
\(629\) −33.0552 −1.31800
\(630\) 0 0
\(631\) −0.610406 −0.0242999 −0.0121499 0.999926i \(-0.503868\pi\)
−0.0121499 + 0.999926i \(0.503868\pi\)
\(632\) 0 0
\(633\) −36.9209 −1.46747
\(634\) 0 0
\(635\) 28.0762 1.11417
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −29.0184 −1.14795
\(640\) 0 0
\(641\) −0.890388 −0.0351682 −0.0175841 0.999845i \(-0.505597\pi\)
−0.0175841 + 0.999845i \(0.505597\pi\)
\(642\) 0 0
\(643\) 50.2105 1.98011 0.990055 0.140682i \(-0.0449295\pi\)
0.990055 + 0.140682i \(0.0449295\pi\)
\(644\) 0 0
\(645\) −17.8630 −0.703356
\(646\) 0 0
\(647\) 17.9782 0.706794 0.353397 0.935473i \(-0.385026\pi\)
0.353397 + 0.935473i \(0.385026\pi\)
\(648\) 0 0
\(649\) −10.0384 −0.394041
\(650\) 0 0
\(651\) 4.28676 0.168012
\(652\) 0 0
\(653\) 0.614495 0.0240471 0.0120235 0.999928i \(-0.496173\pi\)
0.0120235 + 0.999928i \(0.496173\pi\)
\(654\) 0 0
\(655\) 16.4117 0.641258
\(656\) 0 0
\(657\) 31.8537 1.24273
\(658\) 0 0
\(659\) 0.679615 0.0264740 0.0132370 0.999912i \(-0.495786\pi\)
0.0132370 + 0.999912i \(0.495786\pi\)
\(660\) 0 0
\(661\) 29.0473 1.12981 0.564905 0.825156i \(-0.308913\pi\)
0.564905 + 0.825156i \(0.308913\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.68288 −0.0652593
\(666\) 0 0
\(667\) 7.26088 0.281142
\(668\) 0 0
\(669\) −16.7954 −0.649347
\(670\) 0 0
\(671\) 48.1963 1.86060
\(672\) 0 0
\(673\) −3.15331 −0.121551 −0.0607755 0.998151i \(-0.519357\pi\)
−0.0607755 + 0.998151i \(0.519357\pi\)
\(674\) 0 0
\(675\) 4.60975 0.177429
\(676\) 0 0
\(677\) 27.4370 1.05449 0.527245 0.849713i \(-0.323225\pi\)
0.527245 + 0.849713i \(0.323225\pi\)
\(678\) 0 0
\(679\) −17.6875 −0.678783
\(680\) 0 0
\(681\) 64.8537 2.48520
\(682\) 0 0
\(683\) −20.2967 −0.776633 −0.388316 0.921526i \(-0.626943\pi\)
−0.388316 + 0.921526i \(0.626943\pi\)
\(684\) 0 0
\(685\) 6.54028 0.249891
\(686\) 0 0
\(687\) 17.8397 0.680629
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 43.0810 1.63888 0.819439 0.573167i \(-0.194285\pi\)
0.819439 + 0.573167i \(0.194285\pi\)
\(692\) 0 0
\(693\) 15.5072 0.589069
\(694\) 0 0
\(695\) 13.3648 0.506955
\(696\) 0 0
\(697\) −9.48945 −0.359439
\(698\) 0 0
\(699\) −49.9727 −1.89014
\(700\) 0 0
\(701\) 27.6972 1.04611 0.523055 0.852299i \(-0.324792\pi\)
0.523055 + 0.852299i \(0.324792\pi\)
\(702\) 0 0
\(703\) −13.1190 −0.494791
\(704\) 0 0
\(705\) −13.9352 −0.524828
\(706\) 0 0
\(707\) 0.199640 0.00750822
\(708\) 0 0
\(709\) −42.7243 −1.60454 −0.802272 0.596959i \(-0.796375\pi\)
−0.802272 + 0.596959i \(0.796375\pi\)
\(710\) 0 0
\(711\) −15.2499 −0.571918
\(712\) 0 0
\(713\) −1.56428 −0.0585827
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −67.1904 −2.50927
\(718\) 0 0
\(719\) −23.7582 −0.886032 −0.443016 0.896514i \(-0.646091\pi\)
−0.443016 + 0.896514i \(0.646091\pi\)
\(720\) 0 0
\(721\) 12.5235 0.466400
\(722\) 0 0
\(723\) −35.7776 −1.33058
\(724\) 0 0
\(725\) −28.9113 −1.07374
\(726\) 0 0
\(727\) 0.0456124 0.00169167 0.000845835 1.00000i \(-0.499731\pi\)
0.000845835 1.00000i \(0.499731\pi\)
\(728\) 0 0
\(729\) −15.6231 −0.578633
\(730\) 0 0
\(731\) −20.1046 −0.743595
\(732\) 0 0
\(733\) 1.40512 0.0518992 0.0259496 0.999663i \(-0.491739\pi\)
0.0259496 + 0.999663i \(0.491739\pi\)
\(734\) 0 0
\(735\) 2.96078 0.109210
\(736\) 0 0
\(737\) 8.63121 0.317935
\(738\) 0 0
\(739\) 38.0191 1.39856 0.699278 0.714850i \(-0.253505\pi\)
0.699278 + 0.714850i \(0.253505\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7.37149 0.270434 0.135217 0.990816i \(-0.456827\pi\)
0.135217 + 0.990816i \(0.456827\pi\)
\(744\) 0 0
\(745\) 14.7111 0.538975
\(746\) 0 0
\(747\) −13.8193 −0.505621
\(748\) 0 0
\(749\) 8.67551 0.316996
\(750\) 0 0
\(751\) 38.3548 1.39959 0.699794 0.714345i \(-0.253275\pi\)
0.699794 + 0.714345i \(0.253275\pi\)
\(752\) 0 0
\(753\) −37.5610 −1.36880
\(754\) 0 0
\(755\) −11.7539 −0.427767
\(756\) 0 0
\(757\) 46.1074 1.67580 0.837900 0.545823i \(-0.183783\pi\)
0.837900 + 0.545823i \(0.183783\pi\)
\(758\) 0 0
\(759\) −12.6911 −0.460656
\(760\) 0 0
\(761\) −24.1313 −0.874760 −0.437380 0.899277i \(-0.644093\pi\)
−0.437380 + 0.899277i \(0.644093\pi\)
\(762\) 0 0
\(763\) −3.03474 −0.109865
\(764\) 0 0
\(765\) 10.2360 0.370085
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −28.6587 −1.03346 −0.516729 0.856149i \(-0.672850\pi\)
−0.516729 + 0.856149i \(0.672850\pi\)
\(770\) 0 0
\(771\) −55.3339 −1.99280
\(772\) 0 0
\(773\) 40.3274 1.45047 0.725237 0.688499i \(-0.241730\pi\)
0.725237 + 0.688499i \(0.241730\pi\)
\(774\) 0 0
\(775\) 6.22863 0.223739
\(776\) 0 0
\(777\) 23.0809 0.828022
\(778\) 0 0
\(779\) −3.76617 −0.134937
\(780\) 0 0
\(781\) 77.2200 2.76315
\(782\) 0 0
\(783\) −11.6600 −0.416696
\(784\) 0 0
\(785\) −7.82478 −0.279278
\(786\) 0 0
\(787\) −15.1690 −0.540717 −0.270359 0.962760i \(-0.587142\pi\)
−0.270359 + 0.962760i \(0.587142\pi\)
\(788\) 0 0
\(789\) −18.5898 −0.661814
\(790\) 0 0
\(791\) 4.77391 0.169741
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −13.5536 −0.480697
\(796\) 0 0
\(797\) 16.4333 0.582096 0.291048 0.956708i \(-0.405996\pi\)
0.291048 + 0.956708i \(0.405996\pi\)
\(798\) 0 0
\(799\) −15.6838 −0.554854
\(800\) 0 0
\(801\) −30.2778 −1.06981
\(802\) 0 0
\(803\) −84.7650 −2.99129
\(804\) 0 0
\(805\) −1.08042 −0.0380797
\(806\) 0 0
\(807\) 56.7751 1.99858
\(808\) 0 0
\(809\) 27.9907 0.984102 0.492051 0.870566i \(-0.336247\pi\)
0.492051 + 0.870566i \(0.336247\pi\)
\(810\) 0 0
\(811\) −39.5128 −1.38748 −0.693742 0.720224i \(-0.744039\pi\)
−0.693742 + 0.720224i \(0.744039\pi\)
\(812\) 0 0
\(813\) 47.5006 1.66592
\(814\) 0 0
\(815\) −18.4534 −0.646396
\(816\) 0 0
\(817\) −7.97911 −0.279154
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −24.0197 −0.838294 −0.419147 0.907918i \(-0.637671\pi\)
−0.419147 + 0.907918i \(0.637671\pi\)
\(822\) 0 0
\(823\) 15.4832 0.539710 0.269855 0.962901i \(-0.413024\pi\)
0.269855 + 0.962901i \(0.413024\pi\)
\(824\) 0 0
\(825\) 50.5331 1.75934
\(826\) 0 0
\(827\) −5.51389 −0.191737 −0.0958683 0.995394i \(-0.530563\pi\)
−0.0958683 + 0.995394i \(0.530563\pi\)
\(828\) 0 0
\(829\) 7.72297 0.268230 0.134115 0.990966i \(-0.457181\pi\)
0.134115 + 0.990966i \(0.457181\pi\)
\(830\) 0 0
\(831\) 16.8470 0.584417
\(832\) 0 0
\(833\) 3.33232 0.115458
\(834\) 0 0
\(835\) −19.3568 −0.669871
\(836\) 0 0
\(837\) 2.51203 0.0868285
\(838\) 0 0
\(839\) 48.5972 1.67776 0.838881 0.544314i \(-0.183210\pi\)
0.838881 + 0.544314i \(0.183210\pi\)
\(840\) 0 0
\(841\) 44.1292 1.52170
\(842\) 0 0
\(843\) −50.7625 −1.74835
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −30.2657 −1.03994
\(848\) 0 0
\(849\) −37.8396 −1.29865
\(850\) 0 0
\(851\) −8.42242 −0.288717
\(852\) 0 0
\(853\) −16.8464 −0.576811 −0.288406 0.957508i \(-0.593125\pi\)
−0.288406 + 0.957508i \(0.593125\pi\)
\(854\) 0 0
\(855\) 4.06248 0.138934
\(856\) 0 0
\(857\) −3.05743 −0.104440 −0.0522199 0.998636i \(-0.516630\pi\)
−0.0522199 + 0.998636i \(0.516630\pi\)
\(858\) 0 0
\(859\) 23.9404 0.816836 0.408418 0.912795i \(-0.366081\pi\)
0.408418 + 0.912795i \(0.366081\pi\)
\(860\) 0 0
\(861\) 6.62603 0.225815
\(862\) 0 0
\(863\) −3.11424 −0.106010 −0.0530049 0.998594i \(-0.516880\pi\)
−0.0530049 + 0.998594i \(0.516880\pi\)
\(864\) 0 0
\(865\) 22.1333 0.752553
\(866\) 0 0
\(867\) −13.7180 −0.465887
\(868\) 0 0
\(869\) 40.5812 1.37662
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 42.6976 1.44510
\(874\) 0 0
\(875\) 10.6643 0.360520
\(876\) 0 0
\(877\) −18.2711 −0.616971 −0.308486 0.951229i \(-0.599822\pi\)
−0.308486 + 0.951229i \(0.599822\pi\)
\(878\) 0 0
\(879\) 45.8885 1.54778
\(880\) 0 0
\(881\) 8.36565 0.281846 0.140923 0.990021i \(-0.454993\pi\)
0.140923 + 0.990021i \(0.454993\pi\)
\(882\) 0 0
\(883\) −52.4830 −1.76619 −0.883096 0.469191i \(-0.844545\pi\)
−0.883096 + 0.469191i \(0.844545\pi\)
\(884\) 0 0
\(885\) 4.62674 0.155526
\(886\) 0 0
\(887\) −53.7876 −1.80601 −0.903006 0.429628i \(-0.858645\pi\)
−0.903006 + 0.429628i \(0.858645\pi\)
\(888\) 0 0
\(889\) −22.0644 −0.740015
\(890\) 0 0
\(891\) 66.9017 2.24129
\(892\) 0 0
\(893\) −6.22460 −0.208298
\(894\) 0 0
\(895\) 3.31153 0.110692
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −15.7549 −0.525455
\(900\) 0 0
\(901\) −15.2544 −0.508198
\(902\) 0 0
\(903\) 14.0381 0.467158
\(904\) 0 0
\(905\) −4.79952 −0.159541
\(906\) 0 0
\(907\) −30.5595 −1.01471 −0.507357 0.861736i \(-0.669377\pi\)
−0.507357 + 0.861736i \(0.669377\pi\)
\(908\) 0 0
\(909\) −0.481930 −0.0159846
\(910\) 0 0
\(911\) −17.6465 −0.584655 −0.292327 0.956318i \(-0.594430\pi\)
−0.292327 + 0.956318i \(0.594430\pi\)
\(912\) 0 0
\(913\) 36.7742 1.21705
\(914\) 0 0
\(915\) −22.2139 −0.734370
\(916\) 0 0
\(917\) −12.8975 −0.425913
\(918\) 0 0
\(919\) −28.1817 −0.929627 −0.464814 0.885409i \(-0.653879\pi\)
−0.464814 + 0.885409i \(0.653879\pi\)
\(920\) 0 0
\(921\) 9.93238 0.327283
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 33.5363 1.10267
\(926\) 0 0
\(927\) −30.2318 −0.992943
\(928\) 0 0
\(929\) 38.6355 1.26759 0.633795 0.773501i \(-0.281496\pi\)
0.633795 + 0.773501i \(0.281496\pi\)
\(930\) 0 0
\(931\) 1.32253 0.0433442
\(932\) 0 0
\(933\) 17.8625 0.584792
\(934\) 0 0
\(935\) −27.2389 −0.890806
\(936\) 0 0
\(937\) −16.6889 −0.545203 −0.272601 0.962127i \(-0.587884\pi\)
−0.272601 + 0.962127i \(0.587884\pi\)
\(938\) 0 0
\(939\) −13.8683 −0.452576
\(940\) 0 0
\(941\) 14.0185 0.456991 0.228495 0.973545i \(-0.426619\pi\)
0.228495 + 0.973545i \(0.426619\pi\)
\(942\) 0 0
\(943\) −2.41790 −0.0787377
\(944\) 0 0
\(945\) 1.73501 0.0564399
\(946\) 0 0
\(947\) −23.4628 −0.762440 −0.381220 0.924484i \(-0.624496\pi\)
−0.381220 + 0.924484i \(0.624496\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −12.8125 −0.415473
\(952\) 0 0
\(953\) −27.7415 −0.898634 −0.449317 0.893372i \(-0.648333\pi\)
−0.449317 + 0.893372i \(0.648333\pi\)
\(954\) 0 0
\(955\) −6.55875 −0.212236
\(956\) 0 0
\(957\) −127.820 −4.13184
\(958\) 0 0
\(959\) −5.13983 −0.165974
\(960\) 0 0
\(961\) −27.6058 −0.890509
\(962\) 0 0
\(963\) −20.9427 −0.674869
\(964\) 0 0
\(965\) −3.03401 −0.0976683
\(966\) 0 0
\(967\) −12.6723 −0.407514 −0.203757 0.979022i \(-0.565315\pi\)
−0.203757 + 0.979022i \(0.565315\pi\)
\(968\) 0 0
\(969\) 10.2544 0.329420
\(970\) 0 0
\(971\) −29.7405 −0.954417 −0.477208 0.878790i \(-0.658351\pi\)
−0.477208 + 0.878790i \(0.658351\pi\)
\(972\) 0 0
\(973\) −10.5030 −0.336711
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 28.6607 0.916938 0.458469 0.888710i \(-0.348398\pi\)
0.458469 + 0.888710i \(0.348398\pi\)
\(978\) 0 0
\(979\) 80.5716 2.57508
\(980\) 0 0
\(981\) 7.32586 0.233897
\(982\) 0 0
\(983\) 57.3163 1.82811 0.914054 0.405593i \(-0.132935\pi\)
0.914054 + 0.405593i \(0.132935\pi\)
\(984\) 0 0
\(985\) −16.5232 −0.526473
\(986\) 0 0
\(987\) 10.9513 0.348583
\(988\) 0 0
\(989\) −5.12262 −0.162890
\(990\) 0 0
\(991\) −57.6221 −1.83043 −0.915213 0.402970i \(-0.867978\pi\)
−0.915213 + 0.402970i \(0.867978\pi\)
\(992\) 0 0
\(993\) −43.4237 −1.37801
\(994\) 0 0
\(995\) 19.4858 0.617741
\(996\) 0 0
\(997\) 8.54191 0.270525 0.135262 0.990810i \(-0.456812\pi\)
0.135262 + 0.990810i \(0.456812\pi\)
\(998\) 0 0
\(999\) 13.5253 0.427922
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9464.2.a.br.1.13 15
13.12 even 2 9464.2.a.bs.1.13 yes 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9464.2.a.br.1.13 15 1.1 even 1 trivial
9464.2.a.bs.1.13 yes 15 13.12 even 2