Properties

Label 9464.2.a.br.1.12
Level $9464$
Weight $2$
Character 9464.1
Self dual yes
Analytic conductor $75.570$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9464,2,Mod(1,9464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,0,-3,0,-4,0,-15,0,16,0,-15,0,0,0,-8,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5704204729\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 3 x^{14} - 26 x^{13} + 78 x^{12} + 253 x^{11} - 782 x^{10} - 1087 x^{9} + 3776 x^{8} + \cdots - 344 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(-2.05925\) of defining polynomial
Character \(\chi\) \(=\) 9464.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.05925 q^{3} +1.64516 q^{5} -1.00000 q^{7} +1.24052 q^{9} +1.46249 q^{11} +3.38781 q^{15} +1.88478 q^{17} -6.90801 q^{19} -2.05925 q^{21} -0.533833 q^{23} -2.29344 q^{25} -3.62321 q^{27} -5.48263 q^{29} -10.3800 q^{31} +3.01163 q^{33} -1.64516 q^{35} -1.27868 q^{37} +0.723958 q^{41} -2.04797 q^{43} +2.04086 q^{45} -0.882574 q^{47} +1.00000 q^{49} +3.88124 q^{51} -7.05797 q^{53} +2.40603 q^{55} -14.2253 q^{57} +2.76746 q^{59} +12.3097 q^{61} -1.24052 q^{63} -10.3011 q^{67} -1.09930 q^{69} -7.47426 q^{71} -1.90864 q^{73} -4.72277 q^{75} -1.46249 q^{77} -1.00777 q^{79} -11.1827 q^{81} -10.5593 q^{83} +3.10077 q^{85} -11.2901 q^{87} -1.43994 q^{89} -21.3750 q^{93} -11.3648 q^{95} -2.45245 q^{97} +1.81425 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 3 q^{3} - 4 q^{5} - 15 q^{7} + 16 q^{9} - 15 q^{11} - 8 q^{15} + 2 q^{17} - 13 q^{19} + 3 q^{21} - 10 q^{23} + 23 q^{25} - 9 q^{27} + 25 q^{29} - 19 q^{31} + 24 q^{33} + 4 q^{35} + 2 q^{37} - 30 q^{41}+ \cdots - 70 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.05925 1.18891 0.594455 0.804129i \(-0.297368\pi\)
0.594455 + 0.804129i \(0.297368\pi\)
\(4\) 0 0
\(5\) 1.64516 0.735739 0.367870 0.929877i \(-0.380087\pi\)
0.367870 + 0.929877i \(0.380087\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 1.24052 0.413508
\(10\) 0 0
\(11\) 1.46249 0.440956 0.220478 0.975392i \(-0.429238\pi\)
0.220478 + 0.975392i \(0.429238\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 3.38781 0.874728
\(16\) 0 0
\(17\) 1.88478 0.457126 0.228563 0.973529i \(-0.426597\pi\)
0.228563 + 0.973529i \(0.426597\pi\)
\(18\) 0 0
\(19\) −6.90801 −1.58481 −0.792403 0.609998i \(-0.791170\pi\)
−0.792403 + 0.609998i \(0.791170\pi\)
\(20\) 0 0
\(21\) −2.05925 −0.449366
\(22\) 0 0
\(23\) −0.533833 −0.111312 −0.0556559 0.998450i \(-0.517725\pi\)
−0.0556559 + 0.998450i \(0.517725\pi\)
\(24\) 0 0
\(25\) −2.29344 −0.458688
\(26\) 0 0
\(27\) −3.62321 −0.697286
\(28\) 0 0
\(29\) −5.48263 −1.01810 −0.509050 0.860737i \(-0.670003\pi\)
−0.509050 + 0.860737i \(0.670003\pi\)
\(30\) 0 0
\(31\) −10.3800 −1.86430 −0.932150 0.362072i \(-0.882070\pi\)
−0.932150 + 0.362072i \(0.882070\pi\)
\(32\) 0 0
\(33\) 3.01163 0.524257
\(34\) 0 0
\(35\) −1.64516 −0.278083
\(36\) 0 0
\(37\) −1.27868 −0.210214 −0.105107 0.994461i \(-0.533518\pi\)
−0.105107 + 0.994461i \(0.533518\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.723958 0.113063 0.0565316 0.998401i \(-0.481996\pi\)
0.0565316 + 0.998401i \(0.481996\pi\)
\(42\) 0 0
\(43\) −2.04797 −0.312312 −0.156156 0.987732i \(-0.549910\pi\)
−0.156156 + 0.987732i \(0.549910\pi\)
\(44\) 0 0
\(45\) 2.04086 0.304234
\(46\) 0 0
\(47\) −0.882574 −0.128737 −0.0643684 0.997926i \(-0.520503\pi\)
−0.0643684 + 0.997926i \(0.520503\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 3.88124 0.543482
\(52\) 0 0
\(53\) −7.05797 −0.969487 −0.484744 0.874656i \(-0.661087\pi\)
−0.484744 + 0.874656i \(0.661087\pi\)
\(54\) 0 0
\(55\) 2.40603 0.324429
\(56\) 0 0
\(57\) −14.2253 −1.88419
\(58\) 0 0
\(59\) 2.76746 0.360292 0.180146 0.983640i \(-0.442343\pi\)
0.180146 + 0.983640i \(0.442343\pi\)
\(60\) 0 0
\(61\) 12.3097 1.57609 0.788047 0.615615i \(-0.211092\pi\)
0.788047 + 0.615615i \(0.211092\pi\)
\(62\) 0 0
\(63\) −1.24052 −0.156291
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −10.3011 −1.25848 −0.629239 0.777212i \(-0.716633\pi\)
−0.629239 + 0.777212i \(0.716633\pi\)
\(68\) 0 0
\(69\) −1.09930 −0.132340
\(70\) 0 0
\(71\) −7.47426 −0.887032 −0.443516 0.896266i \(-0.646269\pi\)
−0.443516 + 0.896266i \(0.646269\pi\)
\(72\) 0 0
\(73\) −1.90864 −0.223389 −0.111695 0.993743i \(-0.535628\pi\)
−0.111695 + 0.993743i \(0.535628\pi\)
\(74\) 0 0
\(75\) −4.72277 −0.545338
\(76\) 0 0
\(77\) −1.46249 −0.166666
\(78\) 0 0
\(79\) −1.00777 −0.113383 −0.0566914 0.998392i \(-0.518055\pi\)
−0.0566914 + 0.998392i \(0.518055\pi\)
\(80\) 0 0
\(81\) −11.1827 −1.24252
\(82\) 0 0
\(83\) −10.5593 −1.15903 −0.579516 0.814961i \(-0.696758\pi\)
−0.579516 + 0.814961i \(0.696758\pi\)
\(84\) 0 0
\(85\) 3.10077 0.336326
\(86\) 0 0
\(87\) −11.2901 −1.21043
\(88\) 0 0
\(89\) −1.43994 −0.152633 −0.0763166 0.997084i \(-0.524316\pi\)
−0.0763166 + 0.997084i \(0.524316\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −21.3750 −2.21649
\(94\) 0 0
\(95\) −11.3648 −1.16600
\(96\) 0 0
\(97\) −2.45245 −0.249008 −0.124504 0.992219i \(-0.539734\pi\)
−0.124504 + 0.992219i \(0.539734\pi\)
\(98\) 0 0
\(99\) 1.81425 0.182339
\(100\) 0 0
\(101\) 4.97730 0.495260 0.247630 0.968855i \(-0.420348\pi\)
0.247630 + 0.968855i \(0.420348\pi\)
\(102\) 0 0
\(103\) 5.78198 0.569716 0.284858 0.958570i \(-0.408054\pi\)
0.284858 + 0.958570i \(0.408054\pi\)
\(104\) 0 0
\(105\) −3.38781 −0.330616
\(106\) 0 0
\(107\) 5.91831 0.572145 0.286072 0.958208i \(-0.407650\pi\)
0.286072 + 0.958208i \(0.407650\pi\)
\(108\) 0 0
\(109\) −5.55734 −0.532296 −0.266148 0.963932i \(-0.585751\pi\)
−0.266148 + 0.963932i \(0.585751\pi\)
\(110\) 0 0
\(111\) −2.63313 −0.249925
\(112\) 0 0
\(113\) −4.65193 −0.437616 −0.218808 0.975768i \(-0.570217\pi\)
−0.218808 + 0.975768i \(0.570217\pi\)
\(114\) 0 0
\(115\) −0.878242 −0.0818965
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.88478 −0.172778
\(120\) 0 0
\(121\) −8.86114 −0.805558
\(122\) 0 0
\(123\) 1.49081 0.134422
\(124\) 0 0
\(125\) −11.9989 −1.07321
\(126\) 0 0
\(127\) 17.0060 1.50904 0.754518 0.656279i \(-0.227870\pi\)
0.754518 + 0.656279i \(0.227870\pi\)
\(128\) 0 0
\(129\) −4.21728 −0.371311
\(130\) 0 0
\(131\) −16.3314 −1.42688 −0.713442 0.700714i \(-0.752865\pi\)
−0.713442 + 0.700714i \(0.752865\pi\)
\(132\) 0 0
\(133\) 6.90801 0.599000
\(134\) 0 0
\(135\) −5.96077 −0.513021
\(136\) 0 0
\(137\) 16.0585 1.37197 0.685983 0.727617i \(-0.259372\pi\)
0.685983 + 0.727617i \(0.259372\pi\)
\(138\) 0 0
\(139\) 12.3584 1.04823 0.524113 0.851649i \(-0.324397\pi\)
0.524113 + 0.851649i \(0.324397\pi\)
\(140\) 0 0
\(141\) −1.81744 −0.153056
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −9.01983 −0.749056
\(146\) 0 0
\(147\) 2.05925 0.169844
\(148\) 0 0
\(149\) 7.65583 0.627190 0.313595 0.949557i \(-0.398467\pi\)
0.313595 + 0.949557i \(0.398467\pi\)
\(150\) 0 0
\(151\) 16.4042 1.33495 0.667476 0.744632i \(-0.267375\pi\)
0.667476 + 0.744632i \(0.267375\pi\)
\(152\) 0 0
\(153\) 2.33812 0.189025
\(154\) 0 0
\(155\) −17.0768 −1.37164
\(156\) 0 0
\(157\) 15.6073 1.24560 0.622800 0.782381i \(-0.285995\pi\)
0.622800 + 0.782381i \(0.285995\pi\)
\(158\) 0 0
\(159\) −14.5342 −1.15263
\(160\) 0 0
\(161\) 0.533833 0.0420719
\(162\) 0 0
\(163\) 7.83984 0.614063 0.307032 0.951699i \(-0.400664\pi\)
0.307032 + 0.951699i \(0.400664\pi\)
\(164\) 0 0
\(165\) 4.95462 0.385717
\(166\) 0 0
\(167\) −24.4428 −1.89144 −0.945721 0.324980i \(-0.894643\pi\)
−0.945721 + 0.324980i \(0.894643\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −8.56955 −0.655330
\(172\) 0 0
\(173\) 1.78780 0.135924 0.0679618 0.997688i \(-0.478350\pi\)
0.0679618 + 0.997688i \(0.478350\pi\)
\(174\) 0 0
\(175\) 2.29344 0.173368
\(176\) 0 0
\(177\) 5.69890 0.428355
\(178\) 0 0
\(179\) 4.37599 0.327077 0.163538 0.986537i \(-0.447709\pi\)
0.163538 + 0.986537i \(0.447709\pi\)
\(180\) 0 0
\(181\) 3.08125 0.229028 0.114514 0.993422i \(-0.463469\pi\)
0.114514 + 0.993422i \(0.463469\pi\)
\(182\) 0 0
\(183\) 25.3488 1.87383
\(184\) 0 0
\(185\) −2.10364 −0.154662
\(186\) 0 0
\(187\) 2.75646 0.201573
\(188\) 0 0
\(189\) 3.62321 0.263549
\(190\) 0 0
\(191\) 7.60189 0.550054 0.275027 0.961437i \(-0.411313\pi\)
0.275027 + 0.961437i \(0.411313\pi\)
\(192\) 0 0
\(193\) 8.40772 0.605201 0.302600 0.953118i \(-0.402145\pi\)
0.302600 + 0.953118i \(0.402145\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 13.5429 0.964892 0.482446 0.875926i \(-0.339749\pi\)
0.482446 + 0.875926i \(0.339749\pi\)
\(198\) 0 0
\(199\) −4.12662 −0.292528 −0.146264 0.989246i \(-0.546725\pi\)
−0.146264 + 0.989246i \(0.546725\pi\)
\(200\) 0 0
\(201\) −21.2125 −1.49622
\(202\) 0 0
\(203\) 5.48263 0.384805
\(204\) 0 0
\(205\) 1.19103 0.0831851
\(206\) 0 0
\(207\) −0.662233 −0.0460283
\(208\) 0 0
\(209\) −10.1029 −0.698829
\(210\) 0 0
\(211\) 25.7743 1.77438 0.887190 0.461405i \(-0.152654\pi\)
0.887190 + 0.461405i \(0.152654\pi\)
\(212\) 0 0
\(213\) −15.3914 −1.05460
\(214\) 0 0
\(215\) −3.36924 −0.229780
\(216\) 0 0
\(217\) 10.3800 0.704639
\(218\) 0 0
\(219\) −3.93037 −0.265590
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 5.78619 0.387472 0.193736 0.981054i \(-0.437940\pi\)
0.193736 + 0.981054i \(0.437940\pi\)
\(224\) 0 0
\(225\) −2.84506 −0.189671
\(226\) 0 0
\(227\) −29.5039 −1.95824 −0.979122 0.203274i \(-0.934842\pi\)
−0.979122 + 0.203274i \(0.934842\pi\)
\(228\) 0 0
\(229\) −21.5561 −1.42447 −0.712233 0.701943i \(-0.752316\pi\)
−0.712233 + 0.701943i \(0.752316\pi\)
\(230\) 0 0
\(231\) −3.01163 −0.198151
\(232\) 0 0
\(233\) −6.61589 −0.433422 −0.216711 0.976236i \(-0.569533\pi\)
−0.216711 + 0.976236i \(0.569533\pi\)
\(234\) 0 0
\(235\) −1.45198 −0.0947167
\(236\) 0 0
\(237\) −2.07525 −0.134802
\(238\) 0 0
\(239\) −13.5710 −0.877834 −0.438917 0.898528i \(-0.644638\pi\)
−0.438917 + 0.898528i \(0.644638\pi\)
\(240\) 0 0
\(241\) 4.16102 0.268035 0.134017 0.990979i \(-0.457212\pi\)
0.134017 + 0.990979i \(0.457212\pi\)
\(242\) 0 0
\(243\) −12.1583 −0.779958
\(244\) 0 0
\(245\) 1.64516 0.105106
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −21.7442 −1.37799
\(250\) 0 0
\(251\) 19.7147 1.24438 0.622192 0.782865i \(-0.286242\pi\)
0.622192 + 0.782865i \(0.286242\pi\)
\(252\) 0 0
\(253\) −0.780723 −0.0490836
\(254\) 0 0
\(255\) 6.38527 0.399861
\(256\) 0 0
\(257\) 9.25138 0.577086 0.288543 0.957467i \(-0.406829\pi\)
0.288543 + 0.957467i \(0.406829\pi\)
\(258\) 0 0
\(259\) 1.27868 0.0794533
\(260\) 0 0
\(261\) −6.80134 −0.420992
\(262\) 0 0
\(263\) 0.0391468 0.00241389 0.00120695 0.999999i \(-0.499616\pi\)
0.00120695 + 0.999999i \(0.499616\pi\)
\(264\) 0 0
\(265\) −11.6115 −0.713290
\(266\) 0 0
\(267\) −2.96520 −0.181467
\(268\) 0 0
\(269\) 21.5482 1.31382 0.656909 0.753970i \(-0.271863\pi\)
0.656909 + 0.753970i \(0.271863\pi\)
\(270\) 0 0
\(271\) −23.8900 −1.45121 −0.725607 0.688109i \(-0.758441\pi\)
−0.725607 + 0.688109i \(0.758441\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.35412 −0.202261
\(276\) 0 0
\(277\) −13.2263 −0.794691 −0.397345 0.917669i \(-0.630068\pi\)
−0.397345 + 0.917669i \(0.630068\pi\)
\(278\) 0 0
\(279\) −12.8766 −0.770903
\(280\) 0 0
\(281\) −15.4631 −0.922452 −0.461226 0.887283i \(-0.652590\pi\)
−0.461226 + 0.887283i \(0.652590\pi\)
\(282\) 0 0
\(283\) 5.38667 0.320204 0.160102 0.987100i \(-0.448818\pi\)
0.160102 + 0.987100i \(0.448818\pi\)
\(284\) 0 0
\(285\) −23.4030 −1.38627
\(286\) 0 0
\(287\) −0.723958 −0.0427339
\(288\) 0 0
\(289\) −13.4476 −0.791035
\(290\) 0 0
\(291\) −5.05021 −0.296049
\(292\) 0 0
\(293\) 27.1875 1.58831 0.794156 0.607714i \(-0.207913\pi\)
0.794156 + 0.607714i \(0.207913\pi\)
\(294\) 0 0
\(295\) 4.55292 0.265081
\(296\) 0 0
\(297\) −5.29889 −0.307473
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 2.04797 0.118043
\(302\) 0 0
\(303\) 10.2495 0.588820
\(304\) 0 0
\(305\) 20.2514 1.15959
\(306\) 0 0
\(307\) 15.9548 0.910591 0.455295 0.890340i \(-0.349534\pi\)
0.455295 + 0.890340i \(0.349534\pi\)
\(308\) 0 0
\(309\) 11.9066 0.677341
\(310\) 0 0
\(311\) −8.01609 −0.454551 −0.227276 0.973830i \(-0.572982\pi\)
−0.227276 + 0.973830i \(0.572982\pi\)
\(312\) 0 0
\(313\) 0.842642 0.0476290 0.0238145 0.999716i \(-0.492419\pi\)
0.0238145 + 0.999716i \(0.492419\pi\)
\(314\) 0 0
\(315\) −2.04086 −0.114990
\(316\) 0 0
\(317\) 0.538612 0.0302515 0.0151257 0.999886i \(-0.495185\pi\)
0.0151257 + 0.999886i \(0.495185\pi\)
\(318\) 0 0
\(319\) −8.01827 −0.448937
\(320\) 0 0
\(321\) 12.1873 0.680229
\(322\) 0 0
\(323\) −13.0201 −0.724456
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −11.4440 −0.632853
\(328\) 0 0
\(329\) 0.882574 0.0486579
\(330\) 0 0
\(331\) −29.1497 −1.60221 −0.801106 0.598523i \(-0.795755\pi\)
−0.801106 + 0.598523i \(0.795755\pi\)
\(332\) 0 0
\(333\) −1.58623 −0.0869250
\(334\) 0 0
\(335\) −16.9470 −0.925911
\(336\) 0 0
\(337\) −23.6345 −1.28746 −0.643728 0.765255i \(-0.722613\pi\)
−0.643728 + 0.765255i \(0.722613\pi\)
\(338\) 0 0
\(339\) −9.57950 −0.520287
\(340\) 0 0
\(341\) −15.1806 −0.822074
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −1.80852 −0.0973676
\(346\) 0 0
\(347\) −28.1770 −1.51262 −0.756310 0.654213i \(-0.773000\pi\)
−0.756310 + 0.654213i \(0.773000\pi\)
\(348\) 0 0
\(349\) 10.0817 0.539663 0.269832 0.962908i \(-0.413032\pi\)
0.269832 + 0.962908i \(0.413032\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.5259 0.560240 0.280120 0.959965i \(-0.409626\pi\)
0.280120 + 0.959965i \(0.409626\pi\)
\(354\) 0 0
\(355\) −12.2964 −0.652624
\(356\) 0 0
\(357\) −3.88124 −0.205417
\(358\) 0 0
\(359\) 12.7393 0.672355 0.336178 0.941799i \(-0.390866\pi\)
0.336178 + 0.941799i \(0.390866\pi\)
\(360\) 0 0
\(361\) 28.7206 1.51161
\(362\) 0 0
\(363\) −18.2473 −0.957736
\(364\) 0 0
\(365\) −3.14002 −0.164356
\(366\) 0 0
\(367\) 22.8372 1.19209 0.596046 0.802950i \(-0.296738\pi\)
0.596046 + 0.802950i \(0.296738\pi\)
\(368\) 0 0
\(369\) 0.898087 0.0467525
\(370\) 0 0
\(371\) 7.05797 0.366432
\(372\) 0 0
\(373\) 18.2193 0.943358 0.471679 0.881770i \(-0.343648\pi\)
0.471679 + 0.881770i \(0.343648\pi\)
\(374\) 0 0
\(375\) −24.7088 −1.27596
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −8.86458 −0.455343 −0.227671 0.973738i \(-0.573111\pi\)
−0.227671 + 0.973738i \(0.573111\pi\)
\(380\) 0 0
\(381\) 35.0196 1.79411
\(382\) 0 0
\(383\) −6.59484 −0.336981 −0.168490 0.985703i \(-0.553889\pi\)
−0.168490 + 0.985703i \(0.553889\pi\)
\(384\) 0 0
\(385\) −2.40603 −0.122622
\(386\) 0 0
\(387\) −2.54055 −0.129143
\(388\) 0 0
\(389\) −19.3942 −0.983327 −0.491664 0.870785i \(-0.663611\pi\)
−0.491664 + 0.870785i \(0.663611\pi\)
\(390\) 0 0
\(391\) −1.00616 −0.0508836
\(392\) 0 0
\(393\) −33.6306 −1.69644
\(394\) 0 0
\(395\) −1.65794 −0.0834201
\(396\) 0 0
\(397\) −22.2360 −1.11599 −0.557996 0.829843i \(-0.688430\pi\)
−0.557996 + 0.829843i \(0.688430\pi\)
\(398\) 0 0
\(399\) 14.2253 0.712158
\(400\) 0 0
\(401\) 1.52525 0.0761674 0.0380837 0.999275i \(-0.487875\pi\)
0.0380837 + 0.999275i \(0.487875\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −18.3973 −0.914170
\(406\) 0 0
\(407\) −1.87005 −0.0926949
\(408\) 0 0
\(409\) 16.9520 0.838225 0.419112 0.907934i \(-0.362341\pi\)
0.419112 + 0.907934i \(0.362341\pi\)
\(410\) 0 0
\(411\) 33.0684 1.63115
\(412\) 0 0
\(413\) −2.76746 −0.136178
\(414\) 0 0
\(415\) −17.3718 −0.852746
\(416\) 0 0
\(417\) 25.4491 1.24625
\(418\) 0 0
\(419\) −4.18688 −0.204542 −0.102271 0.994757i \(-0.532611\pi\)
−0.102271 + 0.994757i \(0.532611\pi\)
\(420\) 0 0
\(421\) 17.2196 0.839234 0.419617 0.907701i \(-0.362164\pi\)
0.419617 + 0.907701i \(0.362164\pi\)
\(422\) 0 0
\(423\) −1.09485 −0.0532337
\(424\) 0 0
\(425\) −4.32263 −0.209678
\(426\) 0 0
\(427\) −12.3097 −0.595708
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −31.4854 −1.51660 −0.758299 0.651907i \(-0.773969\pi\)
−0.758299 + 0.651907i \(0.773969\pi\)
\(432\) 0 0
\(433\) 5.59350 0.268807 0.134403 0.990927i \(-0.457088\pi\)
0.134403 + 0.990927i \(0.457088\pi\)
\(434\) 0 0
\(435\) −18.5741 −0.890560
\(436\) 0 0
\(437\) 3.68772 0.176408
\(438\) 0 0
\(439\) 24.7585 1.18166 0.590830 0.806796i \(-0.298801\pi\)
0.590830 + 0.806796i \(0.298801\pi\)
\(440\) 0 0
\(441\) 1.24052 0.0590726
\(442\) 0 0
\(443\) 26.9828 1.28199 0.640997 0.767544i \(-0.278521\pi\)
0.640997 + 0.767544i \(0.278521\pi\)
\(444\) 0 0
\(445\) −2.36893 −0.112298
\(446\) 0 0
\(447\) 15.7653 0.745672
\(448\) 0 0
\(449\) −24.5375 −1.15800 −0.578999 0.815328i \(-0.696556\pi\)
−0.578999 + 0.815328i \(0.696556\pi\)
\(450\) 0 0
\(451\) 1.05878 0.0498559
\(452\) 0 0
\(453\) 33.7803 1.58714
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −16.9361 −0.792239 −0.396120 0.918199i \(-0.629643\pi\)
−0.396120 + 0.918199i \(0.629643\pi\)
\(458\) 0 0
\(459\) −6.82895 −0.318748
\(460\) 0 0
\(461\) −17.2753 −0.804591 −0.402296 0.915510i \(-0.631788\pi\)
−0.402296 + 0.915510i \(0.631788\pi\)
\(462\) 0 0
\(463\) −6.13080 −0.284922 −0.142461 0.989800i \(-0.545502\pi\)
−0.142461 + 0.989800i \(0.545502\pi\)
\(464\) 0 0
\(465\) −35.1654 −1.63076
\(466\) 0 0
\(467\) −27.3484 −1.26553 −0.632765 0.774344i \(-0.718080\pi\)
−0.632765 + 0.774344i \(0.718080\pi\)
\(468\) 0 0
\(469\) 10.3011 0.475660
\(470\) 0 0
\(471\) 32.1394 1.48091
\(472\) 0 0
\(473\) −2.99512 −0.137716
\(474\) 0 0
\(475\) 15.8431 0.726930
\(476\) 0 0
\(477\) −8.75559 −0.400891
\(478\) 0 0
\(479\) −8.24677 −0.376804 −0.188402 0.982092i \(-0.560331\pi\)
−0.188402 + 0.982092i \(0.560331\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 1.09930 0.0500197
\(484\) 0 0
\(485\) −4.03468 −0.183205
\(486\) 0 0
\(487\) 32.2050 1.45935 0.729674 0.683795i \(-0.239672\pi\)
0.729674 + 0.683795i \(0.239672\pi\)
\(488\) 0 0
\(489\) 16.1442 0.730066
\(490\) 0 0
\(491\) 6.91256 0.311959 0.155980 0.987760i \(-0.450147\pi\)
0.155980 + 0.987760i \(0.450147\pi\)
\(492\) 0 0
\(493\) −10.3336 −0.465400
\(494\) 0 0
\(495\) 2.98473 0.134154
\(496\) 0 0
\(497\) 7.47426 0.335267
\(498\) 0 0
\(499\) 23.7281 1.06222 0.531108 0.847304i \(-0.321776\pi\)
0.531108 + 0.847304i \(0.321776\pi\)
\(500\) 0 0
\(501\) −50.3340 −2.24876
\(502\) 0 0
\(503\) 27.7891 1.23906 0.619528 0.784974i \(-0.287324\pi\)
0.619528 + 0.784974i \(0.287324\pi\)
\(504\) 0 0
\(505\) 8.18848 0.364382
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −34.7614 −1.54077 −0.770386 0.637577i \(-0.779937\pi\)
−0.770386 + 0.637577i \(0.779937\pi\)
\(510\) 0 0
\(511\) 1.90864 0.0844331
\(512\) 0 0
\(513\) 25.0291 1.10506
\(514\) 0 0
\(515\) 9.51231 0.419162
\(516\) 0 0
\(517\) −1.29075 −0.0567672
\(518\) 0 0
\(519\) 3.68152 0.161601
\(520\) 0 0
\(521\) 34.1588 1.49653 0.748263 0.663403i \(-0.230888\pi\)
0.748263 + 0.663403i \(0.230888\pi\)
\(522\) 0 0
\(523\) −33.0357 −1.44455 −0.722276 0.691605i \(-0.756904\pi\)
−0.722276 + 0.691605i \(0.756904\pi\)
\(524\) 0 0
\(525\) 4.72277 0.206119
\(526\) 0 0
\(527\) −19.5640 −0.852221
\(528\) 0 0
\(529\) −22.7150 −0.987610
\(530\) 0 0
\(531\) 3.43310 0.148984
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 9.73659 0.420949
\(536\) 0 0
\(537\) 9.01127 0.388865
\(538\) 0 0
\(539\) 1.46249 0.0629937
\(540\) 0 0
\(541\) 18.1268 0.779330 0.389665 0.920957i \(-0.372591\pi\)
0.389665 + 0.920957i \(0.372591\pi\)
\(542\) 0 0
\(543\) 6.34508 0.272293
\(544\) 0 0
\(545\) −9.14273 −0.391631
\(546\) 0 0
\(547\) −31.7489 −1.35749 −0.678743 0.734375i \(-0.737475\pi\)
−0.678743 + 0.734375i \(0.737475\pi\)
\(548\) 0 0
\(549\) 15.2705 0.651728
\(550\) 0 0
\(551\) 37.8741 1.61349
\(552\) 0 0
\(553\) 1.00777 0.0428546
\(554\) 0 0
\(555\) −4.33192 −0.183880
\(556\) 0 0
\(557\) −22.7912 −0.965693 −0.482846 0.875705i \(-0.660397\pi\)
−0.482846 + 0.875705i \(0.660397\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 5.67626 0.239652
\(562\) 0 0
\(563\) −3.90099 −0.164407 −0.0822036 0.996616i \(-0.526196\pi\)
−0.0822036 + 0.996616i \(0.526196\pi\)
\(564\) 0 0
\(565\) −7.65318 −0.321972
\(566\) 0 0
\(567\) 11.1827 0.469628
\(568\) 0 0
\(569\) 24.7330 1.03686 0.518430 0.855120i \(-0.326517\pi\)
0.518430 + 0.855120i \(0.326517\pi\)
\(570\) 0 0
\(571\) 0.706622 0.0295712 0.0147856 0.999891i \(-0.495293\pi\)
0.0147856 + 0.999891i \(0.495293\pi\)
\(572\) 0 0
\(573\) 15.6542 0.653965
\(574\) 0 0
\(575\) 1.22431 0.0510574
\(576\) 0 0
\(577\) −31.9976 −1.33208 −0.666038 0.745918i \(-0.732011\pi\)
−0.666038 + 0.745918i \(0.732011\pi\)
\(578\) 0 0
\(579\) 17.3136 0.719529
\(580\) 0 0
\(581\) 10.5593 0.438073
\(582\) 0 0
\(583\) −10.3222 −0.427501
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 37.0795 1.53043 0.765217 0.643772i \(-0.222632\pi\)
0.765217 + 0.643772i \(0.222632\pi\)
\(588\) 0 0
\(589\) 71.7050 2.95455
\(590\) 0 0
\(591\) 27.8883 1.14717
\(592\) 0 0
\(593\) 41.2754 1.69498 0.847489 0.530813i \(-0.178114\pi\)
0.847489 + 0.530813i \(0.178114\pi\)
\(594\) 0 0
\(595\) −3.10077 −0.127119
\(596\) 0 0
\(597\) −8.49775 −0.347790
\(598\) 0 0
\(599\) −10.1108 −0.413116 −0.206558 0.978434i \(-0.566226\pi\)
−0.206558 + 0.978434i \(0.566226\pi\)
\(600\) 0 0
\(601\) −31.1600 −1.27104 −0.635522 0.772083i \(-0.719215\pi\)
−0.635522 + 0.772083i \(0.719215\pi\)
\(602\) 0 0
\(603\) −12.7787 −0.520390
\(604\) 0 0
\(605\) −14.5780 −0.592681
\(606\) 0 0
\(607\) −22.3778 −0.908288 −0.454144 0.890928i \(-0.650055\pi\)
−0.454144 + 0.890928i \(0.650055\pi\)
\(608\) 0 0
\(609\) 11.2901 0.457499
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −11.8146 −0.477187 −0.238594 0.971119i \(-0.576686\pi\)
−0.238594 + 0.971119i \(0.576686\pi\)
\(614\) 0 0
\(615\) 2.45263 0.0988996
\(616\) 0 0
\(617\) 15.4370 0.621469 0.310734 0.950497i \(-0.399425\pi\)
0.310734 + 0.950497i \(0.399425\pi\)
\(618\) 0 0
\(619\) −12.6793 −0.509624 −0.254812 0.966991i \(-0.582014\pi\)
−0.254812 + 0.966991i \(0.582014\pi\)
\(620\) 0 0
\(621\) 1.93419 0.0776162
\(622\) 0 0
\(623\) 1.43994 0.0576899
\(624\) 0 0
\(625\) −8.27296 −0.330918
\(626\) 0 0
\(627\) −20.8043 −0.830845
\(628\) 0 0
\(629\) −2.41003 −0.0960942
\(630\) 0 0
\(631\) 44.9754 1.79044 0.895222 0.445621i \(-0.147017\pi\)
0.895222 + 0.445621i \(0.147017\pi\)
\(632\) 0 0
\(633\) 53.0759 2.10958
\(634\) 0 0
\(635\) 27.9776 1.11026
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −9.27201 −0.366795
\(640\) 0 0
\(641\) 27.9911 1.10558 0.552790 0.833320i \(-0.313563\pi\)
0.552790 + 0.833320i \(0.313563\pi\)
\(642\) 0 0
\(643\) −31.0171 −1.22319 −0.611597 0.791169i \(-0.709473\pi\)
−0.611597 + 0.791169i \(0.709473\pi\)
\(644\) 0 0
\(645\) −6.93811 −0.273188
\(646\) 0 0
\(647\) −26.5959 −1.04559 −0.522796 0.852458i \(-0.675111\pi\)
−0.522796 + 0.852458i \(0.675111\pi\)
\(648\) 0 0
\(649\) 4.04737 0.158873
\(650\) 0 0
\(651\) 21.3750 0.837753
\(652\) 0 0
\(653\) −35.1180 −1.37427 −0.687136 0.726528i \(-0.741133\pi\)
−0.687136 + 0.726528i \(0.741133\pi\)
\(654\) 0 0
\(655\) −26.8679 −1.04981
\(656\) 0 0
\(657\) −2.36771 −0.0923732
\(658\) 0 0
\(659\) −7.64603 −0.297847 −0.148924 0.988849i \(-0.547581\pi\)
−0.148924 + 0.988849i \(0.547581\pi\)
\(660\) 0 0
\(661\) −28.2973 −1.10064 −0.550318 0.834955i \(-0.685493\pi\)
−0.550318 + 0.834955i \(0.685493\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 11.3648 0.440708
\(666\) 0 0
\(667\) 2.92681 0.113327
\(668\) 0 0
\(669\) 11.9152 0.460669
\(670\) 0 0
\(671\) 18.0027 0.694988
\(672\) 0 0
\(673\) −30.2328 −1.16539 −0.582695 0.812691i \(-0.698002\pi\)
−0.582695 + 0.812691i \(0.698002\pi\)
\(674\) 0 0
\(675\) 8.30960 0.319837
\(676\) 0 0
\(677\) −21.6630 −0.832575 −0.416288 0.909233i \(-0.636669\pi\)
−0.416288 + 0.909233i \(0.636669\pi\)
\(678\) 0 0
\(679\) 2.45245 0.0941163
\(680\) 0 0
\(681\) −60.7560 −2.32818
\(682\) 0 0
\(683\) −21.3097 −0.815392 −0.407696 0.913118i \(-0.633668\pi\)
−0.407696 + 0.913118i \(0.633668\pi\)
\(684\) 0 0
\(685\) 26.4188 1.00941
\(686\) 0 0
\(687\) −44.3894 −1.69356
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 10.6692 0.405874 0.202937 0.979192i \(-0.434951\pi\)
0.202937 + 0.979192i \(0.434951\pi\)
\(692\) 0 0
\(693\) −1.81425 −0.0689176
\(694\) 0 0
\(695\) 20.3316 0.771221
\(696\) 0 0
\(697\) 1.36450 0.0516842
\(698\) 0 0
\(699\) −13.6238 −0.515299
\(700\) 0 0
\(701\) −9.20768 −0.347769 −0.173885 0.984766i \(-0.555632\pi\)
−0.173885 + 0.984766i \(0.555632\pi\)
\(702\) 0 0
\(703\) 8.83313 0.333148
\(704\) 0 0
\(705\) −2.98999 −0.112610
\(706\) 0 0
\(707\) −4.97730 −0.187191
\(708\) 0 0
\(709\) 6.66479 0.250301 0.125151 0.992138i \(-0.460059\pi\)
0.125151 + 0.992138i \(0.460059\pi\)
\(710\) 0 0
\(711\) −1.25016 −0.0468847
\(712\) 0 0
\(713\) 5.54118 0.207519
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −27.9461 −1.04367
\(718\) 0 0
\(719\) 20.5647 0.766935 0.383468 0.923554i \(-0.374730\pi\)
0.383468 + 0.923554i \(0.374730\pi\)
\(720\) 0 0
\(721\) −5.78198 −0.215332
\(722\) 0 0
\(723\) 8.56858 0.318669
\(724\) 0 0
\(725\) 12.5741 0.466989
\(726\) 0 0
\(727\) −22.1146 −0.820184 −0.410092 0.912044i \(-0.634503\pi\)
−0.410092 + 0.912044i \(0.634503\pi\)
\(728\) 0 0
\(729\) 8.51092 0.315219
\(730\) 0 0
\(731\) −3.85996 −0.142766
\(732\) 0 0
\(733\) −15.4786 −0.571714 −0.285857 0.958272i \(-0.592278\pi\)
−0.285857 + 0.958272i \(0.592278\pi\)
\(734\) 0 0
\(735\) 3.38781 0.124961
\(736\) 0 0
\(737\) −15.0652 −0.554933
\(738\) 0 0
\(739\) −36.0964 −1.32783 −0.663914 0.747809i \(-0.731106\pi\)
−0.663914 + 0.747809i \(0.731106\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −5.22097 −0.191539 −0.0957693 0.995404i \(-0.530531\pi\)
−0.0957693 + 0.995404i \(0.530531\pi\)
\(744\) 0 0
\(745\) 12.5951 0.461448
\(746\) 0 0
\(747\) −13.0991 −0.479269
\(748\) 0 0
\(749\) −5.91831 −0.216250
\(750\) 0 0
\(751\) −5.06179 −0.184707 −0.0923536 0.995726i \(-0.529439\pi\)
−0.0923536 + 0.995726i \(0.529439\pi\)
\(752\) 0 0
\(753\) 40.5977 1.47946
\(754\) 0 0
\(755\) 26.9875 0.982176
\(756\) 0 0
\(757\) 51.3460 1.86620 0.933100 0.359616i \(-0.117092\pi\)
0.933100 + 0.359616i \(0.117092\pi\)
\(758\) 0 0
\(759\) −1.60771 −0.0583560
\(760\) 0 0
\(761\) 39.8180 1.44340 0.721701 0.692205i \(-0.243361\pi\)
0.721701 + 0.692205i \(0.243361\pi\)
\(762\) 0 0
\(763\) 5.55734 0.201189
\(764\) 0 0
\(765\) 3.84658 0.139073
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 44.4938 1.60449 0.802244 0.596997i \(-0.203639\pi\)
0.802244 + 0.596997i \(0.203639\pi\)
\(770\) 0 0
\(771\) 19.0509 0.686103
\(772\) 0 0
\(773\) 1.48644 0.0534637 0.0267318 0.999643i \(-0.491490\pi\)
0.0267318 + 0.999643i \(0.491490\pi\)
\(774\) 0 0
\(775\) 23.8058 0.855131
\(776\) 0 0
\(777\) 2.63313 0.0944629
\(778\) 0 0
\(779\) −5.00110 −0.179183
\(780\) 0 0
\(781\) −10.9310 −0.391142
\(782\) 0 0
\(783\) 19.8647 0.709907
\(784\) 0 0
\(785\) 25.6766 0.916437
\(786\) 0 0
\(787\) −0.0645794 −0.00230201 −0.00115100 0.999999i \(-0.500366\pi\)
−0.00115100 + 0.999999i \(0.500366\pi\)
\(788\) 0 0
\(789\) 0.0806131 0.00286990
\(790\) 0 0
\(791\) 4.65193 0.165403
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −23.9111 −0.848038
\(796\) 0 0
\(797\) 50.7829 1.79882 0.899411 0.437103i \(-0.143995\pi\)
0.899411 + 0.437103i \(0.143995\pi\)
\(798\) 0 0
\(799\) −1.66346 −0.0588489
\(800\) 0 0
\(801\) −1.78628 −0.0631150
\(802\) 0 0
\(803\) −2.79135 −0.0985047
\(804\) 0 0
\(805\) 0.878242 0.0309540
\(806\) 0 0
\(807\) 44.3733 1.56201
\(808\) 0 0
\(809\) −37.3298 −1.31245 −0.656223 0.754567i \(-0.727847\pi\)
−0.656223 + 0.754567i \(0.727847\pi\)
\(810\) 0 0
\(811\) 11.7849 0.413823 0.206912 0.978360i \(-0.433659\pi\)
0.206912 + 0.978360i \(0.433659\pi\)
\(812\) 0 0
\(813\) −49.1956 −1.72536
\(814\) 0 0
\(815\) 12.8978 0.451791
\(816\) 0 0
\(817\) 14.1474 0.494953
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.33380 0.186151 0.0930755 0.995659i \(-0.470330\pi\)
0.0930755 + 0.995659i \(0.470330\pi\)
\(822\) 0 0
\(823\) −40.1278 −1.39877 −0.699383 0.714747i \(-0.746542\pi\)
−0.699383 + 0.714747i \(0.746542\pi\)
\(824\) 0 0
\(825\) −6.90698 −0.240470
\(826\) 0 0
\(827\) −43.2429 −1.50370 −0.751851 0.659333i \(-0.770839\pi\)
−0.751851 + 0.659333i \(0.770839\pi\)
\(828\) 0 0
\(829\) 51.3707 1.78418 0.892088 0.451861i \(-0.149240\pi\)
0.892088 + 0.451861i \(0.149240\pi\)
\(830\) 0 0
\(831\) −27.2363 −0.944816
\(832\) 0 0
\(833\) 1.88478 0.0653038
\(834\) 0 0
\(835\) −40.2124 −1.39161
\(836\) 0 0
\(837\) 37.6088 1.29995
\(838\) 0 0
\(839\) 10.0033 0.345354 0.172677 0.984979i \(-0.444758\pi\)
0.172677 + 0.984979i \(0.444758\pi\)
\(840\) 0 0
\(841\) 1.05925 0.0365260
\(842\) 0 0
\(843\) −31.8425 −1.09671
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 8.86114 0.304472
\(848\) 0 0
\(849\) 11.0925 0.380694
\(850\) 0 0
\(851\) 0.682601 0.0233993
\(852\) 0 0
\(853\) −33.1886 −1.13636 −0.568178 0.822905i \(-0.692352\pi\)
−0.568178 + 0.822905i \(0.692352\pi\)
\(854\) 0 0
\(855\) −14.0983 −0.482152
\(856\) 0 0
\(857\) −36.4808 −1.24616 −0.623080 0.782158i \(-0.714119\pi\)
−0.623080 + 0.782158i \(0.714119\pi\)
\(858\) 0 0
\(859\) −35.2037 −1.20114 −0.600568 0.799574i \(-0.705059\pi\)
−0.600568 + 0.799574i \(0.705059\pi\)
\(860\) 0 0
\(861\) −1.49081 −0.0508067
\(862\) 0 0
\(863\) 52.3803 1.78305 0.891523 0.452976i \(-0.149638\pi\)
0.891523 + 0.452976i \(0.149638\pi\)
\(864\) 0 0
\(865\) 2.94122 0.100004
\(866\) 0 0
\(867\) −27.6920 −0.940470
\(868\) 0 0
\(869\) −1.47385 −0.0499968
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −3.04232 −0.102967
\(874\) 0 0
\(875\) 11.9989 0.405637
\(876\) 0 0
\(877\) −0.973957 −0.0328882 −0.0164441 0.999865i \(-0.505235\pi\)
−0.0164441 + 0.999865i \(0.505235\pi\)
\(878\) 0 0
\(879\) 55.9860 1.88836
\(880\) 0 0
\(881\) −5.36952 −0.180904 −0.0904519 0.995901i \(-0.528831\pi\)
−0.0904519 + 0.995901i \(0.528831\pi\)
\(882\) 0 0
\(883\) −54.4177 −1.83130 −0.915651 0.401973i \(-0.868324\pi\)
−0.915651 + 0.401973i \(0.868324\pi\)
\(884\) 0 0
\(885\) 9.37562 0.315158
\(886\) 0 0
\(887\) −17.6694 −0.593281 −0.296640 0.954989i \(-0.595866\pi\)
−0.296640 + 0.954989i \(0.595866\pi\)
\(888\) 0 0
\(889\) −17.0060 −0.570362
\(890\) 0 0
\(891\) −16.3545 −0.547896
\(892\) 0 0
\(893\) 6.09683 0.204023
\(894\) 0 0
\(895\) 7.19921 0.240643
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 56.9096 1.89804
\(900\) 0 0
\(901\) −13.3027 −0.443178
\(902\) 0 0
\(903\) 4.21728 0.140342
\(904\) 0 0
\(905\) 5.06916 0.168505
\(906\) 0 0
\(907\) 8.16241 0.271028 0.135514 0.990775i \(-0.456731\pi\)
0.135514 + 0.990775i \(0.456731\pi\)
\(908\) 0 0
\(909\) 6.17446 0.204794
\(910\) 0 0
\(911\) −23.0876 −0.764928 −0.382464 0.923970i \(-0.624924\pi\)
−0.382464 + 0.923970i \(0.624924\pi\)
\(912\) 0 0
\(913\) −15.4428 −0.511082
\(914\) 0 0
\(915\) 41.7029 1.37865
\(916\) 0 0
\(917\) 16.3314 0.539311
\(918\) 0 0
\(919\) 23.8236 0.785869 0.392935 0.919566i \(-0.371460\pi\)
0.392935 + 0.919566i \(0.371460\pi\)
\(920\) 0 0
\(921\) 32.8551 1.08261
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 2.93257 0.0964224
\(926\) 0 0
\(927\) 7.17269 0.235582
\(928\) 0 0
\(929\) −26.6656 −0.874871 −0.437436 0.899250i \(-0.644113\pi\)
−0.437436 + 0.899250i \(0.644113\pi\)
\(930\) 0 0
\(931\) −6.90801 −0.226401
\(932\) 0 0
\(933\) −16.5072 −0.540420
\(934\) 0 0
\(935\) 4.53483 0.148305
\(936\) 0 0
\(937\) −26.7757 −0.874724 −0.437362 0.899286i \(-0.644087\pi\)
−0.437362 + 0.899286i \(0.644087\pi\)
\(938\) 0 0
\(939\) 1.73521 0.0566266
\(940\) 0 0
\(941\) 38.5864 1.25788 0.628940 0.777454i \(-0.283489\pi\)
0.628940 + 0.777454i \(0.283489\pi\)
\(942\) 0 0
\(943\) −0.386472 −0.0125853
\(944\) 0 0
\(945\) 5.96077 0.193904
\(946\) 0 0
\(947\) −17.3057 −0.562360 −0.281180 0.959655i \(-0.590726\pi\)
−0.281180 + 0.959655i \(0.590726\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 1.10914 0.0359663
\(952\) 0 0
\(953\) 46.9452 1.52071 0.760353 0.649510i \(-0.225026\pi\)
0.760353 + 0.649510i \(0.225026\pi\)
\(954\) 0 0
\(955\) 12.5064 0.404696
\(956\) 0 0
\(957\) −16.5116 −0.533746
\(958\) 0 0
\(959\) −16.0585 −0.518555
\(960\) 0 0
\(961\) 76.7441 2.47562
\(962\) 0 0
\(963\) 7.34181 0.236586
\(964\) 0 0
\(965\) 13.8321 0.445270
\(966\) 0 0
\(967\) −35.6294 −1.14576 −0.572882 0.819638i \(-0.694175\pi\)
−0.572882 + 0.819638i \(0.694175\pi\)
\(968\) 0 0
\(969\) −26.8116 −0.861314
\(970\) 0 0
\(971\) −45.5394 −1.46143 −0.730714 0.682683i \(-0.760813\pi\)
−0.730714 + 0.682683i \(0.760813\pi\)
\(972\) 0 0
\(973\) −12.3584 −0.396192
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −42.4632 −1.35852 −0.679259 0.733898i \(-0.737699\pi\)
−0.679259 + 0.733898i \(0.737699\pi\)
\(978\) 0 0
\(979\) −2.10589 −0.0673045
\(980\) 0 0
\(981\) −6.89401 −0.220109
\(982\) 0 0
\(983\) −22.9849 −0.733103 −0.366552 0.930398i \(-0.619462\pi\)
−0.366552 + 0.930398i \(0.619462\pi\)
\(984\) 0 0
\(985\) 22.2803 0.709909
\(986\) 0 0
\(987\) 1.81744 0.0578499
\(988\) 0 0
\(989\) 1.09327 0.0347640
\(990\) 0 0
\(991\) −8.79024 −0.279231 −0.139616 0.990206i \(-0.544587\pi\)
−0.139616 + 0.990206i \(0.544587\pi\)
\(992\) 0 0
\(993\) −60.0266 −1.90489
\(994\) 0 0
\(995\) −6.78896 −0.215224
\(996\) 0 0
\(997\) −21.5086 −0.681184 −0.340592 0.940211i \(-0.610628\pi\)
−0.340592 + 0.940211i \(0.610628\pi\)
\(998\) 0 0
\(999\) 4.63292 0.146579
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9464.2.a.br.1.12 15
13.12 even 2 9464.2.a.bs.1.12 yes 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9464.2.a.br.1.12 15 1.1 even 1 trivial
9464.2.a.bs.1.12 yes 15 13.12 even 2