Properties

Label 9464.2.a.br.1.10
Level $9464$
Weight $2$
Character 9464.1
Self dual yes
Analytic conductor $75.570$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9464,2,Mod(1,9464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,0,-3,0,-4,0,-15,0,16,0,-15,0,0,0,-8,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5704204729\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 3 x^{14} - 26 x^{13} + 78 x^{12} + 253 x^{11} - 782 x^{10} - 1087 x^{9} + 3776 x^{8} + \cdots - 344 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-0.619176\) of defining polynomial
Character \(\chi\) \(=\) 9464.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.619176 q^{3} +2.60169 q^{5} -1.00000 q^{7} -2.61662 q^{9} +4.07771 q^{11} +1.61090 q^{15} -7.64859 q^{17} +3.87020 q^{19} -0.619176 q^{21} -7.02679 q^{23} +1.76880 q^{25} -3.47768 q^{27} -4.09415 q^{29} -3.74320 q^{31} +2.52482 q^{33} -2.60169 q^{35} +8.83955 q^{37} -1.62764 q^{41} +3.25603 q^{43} -6.80764 q^{45} +8.01809 q^{47} +1.00000 q^{49} -4.73582 q^{51} +9.25086 q^{53} +10.6089 q^{55} +2.39633 q^{57} -6.25887 q^{59} -10.5394 q^{61} +2.61662 q^{63} -9.24894 q^{67} -4.35082 q^{69} -12.8346 q^{71} -2.59859 q^{73} +1.09520 q^{75} -4.07771 q^{77} -0.869671 q^{79} +5.69657 q^{81} +6.34814 q^{83} -19.8993 q^{85} -2.53500 q^{87} -0.774962 q^{89} -2.31770 q^{93} +10.0691 q^{95} -14.1122 q^{97} -10.6698 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 3 q^{3} - 4 q^{5} - 15 q^{7} + 16 q^{9} - 15 q^{11} - 8 q^{15} + 2 q^{17} - 13 q^{19} + 3 q^{21} - 10 q^{23} + 23 q^{25} - 9 q^{27} + 25 q^{29} - 19 q^{31} + 24 q^{33} + 4 q^{35} + 2 q^{37} - 30 q^{41}+ \cdots - 70 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.619176 0.357481 0.178741 0.983896i \(-0.442798\pi\)
0.178741 + 0.983896i \(0.442798\pi\)
\(4\) 0 0
\(5\) 2.60169 1.16351 0.581756 0.813363i \(-0.302366\pi\)
0.581756 + 0.813363i \(0.302366\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −2.61662 −0.872207
\(10\) 0 0
\(11\) 4.07771 1.22948 0.614738 0.788732i \(-0.289262\pi\)
0.614738 + 0.788732i \(0.289262\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 1.61090 0.415934
\(16\) 0 0
\(17\) −7.64859 −1.85506 −0.927528 0.373755i \(-0.878070\pi\)
−0.927528 + 0.373755i \(0.878070\pi\)
\(18\) 0 0
\(19\) 3.87020 0.887884 0.443942 0.896056i \(-0.353580\pi\)
0.443942 + 0.896056i \(0.353580\pi\)
\(20\) 0 0
\(21\) −0.619176 −0.135115
\(22\) 0 0
\(23\) −7.02679 −1.46519 −0.732593 0.680667i \(-0.761690\pi\)
−0.732593 + 0.680667i \(0.761690\pi\)
\(24\) 0 0
\(25\) 1.76880 0.353761
\(26\) 0 0
\(27\) −3.47768 −0.669279
\(28\) 0 0
\(29\) −4.09415 −0.760264 −0.380132 0.924932i \(-0.624121\pi\)
−0.380132 + 0.924932i \(0.624121\pi\)
\(30\) 0 0
\(31\) −3.74320 −0.672298 −0.336149 0.941809i \(-0.609125\pi\)
−0.336149 + 0.941809i \(0.609125\pi\)
\(32\) 0 0
\(33\) 2.52482 0.439514
\(34\) 0 0
\(35\) −2.60169 −0.439766
\(36\) 0 0
\(37\) 8.83955 1.45321 0.726606 0.687054i \(-0.241096\pi\)
0.726606 + 0.687054i \(0.241096\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.62764 −0.254194 −0.127097 0.991890i \(-0.540566\pi\)
−0.127097 + 0.991890i \(0.540566\pi\)
\(42\) 0 0
\(43\) 3.25603 0.496540 0.248270 0.968691i \(-0.420138\pi\)
0.248270 + 0.968691i \(0.420138\pi\)
\(44\) 0 0
\(45\) −6.80764 −1.01482
\(46\) 0 0
\(47\) 8.01809 1.16956 0.584780 0.811192i \(-0.301181\pi\)
0.584780 + 0.811192i \(0.301181\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −4.73582 −0.663148
\(52\) 0 0
\(53\) 9.25086 1.27070 0.635352 0.772223i \(-0.280855\pi\)
0.635352 + 0.772223i \(0.280855\pi\)
\(54\) 0 0
\(55\) 10.6089 1.43051
\(56\) 0 0
\(57\) 2.39633 0.317402
\(58\) 0 0
\(59\) −6.25887 −0.814835 −0.407418 0.913242i \(-0.633571\pi\)
−0.407418 + 0.913242i \(0.633571\pi\)
\(60\) 0 0
\(61\) −10.5394 −1.34943 −0.674717 0.738076i \(-0.735735\pi\)
−0.674717 + 0.738076i \(0.735735\pi\)
\(62\) 0 0
\(63\) 2.61662 0.329663
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −9.24894 −1.12994 −0.564969 0.825112i \(-0.691112\pi\)
−0.564969 + 0.825112i \(0.691112\pi\)
\(68\) 0 0
\(69\) −4.35082 −0.523777
\(70\) 0 0
\(71\) −12.8346 −1.52319 −0.761595 0.648053i \(-0.775583\pi\)
−0.761595 + 0.648053i \(0.775583\pi\)
\(72\) 0 0
\(73\) −2.59859 −0.304142 −0.152071 0.988370i \(-0.548594\pi\)
−0.152071 + 0.988370i \(0.548594\pi\)
\(74\) 0 0
\(75\) 1.09520 0.126463
\(76\) 0 0
\(77\) −4.07771 −0.464698
\(78\) 0 0
\(79\) −0.869671 −0.0978456 −0.0489228 0.998803i \(-0.515579\pi\)
−0.0489228 + 0.998803i \(0.515579\pi\)
\(80\) 0 0
\(81\) 5.69657 0.632952
\(82\) 0 0
\(83\) 6.34814 0.696799 0.348400 0.937346i \(-0.386725\pi\)
0.348400 + 0.937346i \(0.386725\pi\)
\(84\) 0 0
\(85\) −19.8993 −2.15838
\(86\) 0 0
\(87\) −2.53500 −0.271780
\(88\) 0 0
\(89\) −0.774962 −0.0821458 −0.0410729 0.999156i \(-0.513078\pi\)
−0.0410729 + 0.999156i \(0.513078\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −2.31770 −0.240334
\(94\) 0 0
\(95\) 10.0691 1.03306
\(96\) 0 0
\(97\) −14.1122 −1.43288 −0.716439 0.697650i \(-0.754229\pi\)
−0.716439 + 0.697650i \(0.754229\pi\)
\(98\) 0 0
\(99\) −10.6698 −1.07236
\(100\) 0 0
\(101\) −3.00119 −0.298629 −0.149315 0.988790i \(-0.547707\pi\)
−0.149315 + 0.988790i \(0.547707\pi\)
\(102\) 0 0
\(103\) −19.7122 −1.94230 −0.971150 0.238469i \(-0.923355\pi\)
−0.971150 + 0.238469i \(0.923355\pi\)
\(104\) 0 0
\(105\) −1.61090 −0.157208
\(106\) 0 0
\(107\) 1.80259 0.174263 0.0871316 0.996197i \(-0.472230\pi\)
0.0871316 + 0.996197i \(0.472230\pi\)
\(108\) 0 0
\(109\) −8.49662 −0.813829 −0.406914 0.913466i \(-0.633395\pi\)
−0.406914 + 0.913466i \(0.633395\pi\)
\(110\) 0 0
\(111\) 5.47323 0.519496
\(112\) 0 0
\(113\) −19.2502 −1.81090 −0.905452 0.424449i \(-0.860468\pi\)
−0.905452 + 0.424449i \(0.860468\pi\)
\(114\) 0 0
\(115\) −18.2815 −1.70476
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.64859 0.701145
\(120\) 0 0
\(121\) 5.62770 0.511609
\(122\) 0 0
\(123\) −1.00779 −0.0908696
\(124\) 0 0
\(125\) −8.40658 −0.751907
\(126\) 0 0
\(127\) 4.46686 0.396370 0.198185 0.980165i \(-0.436495\pi\)
0.198185 + 0.980165i \(0.436495\pi\)
\(128\) 0 0
\(129\) 2.01606 0.177504
\(130\) 0 0
\(131\) 17.5622 1.53442 0.767209 0.641397i \(-0.221645\pi\)
0.767209 + 0.641397i \(0.221645\pi\)
\(132\) 0 0
\(133\) −3.87020 −0.335588
\(134\) 0 0
\(135\) −9.04784 −0.778714
\(136\) 0 0
\(137\) 10.0427 0.858004 0.429002 0.903304i \(-0.358865\pi\)
0.429002 + 0.903304i \(0.358865\pi\)
\(138\) 0 0
\(139\) 7.23741 0.613869 0.306935 0.951731i \(-0.400697\pi\)
0.306935 + 0.951731i \(0.400697\pi\)
\(140\) 0 0
\(141\) 4.96461 0.418096
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −10.6517 −0.884576
\(146\) 0 0
\(147\) 0.619176 0.0510688
\(148\) 0 0
\(149\) 11.1546 0.913822 0.456911 0.889512i \(-0.348956\pi\)
0.456911 + 0.889512i \(0.348956\pi\)
\(150\) 0 0
\(151\) −0.207386 −0.0168768 −0.00843842 0.999964i \(-0.502686\pi\)
−0.00843842 + 0.999964i \(0.502686\pi\)
\(152\) 0 0
\(153\) 20.0135 1.61799
\(154\) 0 0
\(155\) −9.73865 −0.782227
\(156\) 0 0
\(157\) −13.6061 −1.08588 −0.542941 0.839771i \(-0.682689\pi\)
−0.542941 + 0.839771i \(0.682689\pi\)
\(158\) 0 0
\(159\) 5.72791 0.454253
\(160\) 0 0
\(161\) 7.02679 0.553789
\(162\) 0 0
\(163\) −6.84998 −0.536532 −0.268266 0.963345i \(-0.586451\pi\)
−0.268266 + 0.963345i \(0.586451\pi\)
\(164\) 0 0
\(165\) 6.56880 0.511380
\(166\) 0 0
\(167\) −6.64278 −0.514034 −0.257017 0.966407i \(-0.582740\pi\)
−0.257017 + 0.966407i \(0.582740\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −10.1268 −0.774418
\(172\) 0 0
\(173\) −0.267894 −0.0203676 −0.0101838 0.999948i \(-0.503242\pi\)
−0.0101838 + 0.999948i \(0.503242\pi\)
\(174\) 0 0
\(175\) −1.76880 −0.133709
\(176\) 0 0
\(177\) −3.87534 −0.291288
\(178\) 0 0
\(179\) −17.9819 −1.34403 −0.672015 0.740537i \(-0.734571\pi\)
−0.672015 + 0.740537i \(0.734571\pi\)
\(180\) 0 0
\(181\) −1.62862 −0.121054 −0.0605272 0.998167i \(-0.519278\pi\)
−0.0605272 + 0.998167i \(0.519278\pi\)
\(182\) 0 0
\(183\) −6.52576 −0.482398
\(184\) 0 0
\(185\) 22.9978 1.69083
\(186\) 0 0
\(187\) −31.1887 −2.28074
\(188\) 0 0
\(189\) 3.47768 0.252964
\(190\) 0 0
\(191\) 12.3448 0.893241 0.446620 0.894724i \(-0.352627\pi\)
0.446620 + 0.894724i \(0.352627\pi\)
\(192\) 0 0
\(193\) 23.1367 1.66542 0.832708 0.553712i \(-0.186789\pi\)
0.832708 + 0.553712i \(0.186789\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.9839 1.28130 0.640650 0.767833i \(-0.278665\pi\)
0.640650 + 0.767833i \(0.278665\pi\)
\(198\) 0 0
\(199\) −2.44650 −0.173428 −0.0867138 0.996233i \(-0.527637\pi\)
−0.0867138 + 0.996233i \(0.527637\pi\)
\(200\) 0 0
\(201\) −5.72672 −0.403932
\(202\) 0 0
\(203\) 4.09415 0.287353
\(204\) 0 0
\(205\) −4.23461 −0.295758
\(206\) 0 0
\(207\) 18.3864 1.27795
\(208\) 0 0
\(209\) 15.7815 1.09163
\(210\) 0 0
\(211\) −8.62463 −0.593744 −0.296872 0.954917i \(-0.595944\pi\)
−0.296872 + 0.954917i \(0.595944\pi\)
\(212\) 0 0
\(213\) −7.94689 −0.544512
\(214\) 0 0
\(215\) 8.47119 0.577731
\(216\) 0 0
\(217\) 3.74320 0.254105
\(218\) 0 0
\(219\) −1.60898 −0.108725
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 18.2880 1.22466 0.612328 0.790604i \(-0.290233\pi\)
0.612328 + 0.790604i \(0.290233\pi\)
\(224\) 0 0
\(225\) −4.62829 −0.308552
\(226\) 0 0
\(227\) −7.30170 −0.484631 −0.242316 0.970197i \(-0.577907\pi\)
−0.242316 + 0.970197i \(0.577907\pi\)
\(228\) 0 0
\(229\) −24.0876 −1.59175 −0.795877 0.605459i \(-0.792990\pi\)
−0.795877 + 0.605459i \(0.792990\pi\)
\(230\) 0 0
\(231\) −2.52482 −0.166121
\(232\) 0 0
\(233\) −29.1103 −1.90708 −0.953540 0.301267i \(-0.902590\pi\)
−0.953540 + 0.301267i \(0.902590\pi\)
\(234\) 0 0
\(235\) 20.8606 1.36080
\(236\) 0 0
\(237\) −0.538479 −0.0349780
\(238\) 0 0
\(239\) −28.2255 −1.82575 −0.912876 0.408236i \(-0.866144\pi\)
−0.912876 + 0.408236i \(0.866144\pi\)
\(240\) 0 0
\(241\) −2.46887 −0.159034 −0.0795170 0.996834i \(-0.525338\pi\)
−0.0795170 + 0.996834i \(0.525338\pi\)
\(242\) 0 0
\(243\) 13.9602 0.895548
\(244\) 0 0
\(245\) 2.60169 0.166216
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 3.93062 0.249093
\(250\) 0 0
\(251\) −26.2601 −1.65753 −0.828763 0.559600i \(-0.810955\pi\)
−0.828763 + 0.559600i \(0.810955\pi\)
\(252\) 0 0
\(253\) −28.6532 −1.80141
\(254\) 0 0
\(255\) −12.3211 −0.771580
\(256\) 0 0
\(257\) −10.6526 −0.664492 −0.332246 0.943193i \(-0.607806\pi\)
−0.332246 + 0.943193i \(0.607806\pi\)
\(258\) 0 0
\(259\) −8.83955 −0.549263
\(260\) 0 0
\(261\) 10.7128 0.663108
\(262\) 0 0
\(263\) −8.95248 −0.552033 −0.276017 0.961153i \(-0.589015\pi\)
−0.276017 + 0.961153i \(0.589015\pi\)
\(264\) 0 0
\(265\) 24.0679 1.47848
\(266\) 0 0
\(267\) −0.479838 −0.0293656
\(268\) 0 0
\(269\) 22.0773 1.34608 0.673039 0.739607i \(-0.264989\pi\)
0.673039 + 0.739607i \(0.264989\pi\)
\(270\) 0 0
\(271\) 5.88890 0.357725 0.178863 0.983874i \(-0.442758\pi\)
0.178863 + 0.983874i \(0.442758\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.21266 0.434940
\(276\) 0 0
\(277\) 5.66739 0.340520 0.170260 0.985399i \(-0.445539\pi\)
0.170260 + 0.985399i \(0.445539\pi\)
\(278\) 0 0
\(279\) 9.79453 0.586383
\(280\) 0 0
\(281\) 31.6914 1.89055 0.945274 0.326278i \(-0.105795\pi\)
0.945274 + 0.326278i \(0.105795\pi\)
\(282\) 0 0
\(283\) −13.6414 −0.810896 −0.405448 0.914118i \(-0.632884\pi\)
−0.405448 + 0.914118i \(0.632884\pi\)
\(284\) 0 0
\(285\) 6.23452 0.369301
\(286\) 0 0
\(287\) 1.62764 0.0960763
\(288\) 0 0
\(289\) 41.5009 2.44123
\(290\) 0 0
\(291\) −8.73794 −0.512227
\(292\) 0 0
\(293\) 17.7561 1.03733 0.518663 0.854979i \(-0.326430\pi\)
0.518663 + 0.854979i \(0.326430\pi\)
\(294\) 0 0
\(295\) −16.2837 −0.948071
\(296\) 0 0
\(297\) −14.1809 −0.822862
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −3.25603 −0.187675
\(302\) 0 0
\(303\) −1.85826 −0.106754
\(304\) 0 0
\(305\) −27.4203 −1.57008
\(306\) 0 0
\(307\) −27.3147 −1.55893 −0.779465 0.626446i \(-0.784509\pi\)
−0.779465 + 0.626446i \(0.784509\pi\)
\(308\) 0 0
\(309\) −12.2053 −0.694336
\(310\) 0 0
\(311\) −10.3671 −0.587867 −0.293934 0.955826i \(-0.594964\pi\)
−0.293934 + 0.955826i \(0.594964\pi\)
\(312\) 0 0
\(313\) 17.9287 1.01339 0.506694 0.862126i \(-0.330867\pi\)
0.506694 + 0.862126i \(0.330867\pi\)
\(314\) 0 0
\(315\) 6.80764 0.383567
\(316\) 0 0
\(317\) −10.1856 −0.572081 −0.286041 0.958217i \(-0.592339\pi\)
−0.286041 + 0.958217i \(0.592339\pi\)
\(318\) 0 0
\(319\) −16.6947 −0.934726
\(320\) 0 0
\(321\) 1.11612 0.0622959
\(322\) 0 0
\(323\) −29.6015 −1.64707
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −5.26090 −0.290929
\(328\) 0 0
\(329\) −8.01809 −0.442052
\(330\) 0 0
\(331\) −7.06960 −0.388580 −0.194290 0.980944i \(-0.562240\pi\)
−0.194290 + 0.980944i \(0.562240\pi\)
\(332\) 0 0
\(333\) −23.1297 −1.26750
\(334\) 0 0
\(335\) −24.0629 −1.31470
\(336\) 0 0
\(337\) 24.9764 1.36055 0.680277 0.732955i \(-0.261860\pi\)
0.680277 + 0.732955i \(0.261860\pi\)
\(338\) 0 0
\(339\) −11.9192 −0.647364
\(340\) 0 0
\(341\) −15.2637 −0.826574
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −11.3195 −0.609421
\(346\) 0 0
\(347\) −28.6475 −1.53788 −0.768939 0.639323i \(-0.779215\pi\)
−0.768939 + 0.639323i \(0.779215\pi\)
\(348\) 0 0
\(349\) −4.67144 −0.250056 −0.125028 0.992153i \(-0.539902\pi\)
−0.125028 + 0.992153i \(0.539902\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 30.0372 1.59872 0.799359 0.600854i \(-0.205173\pi\)
0.799359 + 0.600854i \(0.205173\pi\)
\(354\) 0 0
\(355\) −33.3917 −1.77225
\(356\) 0 0
\(357\) 4.73582 0.250646
\(358\) 0 0
\(359\) −16.6008 −0.876157 −0.438079 0.898937i \(-0.644341\pi\)
−0.438079 + 0.898937i \(0.644341\pi\)
\(360\) 0 0
\(361\) −4.02159 −0.211663
\(362\) 0 0
\(363\) 3.48454 0.182891
\(364\) 0 0
\(365\) −6.76073 −0.353873
\(366\) 0 0
\(367\) 6.69549 0.349502 0.174751 0.984613i \(-0.444088\pi\)
0.174751 + 0.984613i \(0.444088\pi\)
\(368\) 0 0
\(369\) 4.25891 0.221710
\(370\) 0 0
\(371\) −9.25086 −0.480281
\(372\) 0 0
\(373\) −9.21141 −0.476948 −0.238474 0.971149i \(-0.576647\pi\)
−0.238474 + 0.971149i \(0.576647\pi\)
\(374\) 0 0
\(375\) −5.20515 −0.268793
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −3.75851 −0.193061 −0.0965307 0.995330i \(-0.530775\pi\)
−0.0965307 + 0.995330i \(0.530775\pi\)
\(380\) 0 0
\(381\) 2.76577 0.141695
\(382\) 0 0
\(383\) 23.1457 1.18269 0.591345 0.806418i \(-0.298597\pi\)
0.591345 + 0.806418i \(0.298597\pi\)
\(384\) 0 0
\(385\) −10.6089 −0.540682
\(386\) 0 0
\(387\) −8.51980 −0.433086
\(388\) 0 0
\(389\) 25.4849 1.29214 0.646068 0.763280i \(-0.276412\pi\)
0.646068 + 0.763280i \(0.276412\pi\)
\(390\) 0 0
\(391\) 53.7450 2.71800
\(392\) 0 0
\(393\) 10.8741 0.548526
\(394\) 0 0
\(395\) −2.26262 −0.113845
\(396\) 0 0
\(397\) 29.3041 1.47073 0.735365 0.677671i \(-0.237011\pi\)
0.735365 + 0.677671i \(0.237011\pi\)
\(398\) 0 0
\(399\) −2.39633 −0.119967
\(400\) 0 0
\(401\) −17.6977 −0.883782 −0.441891 0.897069i \(-0.645692\pi\)
−0.441891 + 0.897069i \(0.645692\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 14.8207 0.736448
\(406\) 0 0
\(407\) 36.0451 1.78669
\(408\) 0 0
\(409\) −1.77124 −0.0875823 −0.0437911 0.999041i \(-0.513944\pi\)
−0.0437911 + 0.999041i \(0.513944\pi\)
\(410\) 0 0
\(411\) 6.21818 0.306720
\(412\) 0 0
\(413\) 6.25887 0.307979
\(414\) 0 0
\(415\) 16.5159 0.810734
\(416\) 0 0
\(417\) 4.48123 0.219447
\(418\) 0 0
\(419\) −25.1001 −1.22622 −0.613110 0.789997i \(-0.710082\pi\)
−0.613110 + 0.789997i \(0.710082\pi\)
\(420\) 0 0
\(421\) 22.1032 1.07724 0.538622 0.842548i \(-0.318945\pi\)
0.538622 + 0.842548i \(0.318945\pi\)
\(422\) 0 0
\(423\) −20.9803 −1.02010
\(424\) 0 0
\(425\) −13.5288 −0.656245
\(426\) 0 0
\(427\) 10.5394 0.510038
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 35.6726 1.71829 0.859144 0.511735i \(-0.170997\pi\)
0.859144 + 0.511735i \(0.170997\pi\)
\(432\) 0 0
\(433\) 16.0480 0.771219 0.385609 0.922662i \(-0.373991\pi\)
0.385609 + 0.922662i \(0.373991\pi\)
\(434\) 0 0
\(435\) −6.59528 −0.316220
\(436\) 0 0
\(437\) −27.1950 −1.30092
\(438\) 0 0
\(439\) −9.68485 −0.462233 −0.231116 0.972926i \(-0.574238\pi\)
−0.231116 + 0.972926i \(0.574238\pi\)
\(440\) 0 0
\(441\) −2.61662 −0.124601
\(442\) 0 0
\(443\) 7.30236 0.346946 0.173473 0.984839i \(-0.444501\pi\)
0.173473 + 0.984839i \(0.444501\pi\)
\(444\) 0 0
\(445\) −2.01621 −0.0955776
\(446\) 0 0
\(447\) 6.90667 0.326674
\(448\) 0 0
\(449\) 17.2179 0.812562 0.406281 0.913748i \(-0.366825\pi\)
0.406281 + 0.913748i \(0.366825\pi\)
\(450\) 0 0
\(451\) −6.63702 −0.312525
\(452\) 0 0
\(453\) −0.128408 −0.00603315
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −28.1146 −1.31515 −0.657573 0.753390i \(-0.728417\pi\)
−0.657573 + 0.753390i \(0.728417\pi\)
\(458\) 0 0
\(459\) 26.5993 1.24155
\(460\) 0 0
\(461\) −0.452615 −0.0210804 −0.0105402 0.999944i \(-0.503355\pi\)
−0.0105402 + 0.999944i \(0.503355\pi\)
\(462\) 0 0
\(463\) −22.7792 −1.05864 −0.529319 0.848423i \(-0.677553\pi\)
−0.529319 + 0.848423i \(0.677553\pi\)
\(464\) 0 0
\(465\) −6.02993 −0.279632
\(466\) 0 0
\(467\) −14.8115 −0.685395 −0.342697 0.939446i \(-0.611341\pi\)
−0.342697 + 0.939446i \(0.611341\pi\)
\(468\) 0 0
\(469\) 9.24894 0.427076
\(470\) 0 0
\(471\) −8.42455 −0.388183
\(472\) 0 0
\(473\) 13.2771 0.610484
\(474\) 0 0
\(475\) 6.84561 0.314098
\(476\) 0 0
\(477\) −24.2060 −1.10832
\(478\) 0 0
\(479\) −15.2597 −0.697235 −0.348617 0.937265i \(-0.613349\pi\)
−0.348617 + 0.937265i \(0.613349\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 4.35082 0.197969
\(484\) 0 0
\(485\) −36.7156 −1.66717
\(486\) 0 0
\(487\) 7.67715 0.347885 0.173942 0.984756i \(-0.444349\pi\)
0.173942 + 0.984756i \(0.444349\pi\)
\(488\) 0 0
\(489\) −4.24134 −0.191800
\(490\) 0 0
\(491\) −1.63021 −0.0735703 −0.0367851 0.999323i \(-0.511712\pi\)
−0.0367851 + 0.999323i \(0.511712\pi\)
\(492\) 0 0
\(493\) 31.3144 1.41033
\(494\) 0 0
\(495\) −27.7596 −1.24770
\(496\) 0 0
\(497\) 12.8346 0.575712
\(498\) 0 0
\(499\) −11.6590 −0.521929 −0.260965 0.965348i \(-0.584041\pi\)
−0.260965 + 0.965348i \(0.584041\pi\)
\(500\) 0 0
\(501\) −4.11305 −0.183758
\(502\) 0 0
\(503\) −35.6042 −1.58751 −0.793757 0.608235i \(-0.791878\pi\)
−0.793757 + 0.608235i \(0.791878\pi\)
\(504\) 0 0
\(505\) −7.80816 −0.347459
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −13.1638 −0.583475 −0.291738 0.956498i \(-0.594233\pi\)
−0.291738 + 0.956498i \(0.594233\pi\)
\(510\) 0 0
\(511\) 2.59859 0.114955
\(512\) 0 0
\(513\) −13.4593 −0.594242
\(514\) 0 0
\(515\) −51.2851 −2.25989
\(516\) 0 0
\(517\) 32.6954 1.43794
\(518\) 0 0
\(519\) −0.165874 −0.00728104
\(520\) 0 0
\(521\) 37.9650 1.66328 0.831639 0.555317i \(-0.187403\pi\)
0.831639 + 0.555317i \(0.187403\pi\)
\(522\) 0 0
\(523\) 16.6628 0.728612 0.364306 0.931279i \(-0.381306\pi\)
0.364306 + 0.931279i \(0.381306\pi\)
\(524\) 0 0
\(525\) −1.09520 −0.0477984
\(526\) 0 0
\(527\) 28.6302 1.24715
\(528\) 0 0
\(529\) 26.3758 1.14677
\(530\) 0 0
\(531\) 16.3771 0.710705
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 4.68979 0.202757
\(536\) 0 0
\(537\) −11.1340 −0.480466
\(538\) 0 0
\(539\) 4.07771 0.175639
\(540\) 0 0
\(541\) −16.6562 −0.716105 −0.358052 0.933702i \(-0.616559\pi\)
−0.358052 + 0.933702i \(0.616559\pi\)
\(542\) 0 0
\(543\) −1.00840 −0.0432747
\(544\) 0 0
\(545\) −22.1056 −0.946900
\(546\) 0 0
\(547\) 31.4415 1.34434 0.672170 0.740397i \(-0.265362\pi\)
0.672170 + 0.740397i \(0.265362\pi\)
\(548\) 0 0
\(549\) 27.5777 1.17699
\(550\) 0 0
\(551\) −15.8451 −0.675026
\(552\) 0 0
\(553\) 0.869671 0.0369822
\(554\) 0 0
\(555\) 14.2397 0.604440
\(556\) 0 0
\(557\) −27.0229 −1.14500 −0.572500 0.819905i \(-0.694026\pi\)
−0.572500 + 0.819905i \(0.694026\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −19.3113 −0.815323
\(562\) 0 0
\(563\) 22.6244 0.953504 0.476752 0.879038i \(-0.341814\pi\)
0.476752 + 0.879038i \(0.341814\pi\)
\(564\) 0 0
\(565\) −50.0830 −2.10701
\(566\) 0 0
\(567\) −5.69657 −0.239233
\(568\) 0 0
\(569\) 18.8419 0.789894 0.394947 0.918704i \(-0.370763\pi\)
0.394947 + 0.918704i \(0.370763\pi\)
\(570\) 0 0
\(571\) −24.7338 −1.03508 −0.517539 0.855660i \(-0.673152\pi\)
−0.517539 + 0.855660i \(0.673152\pi\)
\(572\) 0 0
\(573\) 7.64362 0.319317
\(574\) 0 0
\(575\) −12.4290 −0.518325
\(576\) 0 0
\(577\) −0.123930 −0.00515926 −0.00257963 0.999997i \(-0.500821\pi\)
−0.00257963 + 0.999997i \(0.500821\pi\)
\(578\) 0 0
\(579\) 14.3257 0.595355
\(580\) 0 0
\(581\) −6.34814 −0.263365
\(582\) 0 0
\(583\) 37.7223 1.56230
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.2209 0.628234 0.314117 0.949384i \(-0.398292\pi\)
0.314117 + 0.949384i \(0.398292\pi\)
\(588\) 0 0
\(589\) −14.4869 −0.596922
\(590\) 0 0
\(591\) 11.1352 0.458041
\(592\) 0 0
\(593\) 6.30812 0.259043 0.129522 0.991577i \(-0.458656\pi\)
0.129522 + 0.991577i \(0.458656\pi\)
\(594\) 0 0
\(595\) 19.8993 0.815791
\(596\) 0 0
\(597\) −1.51481 −0.0619971
\(598\) 0 0
\(599\) −36.0588 −1.47332 −0.736660 0.676263i \(-0.763598\pi\)
−0.736660 + 0.676263i \(0.763598\pi\)
\(600\) 0 0
\(601\) −12.7739 −0.521057 −0.260529 0.965466i \(-0.583897\pi\)
−0.260529 + 0.965466i \(0.583897\pi\)
\(602\) 0 0
\(603\) 24.2010 0.985540
\(604\) 0 0
\(605\) 14.6415 0.595263
\(606\) 0 0
\(607\) −17.7815 −0.721729 −0.360865 0.932618i \(-0.617518\pi\)
−0.360865 + 0.932618i \(0.617518\pi\)
\(608\) 0 0
\(609\) 2.53500 0.102723
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 3.28173 0.132548 0.0662739 0.997801i \(-0.478889\pi\)
0.0662739 + 0.997801i \(0.478889\pi\)
\(614\) 0 0
\(615\) −2.62197 −0.105728
\(616\) 0 0
\(617\) −32.8337 −1.32184 −0.660918 0.750458i \(-0.729833\pi\)
−0.660918 + 0.750458i \(0.729833\pi\)
\(618\) 0 0
\(619\) 27.2348 1.09466 0.547329 0.836917i \(-0.315645\pi\)
0.547329 + 0.836917i \(0.315645\pi\)
\(620\) 0 0
\(621\) 24.4369 0.980619
\(622\) 0 0
\(623\) 0.774962 0.0310482
\(624\) 0 0
\(625\) −30.7154 −1.22861
\(626\) 0 0
\(627\) 9.77154 0.390238
\(628\) 0 0
\(629\) −67.6101 −2.69579
\(630\) 0 0
\(631\) −16.7593 −0.667177 −0.333588 0.942719i \(-0.608260\pi\)
−0.333588 + 0.942719i \(0.608260\pi\)
\(632\) 0 0
\(633\) −5.34016 −0.212252
\(634\) 0 0
\(635\) 11.6214 0.461181
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 33.5834 1.32854
\(640\) 0 0
\(641\) 2.13766 0.0844326 0.0422163 0.999108i \(-0.486558\pi\)
0.0422163 + 0.999108i \(0.486558\pi\)
\(642\) 0 0
\(643\) 36.7877 1.45077 0.725384 0.688345i \(-0.241662\pi\)
0.725384 + 0.688345i \(0.241662\pi\)
\(644\) 0 0
\(645\) 5.24516 0.206528
\(646\) 0 0
\(647\) 11.2476 0.442188 0.221094 0.975253i \(-0.429037\pi\)
0.221094 + 0.975253i \(0.429037\pi\)
\(648\) 0 0
\(649\) −25.5218 −1.00182
\(650\) 0 0
\(651\) 2.31770 0.0908377
\(652\) 0 0
\(653\) 28.5431 1.11698 0.558489 0.829512i \(-0.311381\pi\)
0.558489 + 0.829512i \(0.311381\pi\)
\(654\) 0 0
\(655\) 45.6915 1.78531
\(656\) 0 0
\(657\) 6.79953 0.265275
\(658\) 0 0
\(659\) −0.348020 −0.0135569 −0.00677846 0.999977i \(-0.502158\pi\)
−0.00677846 + 0.999977i \(0.502158\pi\)
\(660\) 0 0
\(661\) −7.58414 −0.294989 −0.147494 0.989063i \(-0.547121\pi\)
−0.147494 + 0.989063i \(0.547121\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −10.0691 −0.390461
\(666\) 0 0
\(667\) 28.7687 1.11393
\(668\) 0 0
\(669\) 11.3235 0.437792
\(670\) 0 0
\(671\) −42.9767 −1.65910
\(672\) 0 0
\(673\) −48.0175 −1.85094 −0.925470 0.378820i \(-0.876330\pi\)
−0.925470 + 0.378820i \(0.876330\pi\)
\(674\) 0 0
\(675\) −6.15132 −0.236765
\(676\) 0 0
\(677\) 30.8431 1.18540 0.592699 0.805424i \(-0.298062\pi\)
0.592699 + 0.805424i \(0.298062\pi\)
\(678\) 0 0
\(679\) 14.1122 0.541577
\(680\) 0 0
\(681\) −4.52104 −0.173247
\(682\) 0 0
\(683\) −8.75533 −0.335013 −0.167507 0.985871i \(-0.553572\pi\)
−0.167507 + 0.985871i \(0.553572\pi\)
\(684\) 0 0
\(685\) 26.1279 0.998298
\(686\) 0 0
\(687\) −14.9145 −0.569022
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 28.9115 1.09984 0.549922 0.835216i \(-0.314657\pi\)
0.549922 + 0.835216i \(0.314657\pi\)
\(692\) 0 0
\(693\) 10.6698 0.405313
\(694\) 0 0
\(695\) 18.8295 0.714244
\(696\) 0 0
\(697\) 12.4491 0.471544
\(698\) 0 0
\(699\) −18.0244 −0.681745
\(700\) 0 0
\(701\) 36.4816 1.37789 0.688945 0.724814i \(-0.258074\pi\)
0.688945 + 0.724814i \(0.258074\pi\)
\(702\) 0 0
\(703\) 34.2108 1.29028
\(704\) 0 0
\(705\) 12.9164 0.486459
\(706\) 0 0
\(707\) 3.00119 0.112871
\(708\) 0 0
\(709\) −8.58828 −0.322540 −0.161270 0.986910i \(-0.551559\pi\)
−0.161270 + 0.986910i \(0.551559\pi\)
\(710\) 0 0
\(711\) 2.27560 0.0853417
\(712\) 0 0
\(713\) 26.3027 0.985042
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −17.4765 −0.652673
\(718\) 0 0
\(719\) −46.0390 −1.71697 −0.858483 0.512842i \(-0.828593\pi\)
−0.858483 + 0.512842i \(0.828593\pi\)
\(720\) 0 0
\(721\) 19.7122 0.734121
\(722\) 0 0
\(723\) −1.52867 −0.0568517
\(724\) 0 0
\(725\) −7.24174 −0.268951
\(726\) 0 0
\(727\) −1.42797 −0.0529605 −0.0264802 0.999649i \(-0.508430\pi\)
−0.0264802 + 0.999649i \(0.508430\pi\)
\(728\) 0 0
\(729\) −8.44589 −0.312811
\(730\) 0 0
\(731\) −24.9040 −0.921109
\(732\) 0 0
\(733\) −1.35203 −0.0499385 −0.0249693 0.999688i \(-0.507949\pi\)
−0.0249693 + 0.999688i \(0.507949\pi\)
\(734\) 0 0
\(735\) 1.61090 0.0594191
\(736\) 0 0
\(737\) −37.7145 −1.38923
\(738\) 0 0
\(739\) 12.2069 0.449037 0.224518 0.974470i \(-0.427919\pi\)
0.224518 + 0.974470i \(0.427919\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −7.50395 −0.275293 −0.137647 0.990481i \(-0.543954\pi\)
−0.137647 + 0.990481i \(0.543954\pi\)
\(744\) 0 0
\(745\) 29.0209 1.06324
\(746\) 0 0
\(747\) −16.6107 −0.607753
\(748\) 0 0
\(749\) −1.80259 −0.0658653
\(750\) 0 0
\(751\) 9.54217 0.348199 0.174099 0.984728i \(-0.444299\pi\)
0.174099 + 0.984728i \(0.444299\pi\)
\(752\) 0 0
\(753\) −16.2596 −0.592535
\(754\) 0 0
\(755\) −0.539555 −0.0196364
\(756\) 0 0
\(757\) 25.8225 0.938534 0.469267 0.883056i \(-0.344518\pi\)
0.469267 + 0.883056i \(0.344518\pi\)
\(758\) 0 0
\(759\) −17.7414 −0.643971
\(760\) 0 0
\(761\) 24.7826 0.898368 0.449184 0.893439i \(-0.351715\pi\)
0.449184 + 0.893439i \(0.351715\pi\)
\(762\) 0 0
\(763\) 8.49662 0.307598
\(764\) 0 0
\(765\) 52.0689 1.88255
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −2.75790 −0.0994525 −0.0497262 0.998763i \(-0.515835\pi\)
−0.0497262 + 0.998763i \(0.515835\pi\)
\(770\) 0 0
\(771\) −6.59585 −0.237544
\(772\) 0 0
\(773\) −41.6893 −1.49946 −0.749730 0.661744i \(-0.769817\pi\)
−0.749730 + 0.661744i \(0.769817\pi\)
\(774\) 0 0
\(775\) −6.62098 −0.237832
\(776\) 0 0
\(777\) −5.47323 −0.196351
\(778\) 0 0
\(779\) −6.29927 −0.225695
\(780\) 0 0
\(781\) −52.3359 −1.87272
\(782\) 0 0
\(783\) 14.2381 0.508829
\(784\) 0 0
\(785\) −35.3988 −1.26344
\(786\) 0 0
\(787\) −22.5927 −0.805341 −0.402671 0.915345i \(-0.631918\pi\)
−0.402671 + 0.915345i \(0.631918\pi\)
\(788\) 0 0
\(789\) −5.54316 −0.197342
\(790\) 0 0
\(791\) 19.2502 0.684457
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 14.9023 0.528529
\(796\) 0 0
\(797\) −27.4859 −0.973601 −0.486801 0.873513i \(-0.661836\pi\)
−0.486801 + 0.873513i \(0.661836\pi\)
\(798\) 0 0
\(799\) −61.3271 −2.16960
\(800\) 0 0
\(801\) 2.02778 0.0716482
\(802\) 0 0
\(803\) −10.5963 −0.373935
\(804\) 0 0
\(805\) 18.2815 0.644340
\(806\) 0 0
\(807\) 13.6697 0.481198
\(808\) 0 0
\(809\) 28.3701 0.997438 0.498719 0.866764i \(-0.333804\pi\)
0.498719 + 0.866764i \(0.333804\pi\)
\(810\) 0 0
\(811\) −53.9253 −1.89357 −0.946787 0.321860i \(-0.895692\pi\)
−0.946787 + 0.321860i \(0.895692\pi\)
\(812\) 0 0
\(813\) 3.64627 0.127880
\(814\) 0 0
\(815\) −17.8215 −0.624262
\(816\) 0 0
\(817\) 12.6015 0.440870
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −28.3523 −0.989502 −0.494751 0.869035i \(-0.664741\pi\)
−0.494751 + 0.869035i \(0.664741\pi\)
\(822\) 0 0
\(823\) 12.4445 0.433787 0.216893 0.976195i \(-0.430408\pi\)
0.216893 + 0.976195i \(0.430408\pi\)
\(824\) 0 0
\(825\) 4.46590 0.155483
\(826\) 0 0
\(827\) 54.2614 1.88685 0.943427 0.331581i \(-0.107582\pi\)
0.943427 + 0.331581i \(0.107582\pi\)
\(828\) 0 0
\(829\) −18.1806 −0.631437 −0.315719 0.948853i \(-0.602246\pi\)
−0.315719 + 0.948853i \(0.602246\pi\)
\(830\) 0 0
\(831\) 3.50911 0.121730
\(832\) 0 0
\(833\) −7.64859 −0.265008
\(834\) 0 0
\(835\) −17.2825 −0.598085
\(836\) 0 0
\(837\) 13.0176 0.449955
\(838\) 0 0
\(839\) −2.25075 −0.0777045 −0.0388522 0.999245i \(-0.512370\pi\)
−0.0388522 + 0.999245i \(0.512370\pi\)
\(840\) 0 0
\(841\) −12.2380 −0.421999
\(842\) 0 0
\(843\) 19.6225 0.675836
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −5.62770 −0.193370
\(848\) 0 0
\(849\) −8.44641 −0.289880
\(850\) 0 0
\(851\) −62.1136 −2.12923
\(852\) 0 0
\(853\) 49.4253 1.69229 0.846146 0.532952i \(-0.178917\pi\)
0.846146 + 0.532952i \(0.178917\pi\)
\(854\) 0 0
\(855\) −26.3469 −0.901045
\(856\) 0 0
\(857\) 6.30457 0.215360 0.107680 0.994186i \(-0.465658\pi\)
0.107680 + 0.994186i \(0.465658\pi\)
\(858\) 0 0
\(859\) −2.87727 −0.0981713 −0.0490856 0.998795i \(-0.515631\pi\)
−0.0490856 + 0.998795i \(0.515631\pi\)
\(860\) 0 0
\(861\) 1.00779 0.0343455
\(862\) 0 0
\(863\) 43.4449 1.47888 0.739441 0.673221i \(-0.235090\pi\)
0.739441 + 0.673221i \(0.235090\pi\)
\(864\) 0 0
\(865\) −0.696978 −0.0236980
\(866\) 0 0
\(867\) 25.6964 0.872694
\(868\) 0 0
\(869\) −3.54626 −0.120299
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 36.9263 1.24977
\(874\) 0 0
\(875\) 8.40658 0.284194
\(876\) 0 0
\(877\) −24.7065 −0.834278 −0.417139 0.908843i \(-0.636967\pi\)
−0.417139 + 0.908843i \(0.636967\pi\)
\(878\) 0 0
\(879\) 10.9942 0.370824
\(880\) 0 0
\(881\) −4.47629 −0.150810 −0.0754050 0.997153i \(-0.524025\pi\)
−0.0754050 + 0.997153i \(0.524025\pi\)
\(882\) 0 0
\(883\) −1.96708 −0.0661977 −0.0330988 0.999452i \(-0.510538\pi\)
−0.0330988 + 0.999452i \(0.510538\pi\)
\(884\) 0 0
\(885\) −10.0824 −0.338918
\(886\) 0 0
\(887\) −59.4072 −1.99470 −0.997349 0.0727641i \(-0.976818\pi\)
−0.997349 + 0.0727641i \(0.976818\pi\)
\(888\) 0 0
\(889\) −4.46686 −0.149814
\(890\) 0 0
\(891\) 23.2290 0.778199
\(892\) 0 0
\(893\) 31.0316 1.03843
\(894\) 0 0
\(895\) −46.7834 −1.56380
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 15.3252 0.511124
\(900\) 0 0
\(901\) −70.7561 −2.35723
\(902\) 0 0
\(903\) −2.01606 −0.0670901
\(904\) 0 0
\(905\) −4.23717 −0.140848
\(906\) 0 0
\(907\) −30.9828 −1.02877 −0.514383 0.857561i \(-0.671979\pi\)
−0.514383 + 0.857561i \(0.671979\pi\)
\(908\) 0 0
\(909\) 7.85297 0.260466
\(910\) 0 0
\(911\) 10.8420 0.359211 0.179606 0.983739i \(-0.442518\pi\)
0.179606 + 0.983739i \(0.442518\pi\)
\(912\) 0 0
\(913\) 25.8859 0.856697
\(914\) 0 0
\(915\) −16.9780 −0.561276
\(916\) 0 0
\(917\) −17.5622 −0.579955
\(918\) 0 0
\(919\) 34.3176 1.13203 0.566016 0.824394i \(-0.308484\pi\)
0.566016 + 0.824394i \(0.308484\pi\)
\(920\) 0 0
\(921\) −16.9126 −0.557288
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 15.6354 0.514089
\(926\) 0 0
\(927\) 51.5794 1.69409
\(928\) 0 0
\(929\) 31.9184 1.04721 0.523604 0.851962i \(-0.324587\pi\)
0.523604 + 0.851962i \(0.324587\pi\)
\(930\) 0 0
\(931\) 3.87020 0.126841
\(932\) 0 0
\(933\) −6.41909 −0.210152
\(934\) 0 0
\(935\) −81.1434 −2.65367
\(936\) 0 0
\(937\) −11.9524 −0.390468 −0.195234 0.980757i \(-0.562547\pi\)
−0.195234 + 0.980757i \(0.562547\pi\)
\(938\) 0 0
\(939\) 11.1010 0.362267
\(940\) 0 0
\(941\) −22.7232 −0.740754 −0.370377 0.928882i \(-0.620771\pi\)
−0.370377 + 0.928882i \(0.620771\pi\)
\(942\) 0 0
\(943\) 11.4371 0.372442
\(944\) 0 0
\(945\) 9.04784 0.294326
\(946\) 0 0
\(947\) −28.7874 −0.935463 −0.467732 0.883871i \(-0.654929\pi\)
−0.467732 + 0.883871i \(0.654929\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −6.30669 −0.204508
\(952\) 0 0
\(953\) 34.3797 1.11367 0.556834 0.830624i \(-0.312016\pi\)
0.556834 + 0.830624i \(0.312016\pi\)
\(954\) 0 0
\(955\) 32.1175 1.03930
\(956\) 0 0
\(957\) −10.3370 −0.334147
\(958\) 0 0
\(959\) −10.0427 −0.324295
\(960\) 0 0
\(961\) −16.9885 −0.548015
\(962\) 0 0
\(963\) −4.71670 −0.151994
\(964\) 0 0
\(965\) 60.1946 1.93773
\(966\) 0 0
\(967\) −42.2318 −1.35808 −0.679042 0.734099i \(-0.737605\pi\)
−0.679042 + 0.734099i \(0.737605\pi\)
\(968\) 0 0
\(969\) −18.3286 −0.588798
\(970\) 0 0
\(971\) −49.1872 −1.57849 −0.789246 0.614077i \(-0.789528\pi\)
−0.789246 + 0.614077i \(0.789528\pi\)
\(972\) 0 0
\(973\) −7.23741 −0.232021
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −3.72093 −0.119043 −0.0595216 0.998227i \(-0.518958\pi\)
−0.0595216 + 0.998227i \(0.518958\pi\)
\(978\) 0 0
\(979\) −3.16007 −0.100996
\(980\) 0 0
\(981\) 22.2324 0.709827
\(982\) 0 0
\(983\) 36.3136 1.15822 0.579111 0.815248i \(-0.303400\pi\)
0.579111 + 0.815248i \(0.303400\pi\)
\(984\) 0 0
\(985\) 46.7886 1.49081
\(986\) 0 0
\(987\) −4.96461 −0.158025
\(988\) 0 0
\(989\) −22.8794 −0.727524
\(990\) 0 0
\(991\) 11.8610 0.376778 0.188389 0.982095i \(-0.439674\pi\)
0.188389 + 0.982095i \(0.439674\pi\)
\(992\) 0 0
\(993\) −4.37732 −0.138910
\(994\) 0 0
\(995\) −6.36503 −0.201785
\(996\) 0 0
\(997\) 9.62529 0.304836 0.152418 0.988316i \(-0.451294\pi\)
0.152418 + 0.988316i \(0.451294\pi\)
\(998\) 0 0
\(999\) −30.7411 −0.972605
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9464.2.a.br.1.10 15
13.12 even 2 9464.2.a.bs.1.10 yes 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9464.2.a.br.1.10 15 1.1 even 1 trivial
9464.2.a.bs.1.10 yes 15 13.12 even 2