Properties

Label 9464.2.a.bf.1.3
Level $9464$
Weight $2$
Character 9464.1
Self dual yes
Analytic conductor $75.570$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9464,2,Mod(1,9464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,2,0,-4,0,-6,0,-4,0,10,0,0,0,-6,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5704204729\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.7674048.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 8x^{3} + 7x^{2} - 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 728)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.276564\) of defining polynomial
Character \(\chi\) \(=\) 9464.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.276564 q^{3} +1.57603 q^{5} -1.00000 q^{7} -2.92351 q^{9} -2.22298 q^{11} -0.435874 q^{15} +3.14016 q^{17} +0.136405 q^{19} +0.276564 q^{21} +7.39724 q^{23} -2.51612 q^{25} +1.63823 q^{27} -6.70623 q^{29} +1.91004 q^{31} +0.614797 q^{33} -1.57603 q^{35} -1.31429 q^{37} +8.30023 q^{41} -4.75496 q^{43} -4.60755 q^{45} +5.92050 q^{47} +1.00000 q^{49} -0.868455 q^{51} -1.59894 q^{53} -3.50350 q^{55} -0.0377246 q^{57} -9.82982 q^{59} -2.05506 q^{61} +2.92351 q^{63} -8.04343 q^{67} -2.04581 q^{69} +1.82979 q^{71} +9.37056 q^{73} +0.695868 q^{75} +2.22298 q^{77} +6.91298 q^{79} +8.31746 q^{81} -5.95108 q^{83} +4.94900 q^{85} +1.85470 q^{87} +1.13368 q^{89} -0.528248 q^{93} +0.214978 q^{95} -10.0696 q^{97} +6.49892 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} - 4 q^{5} - 6 q^{7} - 4 q^{9} + 10 q^{11} - 6 q^{15} + 2 q^{17} + 14 q^{19} - 2 q^{21} - 6 q^{23} - 2 q^{25} + 2 q^{27} - 20 q^{29} - 4 q^{31} + 4 q^{33} + 4 q^{35} - 4 q^{37} + 10 q^{41}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.276564 −0.159674 −0.0798372 0.996808i \(-0.525440\pi\)
−0.0798372 + 0.996808i \(0.525440\pi\)
\(4\) 0 0
\(5\) 1.57603 0.704824 0.352412 0.935845i \(-0.385362\pi\)
0.352412 + 0.935845i \(0.385362\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −2.92351 −0.974504
\(10\) 0 0
\(11\) −2.22298 −0.670254 −0.335127 0.942173i \(-0.608779\pi\)
−0.335127 + 0.942173i \(0.608779\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −0.435874 −0.112542
\(16\) 0 0
\(17\) 3.14016 0.761601 0.380800 0.924657i \(-0.375649\pi\)
0.380800 + 0.924657i \(0.375649\pi\)
\(18\) 0 0
\(19\) 0.136405 0.0312933 0.0156467 0.999878i \(-0.495019\pi\)
0.0156467 + 0.999878i \(0.495019\pi\)
\(20\) 0 0
\(21\) 0.276564 0.0603512
\(22\) 0 0
\(23\) 7.39724 1.54243 0.771216 0.636574i \(-0.219649\pi\)
0.771216 + 0.636574i \(0.219649\pi\)
\(24\) 0 0
\(25\) −2.51612 −0.503223
\(26\) 0 0
\(27\) 1.63823 0.315278
\(28\) 0 0
\(29\) −6.70623 −1.24532 −0.622658 0.782494i \(-0.713947\pi\)
−0.622658 + 0.782494i \(0.713947\pi\)
\(30\) 0 0
\(31\) 1.91004 0.343053 0.171526 0.985180i \(-0.445130\pi\)
0.171526 + 0.985180i \(0.445130\pi\)
\(32\) 0 0
\(33\) 0.614797 0.107022
\(34\) 0 0
\(35\) −1.57603 −0.266398
\(36\) 0 0
\(37\) −1.31429 −0.216068 −0.108034 0.994147i \(-0.534455\pi\)
−0.108034 + 0.994147i \(0.534455\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.30023 1.29628 0.648139 0.761522i \(-0.275547\pi\)
0.648139 + 0.761522i \(0.275547\pi\)
\(42\) 0 0
\(43\) −4.75496 −0.725124 −0.362562 0.931960i \(-0.618098\pi\)
−0.362562 + 0.931960i \(0.618098\pi\)
\(44\) 0 0
\(45\) −4.60755 −0.686854
\(46\) 0 0
\(47\) 5.92050 0.863594 0.431797 0.901971i \(-0.357880\pi\)
0.431797 + 0.901971i \(0.357880\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −0.868455 −0.121608
\(52\) 0 0
\(53\) −1.59894 −0.219631 −0.109816 0.993952i \(-0.535026\pi\)
−0.109816 + 0.993952i \(0.535026\pi\)
\(54\) 0 0
\(55\) −3.50350 −0.472411
\(56\) 0 0
\(57\) −0.0377246 −0.00499674
\(58\) 0 0
\(59\) −9.82982 −1.27973 −0.639867 0.768486i \(-0.721011\pi\)
−0.639867 + 0.768486i \(0.721011\pi\)
\(60\) 0 0
\(61\) −2.05506 −0.263123 −0.131562 0.991308i \(-0.541999\pi\)
−0.131562 + 0.991308i \(0.541999\pi\)
\(62\) 0 0
\(63\) 2.92351 0.368328
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −8.04343 −0.982661 −0.491331 0.870973i \(-0.663489\pi\)
−0.491331 + 0.870973i \(0.663489\pi\)
\(68\) 0 0
\(69\) −2.04581 −0.246287
\(70\) 0 0
\(71\) 1.82979 0.217157 0.108578 0.994088i \(-0.465370\pi\)
0.108578 + 0.994088i \(0.465370\pi\)
\(72\) 0 0
\(73\) 9.37056 1.09674 0.548371 0.836235i \(-0.315248\pi\)
0.548371 + 0.836235i \(0.315248\pi\)
\(74\) 0 0
\(75\) 0.695868 0.0803519
\(76\) 0 0
\(77\) 2.22298 0.253332
\(78\) 0 0
\(79\) 6.91298 0.777771 0.388885 0.921286i \(-0.372860\pi\)
0.388885 + 0.921286i \(0.372860\pi\)
\(80\) 0 0
\(81\) 8.31746 0.924162
\(82\) 0 0
\(83\) −5.95108 −0.653216 −0.326608 0.945160i \(-0.605906\pi\)
−0.326608 + 0.945160i \(0.605906\pi\)
\(84\) 0 0
\(85\) 4.94900 0.536794
\(86\) 0 0
\(87\) 1.85470 0.198845
\(88\) 0 0
\(89\) 1.13368 0.120169 0.0600847 0.998193i \(-0.480863\pi\)
0.0600847 + 0.998193i \(0.480863\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.528248 −0.0547767
\(94\) 0 0
\(95\) 0.214978 0.0220563
\(96\) 0 0
\(97\) −10.0696 −1.02241 −0.511205 0.859459i \(-0.670801\pi\)
−0.511205 + 0.859459i \(0.670801\pi\)
\(98\) 0 0
\(99\) 6.49892 0.653166
\(100\) 0 0
\(101\) −1.15040 −0.114469 −0.0572343 0.998361i \(-0.518228\pi\)
−0.0572343 + 0.998361i \(0.518228\pi\)
\(102\) 0 0
\(103\) 18.3301 1.80612 0.903060 0.429515i \(-0.141315\pi\)
0.903060 + 0.429515i \(0.141315\pi\)
\(104\) 0 0
\(105\) 0.435874 0.0425370
\(106\) 0 0
\(107\) −14.6609 −1.41732 −0.708661 0.705549i \(-0.750700\pi\)
−0.708661 + 0.705549i \(0.750700\pi\)
\(108\) 0 0
\(109\) −0.304515 −0.0291673 −0.0145836 0.999894i \(-0.504642\pi\)
−0.0145836 + 0.999894i \(0.504642\pi\)
\(110\) 0 0
\(111\) 0.363485 0.0345005
\(112\) 0 0
\(113\) −13.5341 −1.27318 −0.636590 0.771203i \(-0.719656\pi\)
−0.636590 + 0.771203i \(0.719656\pi\)
\(114\) 0 0
\(115\) 11.6583 1.08714
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.14016 −0.287858
\(120\) 0 0
\(121\) −6.05835 −0.550759
\(122\) 0 0
\(123\) −2.29555 −0.206982
\(124\) 0 0
\(125\) −11.8457 −1.05951
\(126\) 0 0
\(127\) 0.272899 0.0242159 0.0121079 0.999927i \(-0.496146\pi\)
0.0121079 + 0.999927i \(0.496146\pi\)
\(128\) 0 0
\(129\) 1.31505 0.115784
\(130\) 0 0
\(131\) 11.1530 0.974440 0.487220 0.873279i \(-0.338011\pi\)
0.487220 + 0.873279i \(0.338011\pi\)
\(132\) 0 0
\(133\) −0.136405 −0.0118278
\(134\) 0 0
\(135\) 2.58191 0.222215
\(136\) 0 0
\(137\) −18.6128 −1.59020 −0.795100 0.606479i \(-0.792582\pi\)
−0.795100 + 0.606479i \(0.792582\pi\)
\(138\) 0 0
\(139\) 16.3576 1.38744 0.693718 0.720247i \(-0.255971\pi\)
0.693718 + 0.720247i \(0.255971\pi\)
\(140\) 0 0
\(141\) −1.63740 −0.137894
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −10.5693 −0.877729
\(146\) 0 0
\(147\) −0.276564 −0.0228106
\(148\) 0 0
\(149\) −9.72396 −0.796618 −0.398309 0.917251i \(-0.630403\pi\)
−0.398309 + 0.917251i \(0.630403\pi\)
\(150\) 0 0
\(151\) −4.62076 −0.376032 −0.188016 0.982166i \(-0.560206\pi\)
−0.188016 + 0.982166i \(0.560206\pi\)
\(152\) 0 0
\(153\) −9.18030 −0.742183
\(154\) 0 0
\(155\) 3.01028 0.241792
\(156\) 0 0
\(157\) −10.6284 −0.848239 −0.424119 0.905606i \(-0.639416\pi\)
−0.424119 + 0.905606i \(0.639416\pi\)
\(158\) 0 0
\(159\) 0.442209 0.0350695
\(160\) 0 0
\(161\) −7.39724 −0.582984
\(162\) 0 0
\(163\) 0.980916 0.0768312 0.0384156 0.999262i \(-0.487769\pi\)
0.0384156 + 0.999262i \(0.487769\pi\)
\(164\) 0 0
\(165\) 0.968941 0.0754320
\(166\) 0 0
\(167\) 12.5182 0.968687 0.484343 0.874878i \(-0.339059\pi\)
0.484343 + 0.874878i \(0.339059\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −0.398780 −0.0304955
\(172\) 0 0
\(173\) −15.2987 −1.16314 −0.581571 0.813496i \(-0.697562\pi\)
−0.581571 + 0.813496i \(0.697562\pi\)
\(174\) 0 0
\(175\) 2.51612 0.190201
\(176\) 0 0
\(177\) 2.71858 0.204341
\(178\) 0 0
\(179\) −14.3684 −1.07394 −0.536972 0.843600i \(-0.680432\pi\)
−0.536972 + 0.843600i \(0.680432\pi\)
\(180\) 0 0
\(181\) −19.0430 −1.41546 −0.707728 0.706485i \(-0.750280\pi\)
−0.707728 + 0.706485i \(0.750280\pi\)
\(182\) 0 0
\(183\) 0.568355 0.0420140
\(184\) 0 0
\(185\) −2.07136 −0.152290
\(186\) 0 0
\(187\) −6.98052 −0.510466
\(188\) 0 0
\(189\) −1.63823 −0.119164
\(190\) 0 0
\(191\) −23.2985 −1.68582 −0.842910 0.538054i \(-0.819160\pi\)
−0.842910 + 0.538054i \(0.819160\pi\)
\(192\) 0 0
\(193\) 25.9932 1.87103 0.935516 0.353285i \(-0.114935\pi\)
0.935516 + 0.353285i \(0.114935\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.9477 −0.922482 −0.461241 0.887275i \(-0.652596\pi\)
−0.461241 + 0.887275i \(0.652596\pi\)
\(198\) 0 0
\(199\) −4.28129 −0.303493 −0.151746 0.988419i \(-0.548490\pi\)
−0.151746 + 0.988419i \(0.548490\pi\)
\(200\) 0 0
\(201\) 2.22452 0.156906
\(202\) 0 0
\(203\) 6.70623 0.470685
\(204\) 0 0
\(205\) 13.0814 0.913648
\(206\) 0 0
\(207\) −21.6259 −1.50311
\(208\) 0 0
\(209\) −0.303225 −0.0209745
\(210\) 0 0
\(211\) −16.4636 −1.13340 −0.566701 0.823923i \(-0.691781\pi\)
−0.566701 + 0.823923i \(0.691781\pi\)
\(212\) 0 0
\(213\) −0.506056 −0.0346744
\(214\) 0 0
\(215\) −7.49397 −0.511085
\(216\) 0 0
\(217\) −1.91004 −0.129662
\(218\) 0 0
\(219\) −2.59156 −0.175121
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 1.12024 0.0750169 0.0375085 0.999296i \(-0.488058\pi\)
0.0375085 + 0.999296i \(0.488058\pi\)
\(224\) 0 0
\(225\) 7.35590 0.490393
\(226\) 0 0
\(227\) 23.7935 1.57923 0.789617 0.613600i \(-0.210279\pi\)
0.789617 + 0.613600i \(0.210279\pi\)
\(228\) 0 0
\(229\) −1.54558 −0.102135 −0.0510673 0.998695i \(-0.516262\pi\)
−0.0510673 + 0.998695i \(0.516262\pi\)
\(230\) 0 0
\(231\) −0.614797 −0.0404507
\(232\) 0 0
\(233\) −10.6215 −0.695839 −0.347919 0.937524i \(-0.613112\pi\)
−0.347919 + 0.937524i \(0.613112\pi\)
\(234\) 0 0
\(235\) 9.33091 0.608681
\(236\) 0 0
\(237\) −1.91188 −0.124190
\(238\) 0 0
\(239\) 0.811352 0.0524820 0.0262410 0.999656i \(-0.491646\pi\)
0.0262410 + 0.999656i \(0.491646\pi\)
\(240\) 0 0
\(241\) −11.9045 −0.766838 −0.383419 0.923574i \(-0.625254\pi\)
−0.383419 + 0.923574i \(0.625254\pi\)
\(242\) 0 0
\(243\) −7.21500 −0.462843
\(244\) 0 0
\(245\) 1.57603 0.100689
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 1.64586 0.104302
\(250\) 0 0
\(251\) 1.47621 0.0931776 0.0465888 0.998914i \(-0.485165\pi\)
0.0465888 + 0.998914i \(0.485165\pi\)
\(252\) 0 0
\(253\) −16.4439 −1.03382
\(254\) 0 0
\(255\) −1.36872 −0.0857123
\(256\) 0 0
\(257\) −18.7557 −1.16995 −0.584976 0.811051i \(-0.698896\pi\)
−0.584976 + 0.811051i \(0.698896\pi\)
\(258\) 0 0
\(259\) 1.31429 0.0816659
\(260\) 0 0
\(261\) 19.6058 1.21357
\(262\) 0 0
\(263\) −4.85409 −0.299316 −0.149658 0.988738i \(-0.547817\pi\)
−0.149658 + 0.988738i \(0.547817\pi\)
\(264\) 0 0
\(265\) −2.51998 −0.154801
\(266\) 0 0
\(267\) −0.313534 −0.0191880
\(268\) 0 0
\(269\) 15.5091 0.945604 0.472802 0.881169i \(-0.343243\pi\)
0.472802 + 0.881169i \(0.343243\pi\)
\(270\) 0 0
\(271\) 14.1843 0.861637 0.430818 0.902439i \(-0.358225\pi\)
0.430818 + 0.902439i \(0.358225\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.59328 0.337288
\(276\) 0 0
\(277\) −28.7375 −1.72667 −0.863334 0.504633i \(-0.831628\pi\)
−0.863334 + 0.504633i \(0.831628\pi\)
\(278\) 0 0
\(279\) −5.58402 −0.334306
\(280\) 0 0
\(281\) −16.0016 −0.954573 −0.477286 0.878748i \(-0.658380\pi\)
−0.477286 + 0.878748i \(0.658380\pi\)
\(282\) 0 0
\(283\) −8.05297 −0.478700 −0.239350 0.970933i \(-0.576934\pi\)
−0.239350 + 0.970933i \(0.576934\pi\)
\(284\) 0 0
\(285\) −0.0594552 −0.00352182
\(286\) 0 0
\(287\) −8.30023 −0.489947
\(288\) 0 0
\(289\) −7.13940 −0.419965
\(290\) 0 0
\(291\) 2.78488 0.163253
\(292\) 0 0
\(293\) 23.1051 1.34982 0.674908 0.737902i \(-0.264183\pi\)
0.674908 + 0.737902i \(0.264183\pi\)
\(294\) 0 0
\(295\) −15.4921 −0.901987
\(296\) 0 0
\(297\) −3.64176 −0.211316
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 4.75496 0.274071
\(302\) 0 0
\(303\) 0.318158 0.0182777
\(304\) 0 0
\(305\) −3.23884 −0.185455
\(306\) 0 0
\(307\) 4.92149 0.280884 0.140442 0.990089i \(-0.455148\pi\)
0.140442 + 0.990089i \(0.455148\pi\)
\(308\) 0 0
\(309\) −5.06945 −0.288391
\(310\) 0 0
\(311\) −4.37793 −0.248250 −0.124125 0.992267i \(-0.539612\pi\)
−0.124125 + 0.992267i \(0.539612\pi\)
\(312\) 0 0
\(313\) −20.2804 −1.14631 −0.573157 0.819445i \(-0.694282\pi\)
−0.573157 + 0.819445i \(0.694282\pi\)
\(314\) 0 0
\(315\) 4.60755 0.259606
\(316\) 0 0
\(317\) −5.44830 −0.306007 −0.153004 0.988226i \(-0.548895\pi\)
−0.153004 + 0.988226i \(0.548895\pi\)
\(318\) 0 0
\(319\) 14.9078 0.834679
\(320\) 0 0
\(321\) 4.05468 0.226310
\(322\) 0 0
\(323\) 0.428332 0.0238330
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0.0842180 0.00465727
\(328\) 0 0
\(329\) −5.92050 −0.326408
\(330\) 0 0
\(331\) −33.8099 −1.85836 −0.929181 0.369626i \(-0.879486\pi\)
−0.929181 + 0.369626i \(0.879486\pi\)
\(332\) 0 0
\(333\) 3.84234 0.210559
\(334\) 0 0
\(335\) −12.6767 −0.692603
\(336\) 0 0
\(337\) −30.6901 −1.67180 −0.835899 0.548883i \(-0.815053\pi\)
−0.835899 + 0.548883i \(0.815053\pi\)
\(338\) 0 0
\(339\) 3.74304 0.203294
\(340\) 0 0
\(341\) −4.24598 −0.229933
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −3.22427 −0.173589
\(346\) 0 0
\(347\) −21.5291 −1.15575 −0.577873 0.816127i \(-0.696117\pi\)
−0.577873 + 0.816127i \(0.696117\pi\)
\(348\) 0 0
\(349\) 25.0583 1.34134 0.670671 0.741755i \(-0.266006\pi\)
0.670671 + 0.741755i \(0.266006\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7.35237 0.391327 0.195664 0.980671i \(-0.437314\pi\)
0.195664 + 0.980671i \(0.437314\pi\)
\(354\) 0 0
\(355\) 2.88382 0.153057
\(356\) 0 0
\(357\) 0.868455 0.0459635
\(358\) 0 0
\(359\) 24.7243 1.30490 0.652449 0.757833i \(-0.273742\pi\)
0.652449 + 0.757833i \(0.273742\pi\)
\(360\) 0 0
\(361\) −18.9814 −0.999021
\(362\) 0 0
\(363\) 1.67552 0.0879421
\(364\) 0 0
\(365\) 14.7683 0.773009
\(366\) 0 0
\(367\) −20.8860 −1.09024 −0.545121 0.838357i \(-0.683516\pi\)
−0.545121 + 0.838357i \(0.683516\pi\)
\(368\) 0 0
\(369\) −24.2658 −1.26323
\(370\) 0 0
\(371\) 1.59894 0.0830128
\(372\) 0 0
\(373\) 37.1443 1.92326 0.961630 0.274351i \(-0.0884629\pi\)
0.961630 + 0.274351i \(0.0884629\pi\)
\(374\) 0 0
\(375\) 3.27608 0.169176
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −5.08176 −0.261033 −0.130516 0.991446i \(-0.541663\pi\)
−0.130516 + 0.991446i \(0.541663\pi\)
\(380\) 0 0
\(381\) −0.0754740 −0.00386665
\(382\) 0 0
\(383\) −30.3874 −1.55272 −0.776361 0.630288i \(-0.782937\pi\)
−0.776361 + 0.630288i \(0.782937\pi\)
\(384\) 0 0
\(385\) 3.50350 0.178555
\(386\) 0 0
\(387\) 13.9012 0.706636
\(388\) 0 0
\(389\) 10.3158 0.523032 0.261516 0.965199i \(-0.415778\pi\)
0.261516 + 0.965199i \(0.415778\pi\)
\(390\) 0 0
\(391\) 23.2285 1.17472
\(392\) 0 0
\(393\) −3.08451 −0.155593
\(394\) 0 0
\(395\) 10.8951 0.548191
\(396\) 0 0
\(397\) −14.2274 −0.714054 −0.357027 0.934094i \(-0.616210\pi\)
−0.357027 + 0.934094i \(0.616210\pi\)
\(398\) 0 0
\(399\) 0.0377246 0.00188859
\(400\) 0 0
\(401\) 13.0172 0.650046 0.325023 0.945706i \(-0.394628\pi\)
0.325023 + 0.945706i \(0.394628\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 13.1086 0.651372
\(406\) 0 0
\(407\) 2.92164 0.144820
\(408\) 0 0
\(409\) −3.49856 −0.172993 −0.0864963 0.996252i \(-0.527567\pi\)
−0.0864963 + 0.996252i \(0.527567\pi\)
\(410\) 0 0
\(411\) 5.14763 0.253914
\(412\) 0 0
\(413\) 9.82982 0.483694
\(414\) 0 0
\(415\) −9.37911 −0.460402
\(416\) 0 0
\(417\) −4.52393 −0.221538
\(418\) 0 0
\(419\) −5.06349 −0.247368 −0.123684 0.992322i \(-0.539471\pi\)
−0.123684 + 0.992322i \(0.539471\pi\)
\(420\) 0 0
\(421\) 3.98914 0.194419 0.0972095 0.995264i \(-0.469008\pi\)
0.0972095 + 0.995264i \(0.469008\pi\)
\(422\) 0 0
\(423\) −17.3087 −0.841575
\(424\) 0 0
\(425\) −7.90101 −0.383255
\(426\) 0 0
\(427\) 2.05506 0.0994512
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 29.2322 1.40806 0.704032 0.710169i \(-0.251381\pi\)
0.704032 + 0.710169i \(0.251381\pi\)
\(432\) 0 0
\(433\) 19.1666 0.921089 0.460545 0.887637i \(-0.347654\pi\)
0.460545 + 0.887637i \(0.347654\pi\)
\(434\) 0 0
\(435\) 2.92308 0.140151
\(436\) 0 0
\(437\) 1.00902 0.0482678
\(438\) 0 0
\(439\) 3.86109 0.184280 0.0921398 0.995746i \(-0.470629\pi\)
0.0921398 + 0.995746i \(0.470629\pi\)
\(440\) 0 0
\(441\) −2.92351 −0.139215
\(442\) 0 0
\(443\) 12.5435 0.595958 0.297979 0.954572i \(-0.403688\pi\)
0.297979 + 0.954572i \(0.403688\pi\)
\(444\) 0 0
\(445\) 1.78671 0.0846982
\(446\) 0 0
\(447\) 2.68930 0.127199
\(448\) 0 0
\(449\) −12.7738 −0.602833 −0.301416 0.953493i \(-0.597459\pi\)
−0.301416 + 0.953493i \(0.597459\pi\)
\(450\) 0 0
\(451\) −18.4513 −0.868836
\(452\) 0 0
\(453\) 1.27794 0.0600427
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 15.7198 0.735340 0.367670 0.929956i \(-0.380156\pi\)
0.367670 + 0.929956i \(0.380156\pi\)
\(458\) 0 0
\(459\) 5.14431 0.240116
\(460\) 0 0
\(461\) −11.5691 −0.538824 −0.269412 0.963025i \(-0.586829\pi\)
−0.269412 + 0.963025i \(0.586829\pi\)
\(462\) 0 0
\(463\) 2.10201 0.0976887 0.0488444 0.998806i \(-0.484446\pi\)
0.0488444 + 0.998806i \(0.484446\pi\)
\(464\) 0 0
\(465\) −0.832536 −0.0386080
\(466\) 0 0
\(467\) 23.7277 1.09799 0.548994 0.835826i \(-0.315011\pi\)
0.548994 + 0.835826i \(0.315011\pi\)
\(468\) 0 0
\(469\) 8.04343 0.371411
\(470\) 0 0
\(471\) 2.93943 0.135442
\(472\) 0 0
\(473\) 10.5702 0.486018
\(474\) 0 0
\(475\) −0.343210 −0.0157475
\(476\) 0 0
\(477\) 4.67452 0.214032
\(478\) 0 0
\(479\) 37.5392 1.71521 0.857605 0.514310i \(-0.171952\pi\)
0.857605 + 0.514310i \(0.171952\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 2.04581 0.0930876
\(484\) 0 0
\(485\) −15.8700 −0.720619
\(486\) 0 0
\(487\) 34.1880 1.54921 0.774603 0.632447i \(-0.217949\pi\)
0.774603 + 0.632447i \(0.217949\pi\)
\(488\) 0 0
\(489\) −0.271286 −0.0122680
\(490\) 0 0
\(491\) 9.61356 0.433854 0.216927 0.976188i \(-0.430397\pi\)
0.216927 + 0.976188i \(0.430397\pi\)
\(492\) 0 0
\(493\) −21.0586 −0.948434
\(494\) 0 0
\(495\) 10.2425 0.460367
\(496\) 0 0
\(497\) −1.82979 −0.0820775
\(498\) 0 0
\(499\) 14.4923 0.648766 0.324383 0.945926i \(-0.394843\pi\)
0.324383 + 0.945926i \(0.394843\pi\)
\(500\) 0 0
\(501\) −3.46208 −0.154674
\(502\) 0 0
\(503\) −26.2264 −1.16938 −0.584689 0.811258i \(-0.698783\pi\)
−0.584689 + 0.811258i \(0.698783\pi\)
\(504\) 0 0
\(505\) −1.81306 −0.0806802
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −24.4554 −1.08397 −0.541984 0.840389i \(-0.682327\pi\)
−0.541984 + 0.840389i \(0.682327\pi\)
\(510\) 0 0
\(511\) −9.37056 −0.414529
\(512\) 0 0
\(513\) 0.223462 0.00986609
\(514\) 0 0
\(515\) 28.8889 1.27300
\(516\) 0 0
\(517\) −13.1612 −0.578827
\(518\) 0 0
\(519\) 4.23108 0.185724
\(520\) 0 0
\(521\) 24.7193 1.08297 0.541486 0.840710i \(-0.317862\pi\)
0.541486 + 0.840710i \(0.317862\pi\)
\(522\) 0 0
\(523\) −32.7879 −1.43372 −0.716858 0.697219i \(-0.754421\pi\)
−0.716858 + 0.697219i \(0.754421\pi\)
\(524\) 0 0
\(525\) −0.695868 −0.0303702
\(526\) 0 0
\(527\) 5.99782 0.261269
\(528\) 0 0
\(529\) 31.7192 1.37910
\(530\) 0 0
\(531\) 28.7376 1.24711
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −23.1061 −0.998962
\(536\) 0 0
\(537\) 3.97378 0.171481
\(538\) 0 0
\(539\) −2.22298 −0.0957506
\(540\) 0 0
\(541\) 16.4928 0.709081 0.354541 0.935041i \(-0.384637\pi\)
0.354541 + 0.935041i \(0.384637\pi\)
\(542\) 0 0
\(543\) 5.26661 0.226012
\(544\) 0 0
\(545\) −0.479926 −0.0205578
\(546\) 0 0
\(547\) −42.3299 −1.80990 −0.904948 0.425522i \(-0.860091\pi\)
−0.904948 + 0.425522i \(0.860091\pi\)
\(548\) 0 0
\(549\) 6.00798 0.256415
\(550\) 0 0
\(551\) −0.914761 −0.0389701
\(552\) 0 0
\(553\) −6.91298 −0.293970
\(554\) 0 0
\(555\) 0.572865 0.0243168
\(556\) 0 0
\(557\) 2.18577 0.0926142 0.0463071 0.998927i \(-0.485255\pi\)
0.0463071 + 0.998927i \(0.485255\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 1.93056 0.0815083
\(562\) 0 0
\(563\) 12.9619 0.546281 0.273140 0.961974i \(-0.411938\pi\)
0.273140 + 0.961974i \(0.411938\pi\)
\(564\) 0 0
\(565\) −21.3302 −0.897367
\(566\) 0 0
\(567\) −8.31746 −0.349301
\(568\) 0 0
\(569\) −21.4158 −0.897798 −0.448899 0.893583i \(-0.648184\pi\)
−0.448899 + 0.893583i \(0.648184\pi\)
\(570\) 0 0
\(571\) −22.1427 −0.926644 −0.463322 0.886190i \(-0.653343\pi\)
−0.463322 + 0.886190i \(0.653343\pi\)
\(572\) 0 0
\(573\) 6.44353 0.269182
\(574\) 0 0
\(575\) −18.6123 −0.776188
\(576\) 0 0
\(577\) 14.2201 0.591989 0.295995 0.955190i \(-0.404349\pi\)
0.295995 + 0.955190i \(0.404349\pi\)
\(578\) 0 0
\(579\) −7.18879 −0.298756
\(580\) 0 0
\(581\) 5.95108 0.246893
\(582\) 0 0
\(583\) 3.55441 0.147209
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −34.9528 −1.44266 −0.721329 0.692593i \(-0.756468\pi\)
−0.721329 + 0.692593i \(0.756468\pi\)
\(588\) 0 0
\(589\) 0.260538 0.0107353
\(590\) 0 0
\(591\) 3.58086 0.147297
\(592\) 0 0
\(593\) −39.1300 −1.60688 −0.803438 0.595389i \(-0.796998\pi\)
−0.803438 + 0.595389i \(0.796998\pi\)
\(594\) 0 0
\(595\) −4.94900 −0.202889
\(596\) 0 0
\(597\) 1.18405 0.0484600
\(598\) 0 0
\(599\) 13.8757 0.566946 0.283473 0.958980i \(-0.408513\pi\)
0.283473 + 0.958980i \(0.408513\pi\)
\(600\) 0 0
\(601\) −17.8128 −0.726598 −0.363299 0.931673i \(-0.618350\pi\)
−0.363299 + 0.931673i \(0.618350\pi\)
\(602\) 0 0
\(603\) 23.5151 0.957607
\(604\) 0 0
\(605\) −9.54817 −0.388188
\(606\) 0 0
\(607\) 31.0141 1.25882 0.629411 0.777072i \(-0.283296\pi\)
0.629411 + 0.777072i \(0.283296\pi\)
\(608\) 0 0
\(609\) −1.85470 −0.0751564
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −21.3918 −0.864005 −0.432003 0.901872i \(-0.642193\pi\)
−0.432003 + 0.901872i \(0.642193\pi\)
\(614\) 0 0
\(615\) −3.61786 −0.145886
\(616\) 0 0
\(617\) −29.8127 −1.20021 −0.600107 0.799919i \(-0.704875\pi\)
−0.600107 + 0.799919i \(0.704875\pi\)
\(618\) 0 0
\(619\) 31.0495 1.24799 0.623993 0.781430i \(-0.285510\pi\)
0.623993 + 0.781430i \(0.285510\pi\)
\(620\) 0 0
\(621\) 12.1184 0.486294
\(622\) 0 0
\(623\) −1.13368 −0.0454197
\(624\) 0 0
\(625\) −6.08857 −0.243543
\(626\) 0 0
\(627\) 0.0838611 0.00334909
\(628\) 0 0
\(629\) −4.12708 −0.164557
\(630\) 0 0
\(631\) −9.26400 −0.368794 −0.184397 0.982852i \(-0.559033\pi\)
−0.184397 + 0.982852i \(0.559033\pi\)
\(632\) 0 0
\(633\) 4.55325 0.180975
\(634\) 0 0
\(635\) 0.430098 0.0170679
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −5.34943 −0.211620
\(640\) 0 0
\(641\) 7.77540 0.307110 0.153555 0.988140i \(-0.450928\pi\)
0.153555 + 0.988140i \(0.450928\pi\)
\(642\) 0 0
\(643\) 33.1937 1.30903 0.654516 0.756048i \(-0.272873\pi\)
0.654516 + 0.756048i \(0.272873\pi\)
\(644\) 0 0
\(645\) 2.07256 0.0816071
\(646\) 0 0
\(647\) −35.6197 −1.40036 −0.700178 0.713968i \(-0.746896\pi\)
−0.700178 + 0.713968i \(0.746896\pi\)
\(648\) 0 0
\(649\) 21.8515 0.857747
\(650\) 0 0
\(651\) 0.528248 0.0207037
\(652\) 0 0
\(653\) 7.15438 0.279972 0.139986 0.990153i \(-0.455294\pi\)
0.139986 + 0.990153i \(0.455294\pi\)
\(654\) 0 0
\(655\) 17.5775 0.686809
\(656\) 0 0
\(657\) −27.3950 −1.06878
\(658\) 0 0
\(659\) −16.7681 −0.653194 −0.326597 0.945164i \(-0.605902\pi\)
−0.326597 + 0.945164i \(0.605902\pi\)
\(660\) 0 0
\(661\) −28.5287 −1.10964 −0.554819 0.831971i \(-0.687213\pi\)
−0.554819 + 0.831971i \(0.687213\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.214978 −0.00833650
\(666\) 0 0
\(667\) −49.6076 −1.92082
\(668\) 0 0
\(669\) −0.309819 −0.0119783
\(670\) 0 0
\(671\) 4.56835 0.176359
\(672\) 0 0
\(673\) −38.4895 −1.48366 −0.741830 0.670588i \(-0.766042\pi\)
−0.741830 + 0.670588i \(0.766042\pi\)
\(674\) 0 0
\(675\) −4.12198 −0.158655
\(676\) 0 0
\(677\) −3.30956 −0.127197 −0.0635983 0.997976i \(-0.520258\pi\)
−0.0635983 + 0.997976i \(0.520258\pi\)
\(678\) 0 0
\(679\) 10.0696 0.386435
\(680\) 0 0
\(681\) −6.58044 −0.252163
\(682\) 0 0
\(683\) 26.4438 1.01184 0.505921 0.862580i \(-0.331153\pi\)
0.505921 + 0.862580i \(0.331153\pi\)
\(684\) 0 0
\(685\) −29.3344 −1.12081
\(686\) 0 0
\(687\) 0.427451 0.0163083
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 6.39755 0.243374 0.121687 0.992569i \(-0.461170\pi\)
0.121687 + 0.992569i \(0.461170\pi\)
\(692\) 0 0
\(693\) −6.49892 −0.246873
\(694\) 0 0
\(695\) 25.7802 0.977898
\(696\) 0 0
\(697\) 26.0641 0.987246
\(698\) 0 0
\(699\) 2.93753 0.111108
\(700\) 0 0
\(701\) −5.58236 −0.210843 −0.105421 0.994428i \(-0.533619\pi\)
−0.105421 + 0.994428i \(0.533619\pi\)
\(702\) 0 0
\(703\) −0.179275 −0.00676148
\(704\) 0 0
\(705\) −2.58059 −0.0971908
\(706\) 0 0
\(707\) 1.15040 0.0432651
\(708\) 0 0
\(709\) −44.5771 −1.67413 −0.837064 0.547105i \(-0.815730\pi\)
−0.837064 + 0.547105i \(0.815730\pi\)
\(710\) 0 0
\(711\) −20.2102 −0.757941
\(712\) 0 0
\(713\) 14.1290 0.529136
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −0.224391 −0.00838003
\(718\) 0 0
\(719\) 29.3603 1.09495 0.547477 0.836821i \(-0.315588\pi\)
0.547477 + 0.836821i \(0.315588\pi\)
\(720\) 0 0
\(721\) −18.3301 −0.682649
\(722\) 0 0
\(723\) 3.29237 0.122444
\(724\) 0 0
\(725\) 16.8737 0.626672
\(726\) 0 0
\(727\) 39.9756 1.48261 0.741307 0.671166i \(-0.234206\pi\)
0.741307 + 0.671166i \(0.234206\pi\)
\(728\) 0 0
\(729\) −22.9570 −0.850258
\(730\) 0 0
\(731\) −14.9313 −0.552255
\(732\) 0 0
\(733\) −49.7640 −1.83807 −0.919037 0.394171i \(-0.871032\pi\)
−0.919037 + 0.394171i \(0.871032\pi\)
\(734\) 0 0
\(735\) −0.435874 −0.0160775
\(736\) 0 0
\(737\) 17.8804 0.658633
\(738\) 0 0
\(739\) 28.7646 1.05812 0.529061 0.848584i \(-0.322544\pi\)
0.529061 + 0.848584i \(0.322544\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −50.9933 −1.87076 −0.935381 0.353642i \(-0.884943\pi\)
−0.935381 + 0.353642i \(0.884943\pi\)
\(744\) 0 0
\(745\) −15.3253 −0.561475
\(746\) 0 0
\(747\) 17.3981 0.636562
\(748\) 0 0
\(749\) 14.6609 0.535697
\(750\) 0 0
\(751\) 8.24908 0.301013 0.150507 0.988609i \(-0.451910\pi\)
0.150507 + 0.988609i \(0.451910\pi\)
\(752\) 0 0
\(753\) −0.408267 −0.0148781
\(754\) 0 0
\(755\) −7.28247 −0.265036
\(756\) 0 0
\(757\) −24.9361 −0.906317 −0.453159 0.891430i \(-0.649703\pi\)
−0.453159 + 0.891430i \(0.649703\pi\)
\(758\) 0 0
\(759\) 4.54780 0.165075
\(760\) 0 0
\(761\) 31.4535 1.14019 0.570094 0.821579i \(-0.306907\pi\)
0.570094 + 0.821579i \(0.306907\pi\)
\(762\) 0 0
\(763\) 0.304515 0.0110242
\(764\) 0 0
\(765\) −14.4685 −0.523108
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 8.02969 0.289558 0.144779 0.989464i \(-0.453753\pi\)
0.144779 + 0.989464i \(0.453753\pi\)
\(770\) 0 0
\(771\) 5.18717 0.186811
\(772\) 0 0
\(773\) −6.14041 −0.220855 −0.110428 0.993884i \(-0.535222\pi\)
−0.110428 + 0.993884i \(0.535222\pi\)
\(774\) 0 0
\(775\) −4.80588 −0.172632
\(776\) 0 0
\(777\) −0.363485 −0.0130400
\(778\) 0 0
\(779\) 1.13219 0.0405649
\(780\) 0 0
\(781\) −4.06760 −0.145550
\(782\) 0 0
\(783\) −10.9864 −0.392620
\(784\) 0 0
\(785\) −16.7507 −0.597859
\(786\) 0 0
\(787\) 21.5467 0.768058 0.384029 0.923321i \(-0.374536\pi\)
0.384029 + 0.923321i \(0.374536\pi\)
\(788\) 0 0
\(789\) 1.34247 0.0477930
\(790\) 0 0
\(791\) 13.5341 0.481217
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0.696937 0.0247178
\(796\) 0 0
\(797\) −27.1682 −0.962348 −0.481174 0.876625i \(-0.659789\pi\)
−0.481174 + 0.876625i \(0.659789\pi\)
\(798\) 0 0
\(799\) 18.5913 0.657713
\(800\) 0 0
\(801\) −3.31431 −0.117106
\(802\) 0 0
\(803\) −20.8306 −0.735096
\(804\) 0 0
\(805\) −11.6583 −0.410901
\(806\) 0 0
\(807\) −4.28925 −0.150989
\(808\) 0 0
\(809\) −22.4138 −0.788026 −0.394013 0.919105i \(-0.628913\pi\)
−0.394013 + 0.919105i \(0.628913\pi\)
\(810\) 0 0
\(811\) −12.5372 −0.440242 −0.220121 0.975473i \(-0.570645\pi\)
−0.220121 + 0.975473i \(0.570645\pi\)
\(812\) 0 0
\(813\) −3.92288 −0.137581
\(814\) 0 0
\(815\) 1.54596 0.0541525
\(816\) 0 0
\(817\) −0.648598 −0.0226916
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 25.2933 0.882741 0.441370 0.897325i \(-0.354492\pi\)
0.441370 + 0.897325i \(0.354492\pi\)
\(822\) 0 0
\(823\) −22.1814 −0.773194 −0.386597 0.922249i \(-0.626350\pi\)
−0.386597 + 0.922249i \(0.626350\pi\)
\(824\) 0 0
\(825\) −1.54690 −0.0538562
\(826\) 0 0
\(827\) −25.9044 −0.900784 −0.450392 0.892831i \(-0.648716\pi\)
−0.450392 + 0.892831i \(0.648716\pi\)
\(828\) 0 0
\(829\) 41.3884 1.43748 0.718739 0.695280i \(-0.244720\pi\)
0.718739 + 0.695280i \(0.244720\pi\)
\(830\) 0 0
\(831\) 7.94776 0.275705
\(832\) 0 0
\(833\) 3.14016 0.108800
\(834\) 0 0
\(835\) 19.7291 0.682754
\(836\) 0 0
\(837\) 3.12908 0.108157
\(838\) 0 0
\(839\) −13.2374 −0.457006 −0.228503 0.973543i \(-0.573383\pi\)
−0.228503 + 0.973543i \(0.573383\pi\)
\(840\) 0 0
\(841\) 15.9736 0.550813
\(842\) 0 0
\(843\) 4.42545 0.152421
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 6.05835 0.208167
\(848\) 0 0
\(849\) 2.22716 0.0764361
\(850\) 0 0
\(851\) −9.72211 −0.333270
\(852\) 0 0
\(853\) 28.5605 0.977893 0.488946 0.872314i \(-0.337381\pi\)
0.488946 + 0.872314i \(0.337381\pi\)
\(854\) 0 0
\(855\) −0.628491 −0.0214940
\(856\) 0 0
\(857\) −17.0293 −0.581711 −0.290855 0.956767i \(-0.593940\pi\)
−0.290855 + 0.956767i \(0.593940\pi\)
\(858\) 0 0
\(859\) 7.70031 0.262731 0.131366 0.991334i \(-0.458064\pi\)
0.131366 + 0.991334i \(0.458064\pi\)
\(860\) 0 0
\(861\) 2.29555 0.0782320
\(862\) 0 0
\(863\) −47.5912 −1.62002 −0.810012 0.586413i \(-0.800540\pi\)
−0.810012 + 0.586413i \(0.800540\pi\)
\(864\) 0 0
\(865\) −24.1113 −0.819810
\(866\) 0 0
\(867\) 1.97450 0.0670576
\(868\) 0 0
\(869\) −15.3674 −0.521304
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 29.4385 0.996343
\(874\) 0 0
\(875\) 11.8457 0.400456
\(876\) 0 0
\(877\) 29.9394 1.01098 0.505491 0.862832i \(-0.331311\pi\)
0.505491 + 0.862832i \(0.331311\pi\)
\(878\) 0 0
\(879\) −6.39005 −0.215531
\(880\) 0 0
\(881\) 20.0812 0.676552 0.338276 0.941047i \(-0.390156\pi\)
0.338276 + 0.941047i \(0.390156\pi\)
\(882\) 0 0
\(883\) 12.3122 0.414339 0.207170 0.978305i \(-0.433575\pi\)
0.207170 + 0.978305i \(0.433575\pi\)
\(884\) 0 0
\(885\) 4.28457 0.144024
\(886\) 0 0
\(887\) −16.5630 −0.556130 −0.278065 0.960562i \(-0.589693\pi\)
−0.278065 + 0.960562i \(0.589693\pi\)
\(888\) 0 0
\(889\) −0.272899 −0.00915274
\(890\) 0 0
\(891\) −18.4896 −0.619424
\(892\) 0 0
\(893\) 0.807583 0.0270247
\(894\) 0 0
\(895\) −22.6451 −0.756941
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −12.8092 −0.427209
\(900\) 0 0
\(901\) −5.02093 −0.167271
\(902\) 0 0
\(903\) −1.31505 −0.0437621
\(904\) 0 0
\(905\) −30.0124 −0.997647
\(906\) 0 0
\(907\) 21.9305 0.728191 0.364095 0.931362i \(-0.381378\pi\)
0.364095 + 0.931362i \(0.381378\pi\)
\(908\) 0 0
\(909\) 3.36320 0.111550
\(910\) 0 0
\(911\) 25.1692 0.833894 0.416947 0.908931i \(-0.363100\pi\)
0.416947 + 0.908931i \(0.363100\pi\)
\(912\) 0 0
\(913\) 13.2292 0.437821
\(914\) 0 0
\(915\) 0.895747 0.0296125
\(916\) 0 0
\(917\) −11.1530 −0.368304
\(918\) 0 0
\(919\) −47.7606 −1.57548 −0.787738 0.616010i \(-0.788748\pi\)
−0.787738 + 0.616010i \(0.788748\pi\)
\(920\) 0 0
\(921\) −1.36111 −0.0448500
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 3.30690 0.108730
\(926\) 0 0
\(927\) −53.5883 −1.76007
\(928\) 0 0
\(929\) −58.3477 −1.91433 −0.957163 0.289551i \(-0.906494\pi\)
−0.957163 + 0.289551i \(0.906494\pi\)
\(930\) 0 0
\(931\) 0.136405 0.00447048
\(932\) 0 0
\(933\) 1.21078 0.0396391
\(934\) 0 0
\(935\) −11.0015 −0.359789
\(936\) 0 0
\(937\) −6.46313 −0.211141 −0.105571 0.994412i \(-0.533667\pi\)
−0.105571 + 0.994412i \(0.533667\pi\)
\(938\) 0 0
\(939\) 5.60882 0.183037
\(940\) 0 0
\(941\) 2.77909 0.0905957 0.0452979 0.998974i \(-0.485576\pi\)
0.0452979 + 0.998974i \(0.485576\pi\)
\(942\) 0 0
\(943\) 61.3988 1.99942
\(944\) 0 0
\(945\) −2.58191 −0.0839894
\(946\) 0 0
\(947\) 56.7044 1.84265 0.921323 0.388797i \(-0.127109\pi\)
0.921323 + 0.388797i \(0.127109\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 1.50680 0.0488615
\(952\) 0 0
\(953\) −8.27003 −0.267893 −0.133946 0.990989i \(-0.542765\pi\)
−0.133946 + 0.990989i \(0.542765\pi\)
\(954\) 0 0
\(955\) −36.7192 −1.18821
\(956\) 0 0
\(957\) −4.12297 −0.133277
\(958\) 0 0
\(959\) 18.6128 0.601039
\(960\) 0 0
\(961\) −27.3518 −0.882315
\(962\) 0 0
\(963\) 42.8613 1.38119
\(964\) 0 0
\(965\) 40.9662 1.31875
\(966\) 0 0
\(967\) −13.7191 −0.441176 −0.220588 0.975367i \(-0.570798\pi\)
−0.220588 + 0.975367i \(0.570798\pi\)
\(968\) 0 0
\(969\) −0.118461 −0.00380552
\(970\) 0 0
\(971\) −51.0197 −1.63730 −0.818651 0.574292i \(-0.805278\pi\)
−0.818651 + 0.574292i \(0.805278\pi\)
\(972\) 0 0
\(973\) −16.3576 −0.524401
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 32.3908 1.03627 0.518137 0.855297i \(-0.326626\pi\)
0.518137 + 0.855297i \(0.326626\pi\)
\(978\) 0 0
\(979\) −2.52014 −0.0805440
\(980\) 0 0
\(981\) 0.890254 0.0284236
\(982\) 0 0
\(983\) −7.96805 −0.254141 −0.127071 0.991894i \(-0.540557\pi\)
−0.127071 + 0.991894i \(0.540557\pi\)
\(984\) 0 0
\(985\) −20.4059 −0.650188
\(986\) 0 0
\(987\) 1.63740 0.0521189
\(988\) 0 0
\(989\) −35.1736 −1.11845
\(990\) 0 0
\(991\) −2.33295 −0.0741087 −0.0370543 0.999313i \(-0.511797\pi\)
−0.0370543 + 0.999313i \(0.511797\pi\)
\(992\) 0 0
\(993\) 9.35061 0.296733
\(994\) 0 0
\(995\) −6.74746 −0.213909
\(996\) 0 0
\(997\) −44.0418 −1.39482 −0.697409 0.716674i \(-0.745664\pi\)
−0.697409 + 0.716674i \(0.745664\pi\)
\(998\) 0 0
\(999\) −2.15311 −0.0681213
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9464.2.a.bf.1.3 6
13.2 odd 12 728.2.bm.b.225.4 12
13.7 odd 12 728.2.bm.b.673.4 yes 12
13.12 even 2 9464.2.a.bg.1.3 6
52.7 even 12 1456.2.cc.e.673.3 12
52.15 even 12 1456.2.cc.e.225.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.bm.b.225.4 12 13.2 odd 12
728.2.bm.b.673.4 yes 12 13.7 odd 12
1456.2.cc.e.225.3 12 52.15 even 12
1456.2.cc.e.673.3 12 52.7 even 12
9464.2.a.bf.1.3 6 1.1 even 1 trivial
9464.2.a.bg.1.3 6 13.12 even 2