Properties

Label 9464.2.a.ba.1.2
Level $9464$
Weight $2$
Character 9464.1
Self dual yes
Analytic conductor $75.570$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9464,2,Mod(1,9464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,1,0,0,0,-4,0,9,0,-1,0,0,0,4,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5704204729\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.183064.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 6x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 728)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.669601\) of defining polynomial
Character \(\chi\) \(=\) 9464.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.669601 q^{3} +4.30411 q^{5} -1.00000 q^{7} -2.55163 q^{9} +0.669601 q^{11} -2.88203 q^{15} +6.22124 q^{17} -6.30411 q^{19} +0.669601 q^{21} -5.63451 q^{23} +13.5253 q^{25} +3.71738 q^{27} -1.42207 q^{29} -4.09167 q^{31} -0.448365 q^{33} -4.30411 q^{35} -2.66960 q^{37} -7.05658 q^{41} -10.5253 q^{43} -10.9825 q^{45} -4.09167 q^{47} +1.00000 q^{49} -4.16574 q^{51} +5.42207 q^{53} +2.88203 q^{55} +4.22124 q^{57} +7.26901 q^{59} +2.28262 q^{61} +2.55163 q^{63} -2.21243 q^{67} +3.77287 q^{69} -5.56044 q^{71} -11.8557 q^{73} -9.05658 q^{75} -0.669601 q^{77} +0.312910 q^{79} +5.16574 q^{81} +3.03509 q^{83} +26.7769 q^{85} +0.952222 q^{87} -4.12076 q^{89} +2.73979 q^{93} -27.1336 q^{95} -7.43088 q^{97} -1.70858 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} - 4 q^{7} + 9 q^{9} - q^{11} + 4 q^{15} + 2 q^{17} - 8 q^{19} - q^{21} - 9 q^{23} + 14 q^{25} + 7 q^{27} - 4 q^{29} - 11 q^{31} - 21 q^{33} - 7 q^{37} - 13 q^{41} - 2 q^{43} - 12 q^{45} - 11 q^{47}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.669601 −0.386594 −0.193297 0.981140i \(-0.561918\pi\)
−0.193297 + 0.981140i \(0.561918\pi\)
\(4\) 0 0
\(5\) 4.30411 1.92486 0.962428 0.271538i \(-0.0875322\pi\)
0.962428 + 0.271538i \(0.0875322\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −2.55163 −0.850545
\(10\) 0 0
\(11\) 0.669601 0.201892 0.100946 0.994892i \(-0.467813\pi\)
0.100946 + 0.994892i \(0.467813\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −2.88203 −0.744138
\(16\) 0 0
\(17\) 6.22124 1.50887 0.754436 0.656374i \(-0.227911\pi\)
0.754436 + 0.656374i \(0.227911\pi\)
\(18\) 0 0
\(19\) −6.30411 −1.44626 −0.723131 0.690711i \(-0.757298\pi\)
−0.723131 + 0.690711i \(0.757298\pi\)
\(20\) 0 0
\(21\) 0.669601 0.146119
\(22\) 0 0
\(23\) −5.63451 −1.17488 −0.587438 0.809269i \(-0.699863\pi\)
−0.587438 + 0.809269i \(0.699863\pi\)
\(24\) 0 0
\(25\) 13.5253 2.70507
\(26\) 0 0
\(27\) 3.71738 0.715410
\(28\) 0 0
\(29\) −1.42207 −0.264072 −0.132036 0.991245i \(-0.542152\pi\)
−0.132036 + 0.991245i \(0.542152\pi\)
\(30\) 0 0
\(31\) −4.09167 −0.734886 −0.367443 0.930046i \(-0.619767\pi\)
−0.367443 + 0.930046i \(0.619767\pi\)
\(32\) 0 0
\(33\) −0.448365 −0.0780504
\(34\) 0 0
\(35\) −4.30411 −0.727527
\(36\) 0 0
\(37\) −2.66960 −0.438880 −0.219440 0.975626i \(-0.570423\pi\)
−0.219440 + 0.975626i \(0.570423\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.05658 −1.10205 −0.551026 0.834488i \(-0.685764\pi\)
−0.551026 + 0.834488i \(0.685764\pi\)
\(42\) 0 0
\(43\) −10.5253 −1.60510 −0.802550 0.596585i \(-0.796524\pi\)
−0.802550 + 0.596585i \(0.796524\pi\)
\(44\) 0 0
\(45\) −10.9825 −1.63718
\(46\) 0 0
\(47\) −4.09167 −0.596832 −0.298416 0.954436i \(-0.596458\pi\)
−0.298416 + 0.954436i \(0.596458\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −4.16574 −0.583321
\(52\) 0 0
\(53\) 5.42207 0.744779 0.372390 0.928077i \(-0.378539\pi\)
0.372390 + 0.928077i \(0.378539\pi\)
\(54\) 0 0
\(55\) 2.88203 0.388613
\(56\) 0 0
\(57\) 4.22124 0.559116
\(58\) 0 0
\(59\) 7.26901 0.946345 0.473172 0.880970i \(-0.343109\pi\)
0.473172 + 0.880970i \(0.343109\pi\)
\(60\) 0 0
\(61\) 2.28262 0.292260 0.146130 0.989265i \(-0.453318\pi\)
0.146130 + 0.989265i \(0.453318\pi\)
\(62\) 0 0
\(63\) 2.55163 0.321476
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −2.21243 −0.270292 −0.135146 0.990826i \(-0.543150\pi\)
−0.135146 + 0.990826i \(0.543150\pi\)
\(68\) 0 0
\(69\) 3.77287 0.454200
\(70\) 0 0
\(71\) −5.56044 −0.659902 −0.329951 0.943998i \(-0.607032\pi\)
−0.329951 + 0.943998i \(0.607032\pi\)
\(72\) 0 0
\(73\) −11.8557 −1.38761 −0.693805 0.720163i \(-0.744067\pi\)
−0.693805 + 0.720163i \(0.744067\pi\)
\(74\) 0 0
\(75\) −9.05658 −1.04576
\(76\) 0 0
\(77\) −0.669601 −0.0763081
\(78\) 0 0
\(79\) 0.312910 0.0352051 0.0176026 0.999845i \(-0.494397\pi\)
0.0176026 + 0.999845i \(0.494397\pi\)
\(80\) 0 0
\(81\) 5.16574 0.573972
\(82\) 0 0
\(83\) 3.03509 0.333145 0.166572 0.986029i \(-0.446730\pi\)
0.166572 + 0.986029i \(0.446730\pi\)
\(84\) 0 0
\(85\) 26.7769 2.90436
\(86\) 0 0
\(87\) 0.952222 0.102089
\(88\) 0 0
\(89\) −4.12076 −0.436800 −0.218400 0.975859i \(-0.570084\pi\)
−0.218400 + 0.975859i \(0.570084\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 2.73979 0.284103
\(94\) 0 0
\(95\) −27.1336 −2.78384
\(96\) 0 0
\(97\) −7.43088 −0.754491 −0.377246 0.926113i \(-0.623129\pi\)
−0.377246 + 0.926113i \(0.623129\pi\)
\(98\) 0 0
\(99\) −1.70858 −0.171718
\(100\) 0 0
\(101\) −11.0945 −1.10394 −0.551970 0.833864i \(-0.686124\pi\)
−0.551970 + 0.833864i \(0.686124\pi\)
\(102\) 0 0
\(103\) −4.42487 −0.435995 −0.217998 0.975949i \(-0.569952\pi\)
−0.217998 + 0.975949i \(0.569952\pi\)
\(104\) 0 0
\(105\) 2.88203 0.281258
\(106\) 0 0
\(107\) −16.6082 −1.60558 −0.802788 0.596264i \(-0.796651\pi\)
−0.802788 + 0.596264i \(0.796651\pi\)
\(108\) 0 0
\(109\) 1.79637 0.172061 0.0860305 0.996293i \(-0.472582\pi\)
0.0860305 + 0.996293i \(0.472582\pi\)
\(110\) 0 0
\(111\) 1.78757 0.169668
\(112\) 0 0
\(113\) 7.63451 0.718194 0.359097 0.933300i \(-0.383085\pi\)
0.359097 + 0.933300i \(0.383085\pi\)
\(114\) 0 0
\(115\) −24.2515 −2.26147
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.22124 −0.570300
\(120\) 0 0
\(121\) −10.5516 −0.959240
\(122\) 0 0
\(123\) 4.72509 0.426047
\(124\) 0 0
\(125\) 36.6940 3.28201
\(126\) 0 0
\(127\) 20.3432 1.80517 0.902584 0.430515i \(-0.141668\pi\)
0.902584 + 0.430515i \(0.141668\pi\)
\(128\) 0 0
\(129\) 7.04778 0.620522
\(130\) 0 0
\(131\) 21.6589 1.89235 0.946174 0.323660i \(-0.104913\pi\)
0.946174 + 0.323660i \(0.104913\pi\)
\(132\) 0 0
\(133\) 6.30411 0.546635
\(134\) 0 0
\(135\) 16.0000 1.37706
\(136\) 0 0
\(137\) −8.71629 −0.744683 −0.372341 0.928096i \(-0.621445\pi\)
−0.372341 + 0.928096i \(0.621445\pi\)
\(138\) 0 0
\(139\) 12.6461 1.07263 0.536314 0.844018i \(-0.319816\pi\)
0.536314 + 0.844018i \(0.319816\pi\)
\(140\) 0 0
\(141\) 2.73979 0.230732
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −6.12076 −0.508301
\(146\) 0 0
\(147\) −0.669601 −0.0552277
\(148\) 0 0
\(149\) −15.7203 −1.28786 −0.643928 0.765086i \(-0.722696\pi\)
−0.643928 + 0.765086i \(0.722696\pi\)
\(150\) 0 0
\(151\) −2.88203 −0.234537 −0.117268 0.993100i \(-0.537414\pi\)
−0.117268 + 0.993100i \(0.537414\pi\)
\(152\) 0 0
\(153\) −15.8743 −1.28336
\(154\) 0 0
\(155\) −17.6110 −1.41455
\(156\) 0 0
\(157\) −17.0419 −1.36009 −0.680045 0.733170i \(-0.738040\pi\)
−0.680045 + 0.733170i \(0.738040\pi\)
\(158\) 0 0
\(159\) −3.63062 −0.287927
\(160\) 0 0
\(161\) 5.63451 0.444061
\(162\) 0 0
\(163\) −15.4524 −1.21032 −0.605161 0.796103i \(-0.706891\pi\)
−0.605161 + 0.796103i \(0.706891\pi\)
\(164\) 0 0
\(165\) −1.92981 −0.150236
\(166\) 0 0
\(167\) 22.0156 1.70362 0.851809 0.523853i \(-0.175506\pi\)
0.851809 + 0.523853i \(0.175506\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 16.0858 1.23011
\(172\) 0 0
\(173\) 12.3344 0.937767 0.468883 0.883260i \(-0.344656\pi\)
0.468883 + 0.883260i \(0.344656\pi\)
\(174\) 0 0
\(175\) −13.5253 −1.02242
\(176\) 0 0
\(177\) −4.86734 −0.365851
\(178\) 0 0
\(179\) −0.743671 −0.0555845 −0.0277923 0.999614i \(-0.508848\pi\)
−0.0277923 + 0.999614i \(0.508848\pi\)
\(180\) 0 0
\(181\) −13.7729 −1.02373 −0.511865 0.859066i \(-0.671045\pi\)
−0.511865 + 0.859066i \(0.671045\pi\)
\(182\) 0 0
\(183\) −1.52844 −0.112986
\(184\) 0 0
\(185\) −11.4902 −0.844780
\(186\) 0 0
\(187\) 4.16574 0.304629
\(188\) 0 0
\(189\) −3.71738 −0.270400
\(190\) 0 0
\(191\) −17.5983 −1.27337 −0.636685 0.771124i \(-0.719695\pi\)
−0.636685 + 0.771124i \(0.719695\pi\)
\(192\) 0 0
\(193\) −8.66080 −0.623418 −0.311709 0.950178i \(-0.600901\pi\)
−0.311709 + 0.950178i \(0.600901\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −21.6122 −1.53981 −0.769903 0.638161i \(-0.779696\pi\)
−0.769903 + 0.638161i \(0.779696\pi\)
\(198\) 0 0
\(199\) −4.40458 −0.312233 −0.156116 0.987739i \(-0.549897\pi\)
−0.156116 + 0.987739i \(0.549897\pi\)
\(200\) 0 0
\(201\) 1.48145 0.104493
\(202\) 0 0
\(203\) 1.42207 0.0998100
\(204\) 0 0
\(205\) −30.3723 −2.12129
\(206\) 0 0
\(207\) 14.3772 0.999285
\(208\) 0 0
\(209\) −4.22124 −0.291989
\(210\) 0 0
\(211\) −13.7944 −0.949643 −0.474821 0.880082i \(-0.657487\pi\)
−0.474821 + 0.880082i \(0.657487\pi\)
\(212\) 0 0
\(213\) 3.72327 0.255114
\(214\) 0 0
\(215\) −45.3022 −3.08959
\(216\) 0 0
\(217\) 4.09167 0.277761
\(218\) 0 0
\(219\) 7.93861 0.536442
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 27.5146 1.84252 0.921258 0.388951i \(-0.127162\pi\)
0.921258 + 0.388951i \(0.127162\pi\)
\(224\) 0 0
\(225\) −34.5117 −2.30078
\(226\) 0 0
\(227\) −20.4425 −1.35681 −0.678407 0.734686i \(-0.737329\pi\)
−0.678407 + 0.734686i \(0.737329\pi\)
\(228\) 0 0
\(229\) 13.7115 0.906080 0.453040 0.891490i \(-0.350339\pi\)
0.453040 + 0.891490i \(0.350339\pi\)
\(230\) 0 0
\(231\) 0.448365 0.0295003
\(232\) 0 0
\(233\) 0.531237 0.0348025 0.0174013 0.999849i \(-0.494461\pi\)
0.0174013 + 0.999849i \(0.494461\pi\)
\(234\) 0 0
\(235\) −17.6110 −1.14882
\(236\) 0 0
\(237\) −0.209525 −0.0136101
\(238\) 0 0
\(239\) −2.55563 −0.165310 −0.0826551 0.996578i \(-0.526340\pi\)
−0.0826551 + 0.996578i \(0.526340\pi\)
\(240\) 0 0
\(241\) 8.48746 0.546725 0.273363 0.961911i \(-0.411864\pi\)
0.273363 + 0.961911i \(0.411864\pi\)
\(242\) 0 0
\(243\) −14.6111 −0.937304
\(244\) 0 0
\(245\) 4.30411 0.274979
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −2.03230 −0.128792
\(250\) 0 0
\(251\) −6.73979 −0.425412 −0.212706 0.977116i \(-0.568228\pi\)
−0.212706 + 0.977116i \(0.568228\pi\)
\(252\) 0 0
\(253\) −3.77287 −0.237198
\(254\) 0 0
\(255\) −17.9298 −1.12281
\(256\) 0 0
\(257\) −3.37709 −0.210657 −0.105328 0.994437i \(-0.533589\pi\)
−0.105328 + 0.994437i \(0.533589\pi\)
\(258\) 0 0
\(259\) 2.66960 0.165881
\(260\) 0 0
\(261\) 3.62861 0.224605
\(262\) 0 0
\(263\) −18.7263 −1.15471 −0.577356 0.816492i \(-0.695916\pi\)
−0.577356 + 0.816492i \(0.695916\pi\)
\(264\) 0 0
\(265\) 23.3372 1.43359
\(266\) 0 0
\(267\) 2.75926 0.168864
\(268\) 0 0
\(269\) 29.4289 1.79431 0.897155 0.441716i \(-0.145630\pi\)
0.897155 + 0.441716i \(0.145630\pi\)
\(270\) 0 0
\(271\) −0.707487 −0.0429768 −0.0214884 0.999769i \(-0.506840\pi\)
−0.0214884 + 0.999769i \(0.506840\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 9.05658 0.546132
\(276\) 0 0
\(277\) 18.2136 1.09435 0.547176 0.837018i \(-0.315703\pi\)
0.547176 + 0.837018i \(0.315703\pi\)
\(278\) 0 0
\(279\) 10.4405 0.625054
\(280\) 0 0
\(281\) −26.1161 −1.55795 −0.778977 0.627052i \(-0.784261\pi\)
−0.778977 + 0.627052i \(0.784261\pi\)
\(282\) 0 0
\(283\) 31.2631 1.85840 0.929200 0.369578i \(-0.120498\pi\)
0.929200 + 0.369578i \(0.120498\pi\)
\(284\) 0 0
\(285\) 18.1687 1.07622
\(286\) 0 0
\(287\) 7.05658 0.416537
\(288\) 0 0
\(289\) 21.7038 1.27669
\(290\) 0 0
\(291\) 4.97572 0.291682
\(292\) 0 0
\(293\) −24.6238 −1.43854 −0.719269 0.694732i \(-0.755523\pi\)
−0.719269 + 0.694732i \(0.755523\pi\)
\(294\) 0 0
\(295\) 31.2866 1.82158
\(296\) 0 0
\(297\) 2.48916 0.144436
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 10.5253 0.606671
\(302\) 0 0
\(303\) 7.42886 0.426777
\(304\) 0 0
\(305\) 9.82465 0.562558
\(306\) 0 0
\(307\) −31.6433 −1.80598 −0.902990 0.429663i \(-0.858633\pi\)
−0.902990 + 0.429663i \(0.858633\pi\)
\(308\) 0 0
\(309\) 2.96289 0.168553
\(310\) 0 0
\(311\) −18.3520 −1.04065 −0.520323 0.853969i \(-0.674189\pi\)
−0.520323 + 0.853969i \(0.674189\pi\)
\(312\) 0 0
\(313\) 8.71629 0.492674 0.246337 0.969184i \(-0.420773\pi\)
0.246337 + 0.969184i \(0.420773\pi\)
\(314\) 0 0
\(315\) 10.9825 0.618794
\(316\) 0 0
\(317\) 13.1268 0.737273 0.368636 0.929574i \(-0.379825\pi\)
0.368636 + 0.929574i \(0.379825\pi\)
\(318\) 0 0
\(319\) −0.952222 −0.0533142
\(320\) 0 0
\(321\) 11.1209 0.620707
\(322\) 0 0
\(323\) −39.2193 −2.18222
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1.20285 −0.0665178
\(328\) 0 0
\(329\) 4.09167 0.225581
\(330\) 0 0
\(331\) 9.23993 0.507872 0.253936 0.967221i \(-0.418275\pi\)
0.253936 + 0.967221i \(0.418275\pi\)
\(332\) 0 0
\(333\) 6.81185 0.373287
\(334\) 0 0
\(335\) −9.52255 −0.520273
\(336\) 0 0
\(337\) 19.1626 1.04386 0.521928 0.852990i \(-0.325213\pi\)
0.521928 + 0.852990i \(0.325213\pi\)
\(338\) 0 0
\(339\) −5.11207 −0.277650
\(340\) 0 0
\(341\) −2.73979 −0.148368
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 16.2388 0.874270
\(346\) 0 0
\(347\) 10.5380 0.565711 0.282855 0.959163i \(-0.408718\pi\)
0.282855 + 0.959163i \(0.408718\pi\)
\(348\) 0 0
\(349\) 2.55764 0.136908 0.0684538 0.997654i \(-0.478193\pi\)
0.0684538 + 0.997654i \(0.478193\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5.14437 0.273807 0.136904 0.990584i \(-0.456285\pi\)
0.136904 + 0.990584i \(0.456285\pi\)
\(354\) 0 0
\(355\) −23.9327 −1.27022
\(356\) 0 0
\(357\) 4.16574 0.220475
\(358\) 0 0
\(359\) 2.88203 0.152108 0.0760540 0.997104i \(-0.475768\pi\)
0.0760540 + 0.997104i \(0.475768\pi\)
\(360\) 0 0
\(361\) 20.7418 1.09167
\(362\) 0 0
\(363\) 7.06538 0.370836
\(364\) 0 0
\(365\) −51.0284 −2.67095
\(366\) 0 0
\(367\) 35.3245 1.84392 0.921962 0.387280i \(-0.126585\pi\)
0.921962 + 0.387280i \(0.126585\pi\)
\(368\) 0 0
\(369\) 18.0058 0.937345
\(370\) 0 0
\(371\) −5.42207 −0.281500
\(372\) 0 0
\(373\) −6.04297 −0.312893 −0.156447 0.987686i \(-0.550004\pi\)
−0.156447 + 0.987686i \(0.550004\pi\)
\(374\) 0 0
\(375\) −24.5703 −1.26881
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −10.2738 −0.527731 −0.263865 0.964560i \(-0.584997\pi\)
−0.263865 + 0.964560i \(0.584997\pi\)
\(380\) 0 0
\(381\) −13.6218 −0.697867
\(382\) 0 0
\(383\) −14.8030 −0.756400 −0.378200 0.925724i \(-0.623457\pi\)
−0.378200 + 0.925724i \(0.623457\pi\)
\(384\) 0 0
\(385\) −2.88203 −0.146882
\(386\) 0 0
\(387\) 26.8568 1.36521
\(388\) 0 0
\(389\) 8.05258 0.408282 0.204141 0.978941i \(-0.434560\pi\)
0.204141 + 0.978941i \(0.434560\pi\)
\(390\) 0 0
\(391\) −35.0536 −1.77274
\(392\) 0 0
\(393\) −14.5028 −0.731570
\(394\) 0 0
\(395\) 1.34680 0.0677648
\(396\) 0 0
\(397\) −29.6863 −1.48991 −0.744956 0.667114i \(-0.767530\pi\)
−0.744956 + 0.667114i \(0.767530\pi\)
\(398\) 0 0
\(399\) −4.22124 −0.211326
\(400\) 0 0
\(401\) 21.1638 1.05687 0.528436 0.848973i \(-0.322779\pi\)
0.528436 + 0.848973i \(0.322779\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 22.2339 1.10481
\(406\) 0 0
\(407\) −1.78757 −0.0886064
\(408\) 0 0
\(409\) 19.3022 0.954433 0.477216 0.878786i \(-0.341646\pi\)
0.477216 + 0.878786i \(0.341646\pi\)
\(410\) 0 0
\(411\) 5.83643 0.287890
\(412\) 0 0
\(413\) −7.26901 −0.357685
\(414\) 0 0
\(415\) 13.0634 0.641256
\(416\) 0 0
\(417\) −8.46784 −0.414672
\(418\) 0 0
\(419\) 28.7478 1.40442 0.702211 0.711969i \(-0.252197\pi\)
0.702211 + 0.711969i \(0.252197\pi\)
\(420\) 0 0
\(421\) −23.9036 −1.16499 −0.582496 0.812834i \(-0.697924\pi\)
−0.582496 + 0.812834i \(0.697924\pi\)
\(422\) 0 0
\(423\) 10.4405 0.507632
\(424\) 0 0
\(425\) 84.1443 4.08160
\(426\) 0 0
\(427\) −2.28262 −0.110464
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.05258 0.0988694 0.0494347 0.998777i \(-0.484258\pi\)
0.0494347 + 0.998777i \(0.484258\pi\)
\(432\) 0 0
\(433\) 12.3723 0.594574 0.297287 0.954788i \(-0.403918\pi\)
0.297287 + 0.954788i \(0.403918\pi\)
\(434\) 0 0
\(435\) 4.09846 0.196506
\(436\) 0 0
\(437\) 35.5205 1.69918
\(438\) 0 0
\(439\) −39.6063 −1.89031 −0.945153 0.326627i \(-0.894088\pi\)
−0.945153 + 0.326627i \(0.894088\pi\)
\(440\) 0 0
\(441\) −2.55163 −0.121506
\(442\) 0 0
\(443\) −31.9075 −1.51597 −0.757986 0.652271i \(-0.773816\pi\)
−0.757986 + 0.652271i \(0.773816\pi\)
\(444\) 0 0
\(445\) −17.7362 −0.840776
\(446\) 0 0
\(447\) 10.5263 0.497878
\(448\) 0 0
\(449\) 42.0312 1.98357 0.991787 0.127899i \(-0.0408235\pi\)
0.991787 + 0.127899i \(0.0408235\pi\)
\(450\) 0 0
\(451\) −4.72509 −0.222496
\(452\) 0 0
\(453\) 1.92981 0.0906705
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 16.5001 0.771844 0.385922 0.922531i \(-0.373883\pi\)
0.385922 + 0.922531i \(0.373883\pi\)
\(458\) 0 0
\(459\) 23.1267 1.07946
\(460\) 0 0
\(461\) −2.34909 −0.109408 −0.0547041 0.998503i \(-0.517422\pi\)
−0.0547041 + 0.998503i \(0.517422\pi\)
\(462\) 0 0
\(463\) 21.6210 1.00481 0.502407 0.864631i \(-0.332448\pi\)
0.502407 + 0.864631i \(0.332448\pi\)
\(464\) 0 0
\(465\) 11.7923 0.546857
\(466\) 0 0
\(467\) −26.3344 −1.21861 −0.609305 0.792936i \(-0.708552\pi\)
−0.609305 + 0.792936i \(0.708552\pi\)
\(468\) 0 0
\(469\) 2.21243 0.102161
\(470\) 0 0
\(471\) 11.4113 0.525803
\(472\) 0 0
\(473\) −7.04778 −0.324057
\(474\) 0 0
\(475\) −85.2652 −3.91224
\(476\) 0 0
\(477\) −13.8352 −0.633468
\(478\) 0 0
\(479\) −10.5632 −0.482646 −0.241323 0.970445i \(-0.577581\pi\)
−0.241323 + 0.970445i \(0.577581\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −3.77287 −0.171672
\(484\) 0 0
\(485\) −31.9833 −1.45229
\(486\) 0 0
\(487\) −22.3547 −1.01299 −0.506494 0.862244i \(-0.669059\pi\)
−0.506494 + 0.862244i \(0.669059\pi\)
\(488\) 0 0
\(489\) 10.3469 0.467904
\(490\) 0 0
\(491\) −10.4774 −0.472841 −0.236420 0.971651i \(-0.575974\pi\)
−0.236420 + 0.971651i \(0.575974\pi\)
\(492\) 0 0
\(493\) −8.84706 −0.398451
\(494\) 0 0
\(495\) −7.35390 −0.330533
\(496\) 0 0
\(497\) 5.56044 0.249420
\(498\) 0 0
\(499\) 34.9191 1.56319 0.781597 0.623784i \(-0.214405\pi\)
0.781597 + 0.623784i \(0.214405\pi\)
\(500\) 0 0
\(501\) −14.7417 −0.658609
\(502\) 0 0
\(503\) 35.2572 1.57204 0.786021 0.618200i \(-0.212138\pi\)
0.786021 + 0.618200i \(0.212138\pi\)
\(504\) 0 0
\(505\) −47.7518 −2.12493
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −15.4832 −0.686279 −0.343139 0.939285i \(-0.611490\pi\)
−0.343139 + 0.939285i \(0.611490\pi\)
\(510\) 0 0
\(511\) 11.8557 0.524467
\(512\) 0 0
\(513\) −23.4348 −1.03467
\(514\) 0 0
\(515\) −19.0451 −0.839227
\(516\) 0 0
\(517\) −2.73979 −0.120496
\(518\) 0 0
\(519\) −8.25912 −0.362535
\(520\) 0 0
\(521\) −14.0606 −0.616005 −0.308003 0.951386i \(-0.599661\pi\)
−0.308003 + 0.951386i \(0.599661\pi\)
\(522\) 0 0
\(523\) 11.0216 0.481941 0.240971 0.970532i \(-0.422534\pi\)
0.240971 + 0.970532i \(0.422534\pi\)
\(524\) 0 0
\(525\) 9.05658 0.395262
\(526\) 0 0
\(527\) −25.4553 −1.10885
\(528\) 0 0
\(529\) 8.74767 0.380333
\(530\) 0 0
\(531\) −18.5479 −0.804909
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −71.4835 −3.09050
\(536\) 0 0
\(537\) 0.497962 0.0214887
\(538\) 0 0
\(539\) 0.669601 0.0288417
\(540\) 0 0
\(541\) 34.3400 1.47639 0.738196 0.674587i \(-0.235678\pi\)
0.738196 + 0.674587i \(0.235678\pi\)
\(542\) 0 0
\(543\) 9.22232 0.395768
\(544\) 0 0
\(545\) 7.73177 0.331192
\(546\) 0 0
\(547\) −25.8373 −1.10472 −0.552362 0.833604i \(-0.686273\pi\)
−0.552362 + 0.833604i \(0.686273\pi\)
\(548\) 0 0
\(549\) −5.82441 −0.248580
\(550\) 0 0
\(551\) 8.96491 0.381918
\(552\) 0 0
\(553\) −0.312910 −0.0133063
\(554\) 0 0
\(555\) 7.69388 0.326587
\(556\) 0 0
\(557\) −21.5516 −0.913172 −0.456586 0.889679i \(-0.650928\pi\)
−0.456586 + 0.889679i \(0.650928\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −2.78939 −0.117768
\(562\) 0 0
\(563\) −29.0742 −1.22533 −0.612665 0.790342i \(-0.709903\pi\)
−0.612665 + 0.790342i \(0.709903\pi\)
\(564\) 0 0
\(565\) 32.8597 1.38242
\(566\) 0 0
\(567\) −5.16574 −0.216941
\(568\) 0 0
\(569\) −26.3559 −1.10490 −0.552448 0.833547i \(-0.686306\pi\)
−0.552448 + 0.833547i \(0.686306\pi\)
\(570\) 0 0
\(571\) −34.3420 −1.43717 −0.718584 0.695440i \(-0.755209\pi\)
−0.718584 + 0.695440i \(0.755209\pi\)
\(572\) 0 0
\(573\) 11.7839 0.492277
\(574\) 0 0
\(575\) −76.2086 −3.17812
\(576\) 0 0
\(577\) −3.21643 −0.133902 −0.0669509 0.997756i \(-0.521327\pi\)
−0.0669509 + 0.997756i \(0.521327\pi\)
\(578\) 0 0
\(579\) 5.79928 0.241010
\(580\) 0 0
\(581\) −3.03509 −0.125917
\(582\) 0 0
\(583\) 3.63062 0.150365
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −14.3041 −0.590394 −0.295197 0.955436i \(-0.595385\pi\)
−0.295197 + 0.955436i \(0.595385\pi\)
\(588\) 0 0
\(589\) 25.7944 1.06284
\(590\) 0 0
\(591\) 14.4716 0.595280
\(592\) 0 0
\(593\) −6.72339 −0.276096 −0.138048 0.990426i \(-0.544083\pi\)
−0.138048 + 0.990426i \(0.544083\pi\)
\(594\) 0 0
\(595\) −26.7769 −1.09774
\(596\) 0 0
\(597\) 2.94931 0.120707
\(598\) 0 0
\(599\) −19.2152 −0.785113 −0.392556 0.919728i \(-0.628409\pi\)
−0.392556 + 0.919728i \(0.628409\pi\)
\(600\) 0 0
\(601\) 39.4428 1.60890 0.804452 0.594018i \(-0.202459\pi\)
0.804452 + 0.594018i \(0.202459\pi\)
\(602\) 0 0
\(603\) 5.64532 0.229895
\(604\) 0 0
\(605\) −45.4154 −1.84640
\(606\) 0 0
\(607\) −4.99520 −0.202749 −0.101374 0.994848i \(-0.532324\pi\)
−0.101374 + 0.994848i \(0.532324\pi\)
\(608\) 0 0
\(609\) −0.952222 −0.0385860
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 31.7582 1.28270 0.641350 0.767248i \(-0.278375\pi\)
0.641350 + 0.767248i \(0.278375\pi\)
\(614\) 0 0
\(615\) 20.3373 0.820079
\(616\) 0 0
\(617\) −35.2164 −1.41776 −0.708880 0.705329i \(-0.750799\pi\)
−0.708880 + 0.705329i \(0.750799\pi\)
\(618\) 0 0
\(619\) 27.9882 1.12494 0.562471 0.826817i \(-0.309851\pi\)
0.562471 + 0.826817i \(0.309851\pi\)
\(620\) 0 0
\(621\) −20.9456 −0.840518
\(622\) 0 0
\(623\) 4.12076 0.165095
\(624\) 0 0
\(625\) 90.3082 3.61233
\(626\) 0 0
\(627\) 2.82654 0.112881
\(628\) 0 0
\(629\) −16.6082 −0.662213
\(630\) 0 0
\(631\) 15.1638 0.603663 0.301832 0.953361i \(-0.402402\pi\)
0.301832 + 0.953361i \(0.402402\pi\)
\(632\) 0 0
\(633\) 9.23671 0.367126
\(634\) 0 0
\(635\) 87.5593 3.47469
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 14.1882 0.561277
\(640\) 0 0
\(641\) 1.35560 0.0535430 0.0267715 0.999642i \(-0.491477\pi\)
0.0267715 + 0.999642i \(0.491477\pi\)
\(642\) 0 0
\(643\) 10.1308 0.399518 0.199759 0.979845i \(-0.435984\pi\)
0.199759 + 0.979845i \(0.435984\pi\)
\(644\) 0 0
\(645\) 30.3344 1.19442
\(646\) 0 0
\(647\) 10.4396 0.410422 0.205211 0.978718i \(-0.434212\pi\)
0.205211 + 0.978718i \(0.434212\pi\)
\(648\) 0 0
\(649\) 4.86734 0.191060
\(650\) 0 0
\(651\) −2.73979 −0.107381
\(652\) 0 0
\(653\) 6.56524 0.256918 0.128459 0.991715i \(-0.458997\pi\)
0.128459 + 0.991715i \(0.458997\pi\)
\(654\) 0 0
\(655\) 93.2222 3.64249
\(656\) 0 0
\(657\) 30.2515 1.18022
\(658\) 0 0
\(659\) 5.42766 0.211432 0.105716 0.994396i \(-0.466287\pi\)
0.105716 + 0.994396i \(0.466287\pi\)
\(660\) 0 0
\(661\) −4.88695 −0.190080 −0.0950402 0.995473i \(-0.530298\pi\)
−0.0950402 + 0.995473i \(0.530298\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 27.1336 1.05219
\(666\) 0 0
\(667\) 8.01268 0.310252
\(668\) 0 0
\(669\) −18.4238 −0.712306
\(670\) 0 0
\(671\) 1.52844 0.0590050
\(672\) 0 0
\(673\) −33.8157 −1.30350 −0.651749 0.758434i \(-0.725965\pi\)
−0.651749 + 0.758434i \(0.725965\pi\)
\(674\) 0 0
\(675\) 50.2788 1.93523
\(676\) 0 0
\(677\) 5.27223 0.202628 0.101314 0.994854i \(-0.467695\pi\)
0.101314 + 0.994854i \(0.467695\pi\)
\(678\) 0 0
\(679\) 7.43088 0.285171
\(680\) 0 0
\(681\) 13.6883 0.524537
\(682\) 0 0
\(683\) 49.4115 1.89068 0.945339 0.326089i \(-0.105731\pi\)
0.945339 + 0.326089i \(0.105731\pi\)
\(684\) 0 0
\(685\) −37.5158 −1.43341
\(686\) 0 0
\(687\) −9.18122 −0.350285
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −6.04499 −0.229962 −0.114981 0.993368i \(-0.536681\pi\)
−0.114981 + 0.993368i \(0.536681\pi\)
\(692\) 0 0
\(693\) 1.70858 0.0649035
\(694\) 0 0
\(695\) 54.4302 2.06465
\(696\) 0 0
\(697\) −43.9007 −1.66286
\(698\) 0 0
\(699\) −0.355717 −0.0134545
\(700\) 0 0
\(701\) −30.8395 −1.16479 −0.582395 0.812906i \(-0.697884\pi\)
−0.582395 + 0.812906i \(0.697884\pi\)
\(702\) 0 0
\(703\) 16.8295 0.634735
\(704\) 0 0
\(705\) 11.7923 0.444125
\(706\) 0 0
\(707\) 11.0945 0.417250
\(708\) 0 0
\(709\) 6.69497 0.251435 0.125717 0.992066i \(-0.459877\pi\)
0.125717 + 0.992066i \(0.459877\pi\)
\(710\) 0 0
\(711\) −0.798432 −0.0299436
\(712\) 0 0
\(713\) 23.0546 0.863400
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.71125 0.0639079
\(718\) 0 0
\(719\) −3.44728 −0.128562 −0.0642808 0.997932i \(-0.520475\pi\)
−0.0642808 + 0.997932i \(0.520475\pi\)
\(720\) 0 0
\(721\) 4.42487 0.164791
\(722\) 0 0
\(723\) −5.68321 −0.211361
\(724\) 0 0
\(725\) −19.2340 −0.714334
\(726\) 0 0
\(727\) −29.9826 −1.11199 −0.555997 0.831184i \(-0.687663\pi\)
−0.555997 + 0.831184i \(0.687663\pi\)
\(728\) 0 0
\(729\) −5.71361 −0.211615
\(730\) 0 0
\(731\) −65.4806 −2.42189
\(732\) 0 0
\(733\) −18.5400 −0.684792 −0.342396 0.939556i \(-0.611238\pi\)
−0.342396 + 0.939556i \(0.611238\pi\)
\(734\) 0 0
\(735\) −2.88203 −0.106305
\(736\) 0 0
\(737\) −1.48145 −0.0545698
\(738\) 0 0
\(739\) −17.2543 −0.634710 −0.317355 0.948307i \(-0.602795\pi\)
−0.317355 + 0.948307i \(0.602795\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −34.7644 −1.27538 −0.637690 0.770293i \(-0.720110\pi\)
−0.637690 + 0.770293i \(0.720110\pi\)
\(744\) 0 0
\(745\) −67.6618 −2.47894
\(746\) 0 0
\(747\) −7.74445 −0.283355
\(748\) 0 0
\(749\) 16.6082 0.606851
\(750\) 0 0
\(751\) −33.8355 −1.23467 −0.617337 0.786699i \(-0.711788\pi\)
−0.617337 + 0.786699i \(0.711788\pi\)
\(752\) 0 0
\(753\) 4.51297 0.164462
\(754\) 0 0
\(755\) −12.4046 −0.451449
\(756\) 0 0
\(757\) −27.2291 −0.989659 −0.494830 0.868990i \(-0.664769\pi\)
−0.494830 + 0.868990i \(0.664769\pi\)
\(758\) 0 0
\(759\) 2.52632 0.0916995
\(760\) 0 0
\(761\) 15.6724 0.568124 0.284062 0.958806i \(-0.408318\pi\)
0.284062 + 0.958806i \(0.408318\pi\)
\(762\) 0 0
\(763\) −1.79637 −0.0650329
\(764\) 0 0
\(765\) −68.3248 −2.47029
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0.481563 0.0173656 0.00868280 0.999962i \(-0.497236\pi\)
0.00868280 + 0.999962i \(0.497236\pi\)
\(770\) 0 0
\(771\) 2.26130 0.0814388
\(772\) 0 0
\(773\) 10.7740 0.387512 0.193756 0.981050i \(-0.437933\pi\)
0.193756 + 0.981050i \(0.437933\pi\)
\(774\) 0 0
\(775\) −55.3413 −1.98792
\(776\) 0 0
\(777\) −1.78757 −0.0641286
\(778\) 0 0
\(779\) 44.4854 1.59386
\(780\) 0 0
\(781\) −3.72327 −0.133229
\(782\) 0 0
\(783\) −5.28639 −0.188920
\(784\) 0 0
\(785\) −73.3501 −2.61798
\(786\) 0 0
\(787\) 19.4272 0.692503 0.346252 0.938142i \(-0.387454\pi\)
0.346252 + 0.938142i \(0.387454\pi\)
\(788\) 0 0
\(789\) 12.5391 0.446405
\(790\) 0 0
\(791\) −7.63451 −0.271452
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −15.6266 −0.554218
\(796\) 0 0
\(797\) −48.7507 −1.72684 −0.863419 0.504487i \(-0.831681\pi\)
−0.863419 + 0.504487i \(0.831681\pi\)
\(798\) 0 0
\(799\) −25.4553 −0.900543
\(800\) 0 0
\(801\) 10.5147 0.371518
\(802\) 0 0
\(803\) −7.93861 −0.280148
\(804\) 0 0
\(805\) 24.2515 0.854754
\(806\) 0 0
\(807\) −19.7056 −0.693670
\(808\) 0 0
\(809\) 15.3089 0.538233 0.269116 0.963108i \(-0.413268\pi\)
0.269116 + 0.963108i \(0.413268\pi\)
\(810\) 0 0
\(811\) 41.0761 1.44238 0.721188 0.692740i \(-0.243597\pi\)
0.721188 + 0.692740i \(0.243597\pi\)
\(812\) 0 0
\(813\) 0.473734 0.0166146
\(814\) 0 0
\(815\) −66.5086 −2.32970
\(816\) 0 0
\(817\) 66.3529 2.32139
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −37.6787 −1.31500 −0.657498 0.753457i \(-0.728385\pi\)
−0.657498 + 0.753457i \(0.728385\pi\)
\(822\) 0 0
\(823\) −23.9941 −0.836382 −0.418191 0.908359i \(-0.637336\pi\)
−0.418191 + 0.908359i \(0.637336\pi\)
\(824\) 0 0
\(825\) −6.06429 −0.211132
\(826\) 0 0
\(827\) −46.5086 −1.61726 −0.808632 0.588315i \(-0.799792\pi\)
−0.808632 + 0.588315i \(0.799792\pi\)
\(828\) 0 0
\(829\) 25.3851 0.881660 0.440830 0.897591i \(-0.354684\pi\)
0.440830 + 0.897591i \(0.354684\pi\)
\(830\) 0 0
\(831\) −12.1959 −0.423070
\(832\) 0 0
\(833\) 6.22124 0.215553
\(834\) 0 0
\(835\) 94.7575 3.27922
\(836\) 0 0
\(837\) −15.2103 −0.525745
\(838\) 0 0
\(839\) −16.6317 −0.574191 −0.287095 0.957902i \(-0.592690\pi\)
−0.287095 + 0.957902i \(0.592690\pi\)
\(840\) 0 0
\(841\) −26.9777 −0.930266
\(842\) 0 0
\(843\) 17.4873 0.602296
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 10.5516 0.362558
\(848\) 0 0
\(849\) −20.9338 −0.718446
\(850\) 0 0
\(851\) 15.0419 0.515629
\(852\) 0 0
\(853\) −51.5261 −1.76422 −0.882110 0.471043i \(-0.843878\pi\)
−0.882110 + 0.471043i \(0.843878\pi\)
\(854\) 0 0
\(855\) 69.2349 2.36778
\(856\) 0 0
\(857\) −7.65890 −0.261623 −0.130812 0.991407i \(-0.541758\pi\)
−0.130812 + 0.991407i \(0.541758\pi\)
\(858\) 0 0
\(859\) 19.3413 0.659917 0.329958 0.943995i \(-0.392965\pi\)
0.329958 + 0.943995i \(0.392965\pi\)
\(860\) 0 0
\(861\) −4.72509 −0.161031
\(862\) 0 0
\(863\) 4.99011 0.169865 0.0849326 0.996387i \(-0.472932\pi\)
0.0849326 + 0.996387i \(0.472932\pi\)
\(864\) 0 0
\(865\) 53.0886 1.80507
\(866\) 0 0
\(867\) −14.5329 −0.493562
\(868\) 0 0
\(869\) 0.209525 0.00710764
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 18.9609 0.641729
\(874\) 0 0
\(875\) −36.6940 −1.24048
\(876\) 0 0
\(877\) −41.1201 −1.38853 −0.694263 0.719721i \(-0.744270\pi\)
−0.694263 + 0.719721i \(0.744270\pi\)
\(878\) 0 0
\(879\) 16.4881 0.556131
\(880\) 0 0
\(881\) −56.8753 −1.91618 −0.958089 0.286470i \(-0.907518\pi\)
−0.958089 + 0.286470i \(0.907518\pi\)
\(882\) 0 0
\(883\) −6.41928 −0.216026 −0.108013 0.994149i \(-0.534449\pi\)
−0.108013 + 0.994149i \(0.534449\pi\)
\(884\) 0 0
\(885\) −20.9495 −0.704211
\(886\) 0 0
\(887\) 13.2340 0.444355 0.222178 0.975006i \(-0.428683\pi\)
0.222178 + 0.975006i \(0.428683\pi\)
\(888\) 0 0
\(889\) −20.3432 −0.682289
\(890\) 0 0
\(891\) 3.45899 0.115880
\(892\) 0 0
\(893\) 25.7944 0.863175
\(894\) 0 0
\(895\) −3.20084 −0.106992
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 5.81866 0.194063
\(900\) 0 0
\(901\) 33.7320 1.12378
\(902\) 0 0
\(903\) −7.04778 −0.234535
\(904\) 0 0
\(905\) −59.2799 −1.97053
\(906\) 0 0
\(907\) −10.2662 −0.340884 −0.170442 0.985368i \(-0.554520\pi\)
−0.170442 + 0.985368i \(0.554520\pi\)
\(908\) 0 0
\(909\) 28.3090 0.938951
\(910\) 0 0
\(911\) −21.0028 −0.695854 −0.347927 0.937522i \(-0.613114\pi\)
−0.347927 + 0.937522i \(0.613114\pi\)
\(912\) 0 0
\(913\) 2.03230 0.0672594
\(914\) 0 0
\(915\) −6.57859 −0.217482
\(916\) 0 0
\(917\) −21.6589 −0.715240
\(918\) 0 0
\(919\) 38.1855 1.25962 0.629811 0.776749i \(-0.283132\pi\)
0.629811 + 0.776749i \(0.283132\pi\)
\(920\) 0 0
\(921\) 21.1884 0.698181
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −36.1073 −1.18720
\(926\) 0 0
\(927\) 11.2906 0.370833
\(928\) 0 0
\(929\) −38.9414 −1.27763 −0.638813 0.769362i \(-0.720574\pi\)
−0.638813 + 0.769362i \(0.720574\pi\)
\(930\) 0 0
\(931\) −6.30411 −0.206609
\(932\) 0 0
\(933\) 12.2885 0.402308
\(934\) 0 0
\(935\) 17.9298 0.586368
\(936\) 0 0
\(937\) 51.7398 1.69026 0.845132 0.534557i \(-0.179522\pi\)
0.845132 + 0.534557i \(0.179522\pi\)
\(938\) 0 0
\(939\) −5.83643 −0.190465
\(940\) 0 0
\(941\) −13.1309 −0.428055 −0.214027 0.976828i \(-0.568658\pi\)
−0.214027 + 0.976828i \(0.568658\pi\)
\(942\) 0 0
\(943\) 39.7604 1.29478
\(944\) 0 0
\(945\) −16.0000 −0.520480
\(946\) 0 0
\(947\) 11.0411 0.358787 0.179393 0.983777i \(-0.442587\pi\)
0.179393 + 0.983777i \(0.442587\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −8.78969 −0.285025
\(952\) 0 0
\(953\) −9.90752 −0.320936 −0.160468 0.987041i \(-0.551300\pi\)
−0.160468 + 0.987041i \(0.551300\pi\)
\(954\) 0 0
\(955\) −75.7451 −2.45105
\(956\) 0 0
\(957\) 0.637608 0.0206110
\(958\) 0 0
\(959\) 8.71629 0.281464
\(960\) 0 0
\(961\) −14.2582 −0.459942
\(962\) 0 0
\(963\) 42.3781 1.36562
\(964\) 0 0
\(965\) −37.2770 −1.19999
\(966\) 0 0
\(967\) −18.7339 −0.602441 −0.301221 0.953554i \(-0.597394\pi\)
−0.301221 + 0.953554i \(0.597394\pi\)
\(968\) 0 0
\(969\) 26.2613 0.843635
\(970\) 0 0
\(971\) 33.6824 1.08092 0.540460 0.841370i \(-0.318250\pi\)
0.540460 + 0.841370i \(0.318250\pi\)
\(972\) 0 0
\(973\) −12.6461 −0.405415
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 20.0029 0.639950 0.319975 0.947426i \(-0.396326\pi\)
0.319975 + 0.947426i \(0.396326\pi\)
\(978\) 0 0
\(979\) −2.75926 −0.0881864
\(980\) 0 0
\(981\) −4.58368 −0.146346
\(982\) 0 0
\(983\) −16.6334 −0.530524 −0.265262 0.964176i \(-0.585458\pi\)
−0.265262 + 0.964176i \(0.585458\pi\)
\(984\) 0 0
\(985\) −93.0213 −2.96390
\(986\) 0 0
\(987\) −2.73979 −0.0872084
\(988\) 0 0
\(989\) 59.3051 1.88579
\(990\) 0 0
\(991\) −3.16198 −0.100444 −0.0502218 0.998738i \(-0.515993\pi\)
−0.0502218 + 0.998738i \(0.515993\pi\)
\(992\) 0 0
\(993\) −6.18706 −0.196341
\(994\) 0 0
\(995\) −18.9578 −0.601003
\(996\) 0 0
\(997\) −19.5420 −0.618902 −0.309451 0.950915i \(-0.600145\pi\)
−0.309451 + 0.950915i \(0.600145\pi\)
\(998\) 0 0
\(999\) −9.92392 −0.313979
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9464.2.a.ba.1.2 4
13.12 even 2 728.2.a.h.1.2 4
39.38 odd 2 6552.2.a.bt.1.4 4
52.51 odd 2 1456.2.a.u.1.3 4
91.90 odd 2 5096.2.a.t.1.3 4
104.51 odd 2 5824.2.a.cf.1.2 4
104.77 even 2 5824.2.a.cc.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.a.h.1.2 4 13.12 even 2
1456.2.a.u.1.3 4 52.51 odd 2
5096.2.a.t.1.3 4 91.90 odd 2
5824.2.a.cc.1.3 4 104.77 even 2
5824.2.a.cf.1.2 4 104.51 odd 2
6552.2.a.bt.1.4 4 39.38 odd 2
9464.2.a.ba.1.2 4 1.1 even 1 trivial