Properties

Label 9386.2.a.j
Level $9386$
Weight $2$
Character orbit 9386.a
Self dual yes
Analytic conductor $74.948$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9386,2,Mod(1,9386)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9386.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9386, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9386 = 2 \cdot 13 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9386.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,-1,1,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.9475873372\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} - 3 q^{5} - q^{6} - q^{7} + q^{8} - 2 q^{9} - 3 q^{10} + 6 q^{11} - q^{12} - q^{13} - q^{14} + 3 q^{15} + q^{16} - 3 q^{17} - 2 q^{18} - 3 q^{20} + q^{21} + 6 q^{22}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −1.00000 1.00000 −3.00000 −1.00000 −1.00000 1.00000 −2.00000 −3.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9386.2.a.j 1
19.b odd 2 1 26.2.a.a 1
57.d even 2 1 234.2.a.e 1
76.d even 2 1 208.2.a.a 1
95.d odd 2 1 650.2.a.j 1
95.g even 4 2 650.2.b.d 2
133.c even 2 1 1274.2.a.d 1
133.o even 6 2 1274.2.f.r 2
133.r odd 6 2 1274.2.f.p 2
152.b even 2 1 832.2.a.i 1
152.g odd 2 1 832.2.a.d 1
171.l even 6 2 2106.2.e.b 2
171.o odd 6 2 2106.2.e.ba 2
209.d even 2 1 3146.2.a.n 1
228.b odd 2 1 1872.2.a.q 1
247.d odd 2 1 338.2.a.f 1
247.i even 4 2 338.2.b.c 2
247.m odd 6 2 338.2.c.a 2
247.u odd 6 2 338.2.c.d 2
247.bd even 12 4 338.2.e.a 4
285.b even 2 1 5850.2.a.p 1
285.j odd 4 2 5850.2.e.a 2
304.j odd 4 2 3328.2.b.m 2
304.m even 4 2 3328.2.b.j 2
323.c odd 2 1 7514.2.a.c 1
380.d even 2 1 5200.2.a.x 1
456.l odd 2 1 7488.2.a.h 1
456.p even 2 1 7488.2.a.g 1
741.d even 2 1 3042.2.a.a 1
741.p odd 4 2 3042.2.b.a 2
988.g even 2 1 2704.2.a.f 1
988.p odd 4 2 2704.2.f.d 2
1235.e odd 2 1 8450.2.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.2.a.a 1 19.b odd 2 1
208.2.a.a 1 76.d even 2 1
234.2.a.e 1 57.d even 2 1
338.2.a.f 1 247.d odd 2 1
338.2.b.c 2 247.i even 4 2
338.2.c.a 2 247.m odd 6 2
338.2.c.d 2 247.u odd 6 2
338.2.e.a 4 247.bd even 12 4
650.2.a.j 1 95.d odd 2 1
650.2.b.d 2 95.g even 4 2
832.2.a.d 1 152.g odd 2 1
832.2.a.i 1 152.b even 2 1
1274.2.a.d 1 133.c even 2 1
1274.2.f.p 2 133.r odd 6 2
1274.2.f.r 2 133.o even 6 2
1872.2.a.q 1 228.b odd 2 1
2106.2.e.b 2 171.l even 6 2
2106.2.e.ba 2 171.o odd 6 2
2704.2.a.f 1 988.g even 2 1
2704.2.f.d 2 988.p odd 4 2
3042.2.a.a 1 741.d even 2 1
3042.2.b.a 2 741.p odd 4 2
3146.2.a.n 1 209.d even 2 1
3328.2.b.j 2 304.m even 4 2
3328.2.b.m 2 304.j odd 4 2
5200.2.a.x 1 380.d even 2 1
5850.2.a.p 1 285.b even 2 1
5850.2.e.a 2 285.j odd 4 2
7488.2.a.g 1 456.p even 2 1
7488.2.a.h 1 456.l odd 2 1
7514.2.a.c 1 323.c odd 2 1
8450.2.a.c 1 1235.e odd 2 1
9386.2.a.j 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9386))\):

\( T_{3} + 1 \) Copy content Toggle raw display
\( T_{5} + 3 \) Copy content Toggle raw display
\( T_{7} + 1 \) Copy content Toggle raw display
\( T_{29} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T + 3 \) Copy content Toggle raw display
$7$ \( T + 1 \) Copy content Toggle raw display
$11$ \( T - 6 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T + 3 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T - 4 \) Copy content Toggle raw display
$37$ \( T - 7 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T + 1 \) Copy content Toggle raw display
$47$ \( T - 3 \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T - 6 \) Copy content Toggle raw display
$61$ \( T - 8 \) Copy content Toggle raw display
$67$ \( T + 14 \) Copy content Toggle raw display
$71$ \( T - 3 \) Copy content Toggle raw display
$73$ \( T - 2 \) Copy content Toggle raw display
$79$ \( T + 8 \) Copy content Toggle raw display
$83$ \( T - 12 \) Copy content Toggle raw display
$89$ \( T - 6 \) Copy content Toggle raw display
$97$ \( T - 10 \) Copy content Toggle raw display
show more
show less