Properties

Label 9386.2.a
Level $9386$
Weight $2$
Character orbit 9386.a
Rep. character $\chi_{9386}(1,\cdot)$
Character field $\Q$
Dimension $341$
Newform subspaces $56$
Sturm bound $2660$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 9386 = 2 \cdot 13 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9386.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 56 \)
Sturm bound: \(2660\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\), \(5\), \(7\), \(29\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(9386))\).

Total New Old
Modular forms 1370 341 1029
Cusp forms 1291 341 950
Eisenstein series 79 0 79

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(13\)\(19\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(160\)\(39\)\(121\)\(151\)\(39\)\(112\)\(9\)\(0\)\(9\)
\(+\)\(+\)\(-\)\(-\)\(182\)\(45\)\(137\)\(172\)\(45\)\(127\)\(10\)\(0\)\(10\)
\(+\)\(-\)\(+\)\(-\)\(180\)\(50\)\(130\)\(170\)\(50\)\(120\)\(10\)\(0\)\(10\)
\(+\)\(-\)\(-\)\(+\)\(163\)\(36\)\(127\)\(153\)\(36\)\(117\)\(10\)\(0\)\(10\)
\(-\)\(+\)\(+\)\(-\)\(175\)\(50\)\(125\)\(165\)\(50\)\(115\)\(10\)\(0\)\(10\)
\(-\)\(+\)\(-\)\(+\)\(167\)\(36\)\(131\)\(157\)\(36\)\(121\)\(10\)\(0\)\(10\)
\(-\)\(-\)\(+\)\(+\)\(165\)\(31\)\(134\)\(155\)\(31\)\(124\)\(10\)\(0\)\(10\)
\(-\)\(-\)\(-\)\(-\)\(178\)\(54\)\(124\)\(168\)\(54\)\(114\)\(10\)\(0\)\(10\)
Plus space\(+\)\(655\)\(142\)\(513\)\(616\)\(142\)\(474\)\(39\)\(0\)\(39\)
Minus space\(-\)\(715\)\(199\)\(516\)\(675\)\(199\)\(476\)\(40\)\(0\)\(40\)

Trace form

\( 341 q + q^{2} - 2 q^{3} + 341 q^{4} - 2 q^{5} - 4 q^{6} + q^{8} + 335 q^{9} - 4 q^{10} + 4 q^{11} - 2 q^{12} + q^{13} - 2 q^{14} + 341 q^{16} + 24 q^{17} + 5 q^{18} - 2 q^{20} - 4 q^{21} + 12 q^{22}+ \cdots + 104 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(9386))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 13 19
9386.2.a.a 9386.a 1.a $1$ $74.948$ \(\Q\) None 494.2.f.d \(-1\) \(-3\) \(0\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-3q^{3}+q^{4}+3q^{6}-q^{8}+6q^{9}+\cdots\)
9386.2.a.b 9386.a 1.a $1$ $74.948$ \(\Q\) None 494.2.f.c \(-1\) \(-1\) \(4\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+4q^{5}+q^{6}+2q^{7}+\cdots\)
9386.2.a.c 9386.a 1.a $1$ $74.948$ \(\Q\) None 494.2.a.d \(-1\) \(1\) \(-1\) \(-3\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}-3q^{7}+\cdots\)
9386.2.a.d 9386.a 1.a $1$ $74.948$ \(\Q\) None 494.2.f.b \(-1\) \(2\) \(0\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+2q^{3}+q^{4}-2q^{6}-q^{8}+q^{9}+\cdots\)
9386.2.a.e 9386.a 1.a $1$ $74.948$ \(\Q\) None 494.2.f.a \(-1\) \(3\) \(-4\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+3q^{3}+q^{4}-4q^{5}-3q^{6}-2q^{7}+\cdots\)
9386.2.a.f 9386.a 1.a $1$ $74.948$ \(\Q\) None 26.2.a.b \(-1\) \(3\) \(-1\) \(1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+3q^{3}+q^{4}-q^{5}-3q^{6}+q^{7}+\cdots\)
9386.2.a.g 9386.a 1.a $1$ $74.948$ \(\Q\) None 494.2.f.a \(1\) \(-3\) \(-4\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-3q^{3}+q^{4}-4q^{5}-3q^{6}-2q^{7}+\cdots\)
9386.2.a.h 9386.a 1.a $1$ $74.948$ \(\Q\) None 494.2.a.c \(1\) \(-3\) \(-3\) \(3\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-3q^{3}+q^{4}-3q^{5}-3q^{6}+3q^{7}+\cdots\)
9386.2.a.i 9386.a 1.a $1$ $74.948$ \(\Q\) None 494.2.f.b \(1\) \(-2\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-2q^{3}+q^{4}-2q^{6}+q^{8}+q^{9}+\cdots\)
9386.2.a.j 9386.a 1.a $1$ $74.948$ \(\Q\) None 26.2.a.a \(1\) \(-1\) \(-3\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-3q^{5}-q^{6}-q^{7}+\cdots\)
9386.2.a.k 9386.a 1.a $1$ $74.948$ \(\Q\) None 494.2.a.b \(1\) \(0\) \(2\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{5}+4q^{7}+q^{8}-3q^{9}+\cdots\)
9386.2.a.l 9386.a 1.a $1$ $74.948$ \(\Q\) None 494.2.a.a \(1\) \(1\) \(1\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}-q^{7}+\cdots\)
9386.2.a.m 9386.a 1.a $1$ $74.948$ \(\Q\) None 494.2.f.c \(1\) \(1\) \(4\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+4q^{5}+q^{6}+2q^{7}+\cdots\)
9386.2.a.n 9386.a 1.a $1$ $74.948$ \(\Q\) None 494.2.f.d \(1\) \(3\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+3q^{3}+q^{4}+3q^{6}+q^{8}+6q^{9}+\cdots\)
9386.2.a.o 9386.a 1.a $2$ $74.948$ \(\Q(\sqrt{6}) \) None 494.2.f.g \(-2\) \(-2\) \(0\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-\beta q^{5}+q^{6}+2\beta q^{7}+\cdots\)
9386.2.a.p 9386.a 1.a $2$ $74.948$ \(\Q(\sqrt{3}) \) None 494.2.f.e \(-2\) \(0\) \(-2\) \(2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta q^{3}+q^{4}+(-1-\beta )q^{5}-\beta q^{6}+\cdots\)
9386.2.a.q 9386.a 1.a $2$ $74.948$ \(\Q(\sqrt{6}) \) None 494.2.f.f \(-2\) \(2\) \(0\) \(4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-\beta q^{5}-q^{6}+2q^{7}+\cdots\)
9386.2.a.r 9386.a 1.a $2$ $74.948$ \(\Q(\sqrt{6}) \) None 494.2.f.f \(2\) \(-2\) \(0\) \(4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-\beta q^{5}-q^{6}+2q^{7}+\cdots\)
9386.2.a.s 9386.a 1.a $2$ $74.948$ \(\Q(\sqrt{3}) \) None 494.2.f.e \(2\) \(0\) \(-2\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta q^{3}+q^{4}+(-1+\beta )q^{5}+\beta q^{6}+\cdots\)
9386.2.a.t 9386.a 1.a $2$ $74.948$ \(\Q(\sqrt{6}) \) None 494.2.f.g \(2\) \(2\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}-\beta q^{5}+q^{6}+2\beta q^{7}+\cdots\)
9386.2.a.u 9386.a 1.a $3$ $74.948$ \(\Q(\zeta_{14})^+\) None 494.2.a.g \(-3\) \(-5\) \(5\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(-2-\beta _{2})q^{3}+q^{4}+(1+\beta _{1}+\cdots)q^{5}+\cdots\)
9386.2.a.v 9386.a 1.a $3$ $74.948$ 3.3.316.1 None 494.2.f.h \(-3\) \(-2\) \(2\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(-1+\beta _{1})q^{3}+q^{4}+(1-\beta _{1}+\cdots)q^{5}+\cdots\)
9386.2.a.w 9386.a 1.a $3$ $74.948$ 3.3.148.1 None 494.2.f.i \(-3\) \(-1\) \(-2\) \(-4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta _{2}q^{3}+q^{4}+(-\beta _{1}-\beta _{2})q^{5}+\cdots\)
9386.2.a.x 9386.a 1.a $3$ $74.948$ \(\Q(\zeta_{18})^+\) None 494.2.x.a \(-3\) \(0\) \(-6\) \(3\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}+(-2-\beta _{2})q^{5}+\cdots\)
9386.2.a.y 9386.a 1.a $3$ $74.948$ \(\Q(\zeta_{18})^+\) None 9386.2.a.y \(-3\) \(3\) \(-3\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+(1-\beta _{1})q^{3}+q^{4}+(-1-\beta _{2})q^{5}+\cdots\)
9386.2.a.z 9386.a 1.a $3$ $74.948$ \(\Q(\zeta_{18})^+\) None 9386.2.a.y \(3\) \(-3\) \(-3\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+(-1+\beta _{1})q^{3}+q^{4}+(-1-\beta _{2})q^{5}+\cdots\)
9386.2.a.ba 9386.a 1.a $3$ $74.948$ \(\Q(\zeta_{18})^+\) None 494.2.x.a \(3\) \(0\) \(-6\) \(3\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-\beta _{1}q^{3}+q^{4}+(-2-\beta _{2})q^{5}+\cdots\)
9386.2.a.bb 9386.a 1.a $3$ $74.948$ 3.3.148.1 None 494.2.f.i \(3\) \(1\) \(-2\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta _{2}q^{3}+q^{4}+(-\beta _{1}-\beta _{2})q^{5}+\cdots\)
9386.2.a.bc 9386.a 1.a $3$ $74.948$ 3.3.361.1 None 494.2.a.f \(3\) \(1\) \(1\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(1-\beta _{1}-\beta _{2})q^{3}+q^{4}+\beta _{1}q^{5}+\cdots\)
9386.2.a.bd 9386.a 1.a $3$ $74.948$ 3.3.316.1 None 494.2.f.h \(3\) \(2\) \(2\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+(1-\beta _{1})q^{3}+q^{4}+(1-\beta _{1}+\beta _{2})q^{5}+\cdots\)
9386.2.a.be 9386.a 1.a $3$ $74.948$ \(\Q(\zeta_{18})^+\) None 494.2.a.e \(3\) \(3\) \(3\) \(-6\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(1+2\beta _{1}-\beta _{2})q^{3}+q^{4}+(1+\cdots)q^{5}+\cdots\)
9386.2.a.bf 9386.a 1.a $4$ $74.948$ 4.4.16609.1 None 494.2.a.h \(-4\) \(-2\) \(2\) \(7\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{2}q^{3}+q^{4}+(1-\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
9386.2.a.bg 9386.a 1.a $4$ $74.948$ 4.4.11344.1 None 494.2.f.j \(-4\) \(0\) \(-2\) \(-4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{2}q^{3}+q^{4}+\beta _{3}q^{5}-\beta _{2}q^{6}+\cdots\)
9386.2.a.bh 9386.a 1.a $4$ $74.948$ 4.4.11344.1 None 494.2.f.j \(4\) \(0\) \(-2\) \(-4\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-\beta _{2}q^{3}+q^{4}+\beta _{3}q^{5}-\beta _{2}q^{6}+\cdots\)
9386.2.a.bi 9386.a 1.a $6$ $74.948$ 6.6.980125.1 None 9386.2.a.bi \(-6\) \(-2\) \(2\) \(-6\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(-1+\beta _{1}-\beta _{4})q^{3}+q^{4}+(-\beta _{2}+\cdots)q^{5}+\cdots\)
9386.2.a.bj 9386.a 1.a $6$ $74.948$ 6.6.2235125.1 None 9386.2.a.bj \(-6\) \(0\) \(0\) \(-4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta _{3}q^{3}+q^{4}+(\beta _{1}+\beta _{2}-\beta _{4}+\cdots)q^{5}+\cdots\)
9386.2.a.bk 9386.a 1.a $6$ $74.948$ 6.6.784399964.1 None 9386.2.a.bk \(-6\) \(3\) \(-1\) \(6\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}+\beta _{5}q^{5}-\beta _{1}q^{6}+\cdots\)
9386.2.a.bl 9386.a 1.a $6$ $74.948$ 6.6.784399964.1 None 9386.2.a.bk \(6\) \(-3\) \(-1\) \(6\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-\beta _{1}q^{3}+q^{4}+\beta _{5}q^{5}-\beta _{1}q^{6}+\cdots\)
9386.2.a.bm 9386.a 1.a $6$ $74.948$ 6.6.2235125.1 None 9386.2.a.bj \(6\) \(0\) \(0\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta _{3}q^{3}+q^{4}+(\beta _{1}+\beta _{2}-\beta _{4}+\cdots)q^{5}+\cdots\)
9386.2.a.bn 9386.a 1.a $6$ $74.948$ 6.6.980125.1 None 9386.2.a.bi \(6\) \(2\) \(2\) \(-6\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(1-\beta _{1}+\beta _{4})q^{3}+q^{4}+(-\beta _{2}+\cdots)q^{5}+\cdots\)
9386.2.a.bo 9386.a 1.a $9$ $74.948$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 494.2.x.b \(-9\) \(3\) \(-3\) \(-6\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}+\beta _{8}q^{5}-\beta _{1}q^{6}+\cdots\)
9386.2.a.bp 9386.a 1.a $9$ $74.948$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 494.2.x.b \(9\) \(-3\) \(-3\) \(-6\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-\beta _{1}q^{3}+q^{4}+\beta _{8}q^{5}-\beta _{1}q^{6}+\cdots\)
9386.2.a.bq 9386.a 1.a $12$ $74.948$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 9386.2.a.bq \(-12\) \(-2\) \(6\) \(10\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta _{1}q^{3}+q^{4}+(1+\beta _{7})q^{5}+\beta _{1}q^{6}+\cdots\)
9386.2.a.br 9386.a 1.a $12$ $74.948$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 9386.2.a.br \(-12\) \(0\) \(4\) \(4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta _{1}q^{3}+q^{4}+\beta _{8}q^{5}+\beta _{1}q^{6}+\cdots\)
9386.2.a.bs 9386.a 1.a $12$ $74.948$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 9386.2.a.bs \(-12\) \(2\) \(-2\) \(-10\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}+\beta _{6}q^{5}-\beta _{1}q^{6}+\cdots\)
9386.2.a.bt 9386.a 1.a $12$ $74.948$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 9386.2.a.bs \(12\) \(-2\) \(-2\) \(-10\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-\beta _{1}q^{3}+q^{4}+\beta _{6}q^{5}-\beta _{1}q^{6}+\cdots\)
9386.2.a.bu 9386.a 1.a $12$ $74.948$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 9386.2.a.br \(12\) \(0\) \(4\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta _{1}q^{3}+q^{4}+\beta _{8}q^{5}+\beta _{1}q^{6}+\cdots\)
9386.2.a.bv 9386.a 1.a $12$ $74.948$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 9386.2.a.bq \(12\) \(2\) \(6\) \(10\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta _{1}q^{3}+q^{4}+(1+\beta _{7})q^{5}+\beta _{1}q^{6}+\cdots\)
9386.2.a.bw 9386.a 1.a $15$ $74.948$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 494.2.x.d \(-15\) \(-3\) \(3\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta _{1}q^{3}+q^{4}-\beta _{6}q^{5}+\beta _{1}q^{6}+\cdots\)
9386.2.a.bx 9386.a 1.a $15$ $74.948$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 494.2.x.c \(-15\) \(3\) \(-9\) \(-9\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}+(-1-\beta _{6})q^{5}+\cdots\)
9386.2.a.by 9386.a 1.a $15$ $74.948$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 494.2.x.c \(15\) \(-3\) \(-9\) \(-9\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-\beta _{1}q^{3}+q^{4}+(-1-\beta _{6})q^{5}+\cdots\)
9386.2.a.bz 9386.a 1.a $15$ $74.948$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 494.2.x.d \(15\) \(3\) \(3\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta _{1}q^{3}+q^{4}-\beta _{6}q^{5}+\beta _{1}q^{6}+\cdots\)
9386.2.a.ca 9386.a 1.a $18$ $74.948$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 494.2.x.e \(-18\) \(-3\) \(3\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta _{1}q^{3}+q^{4}+\beta _{2}q^{5}+\beta _{1}q^{6}+\cdots\)
9386.2.a.cb 9386.a 1.a $18$ $74.948$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 494.2.x.e \(18\) \(3\) \(3\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta _{1}q^{3}+q^{4}+\beta _{2}q^{5}+\beta _{1}q^{6}+\cdots\)
9386.2.a.cc 9386.a 1.a $24$ $74.948$ None 9386.2.a.cc \(-24\) \(2\) \(6\) \(14\) $+$ $-$ $+$ $\mathrm{SU}(2)$
9386.2.a.cd 9386.a 1.a $24$ $74.948$ None 9386.2.a.cc \(24\) \(-2\) \(6\) \(14\) $-$ $+$ $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(9386))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(9386)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(247))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(361))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(494))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(722))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4693))\)\(^{\oplus 2}\)