Properties

Label 936.6.a.h
Level $936$
Weight $6$
Character orbit 936.a
Self dual yes
Analytic conductor $150.119$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,6,Mod(1,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 936.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(150.119255345\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.54905.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 60x + 20 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (2 \beta_{2} - \beta_1 + 3) q^{5} + (\beta_{2} - 4 \beta_1 - 14) q^{7} + ( - 11 \beta_{2} - \beta_1 + 271) q^{11} + 169 q^{13} + ( - 24 \beta_{2} - 84 \beta_1 + 194) q^{17} + (43 \beta_{2} - 44 \beta_1 - 494) q^{19}+ \cdots + ( - 908 \beta_{2} + 4986 \beta_1 - 23928) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 8 q^{5} - 46 q^{7} + 812 q^{11} + 507 q^{13} + 498 q^{17} - 1526 q^{19} + 3784 q^{23} - 247 q^{25} + 6130 q^{29} - 4390 q^{31} + 8864 q^{35} - 9226 q^{37} + 10732 q^{41} + 3372 q^{43} + 1596 q^{47}+ \cdots - 66798 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 60x + 20 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} + \nu - 40 ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{2} + 7\nu + 38 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{2} + 7\beta _1 + 159 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−7.43351
8.10140
0.332106
0 0 0 −70.2033 0 −64.2928 0 0 0
1.2 0 0 0 15.2101 0 −66.9296 0 0 0
1.3 0 0 0 62.9932 0 85.2224 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 936.6.a.h 3
3.b odd 2 1 312.6.a.e 3
12.b even 2 1 624.6.a.q 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.6.a.e 3 3.b odd 2 1
624.6.a.q 3 12.b even 2 1
936.6.a.h 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} - 8T_{5}^{2} - 4532T_{5} + 67264 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(936))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 8 T^{2} + \cdots + 67264 \) Copy content Toggle raw display
$7$ \( T^{3} + 46 T^{2} + \cdots - 366720 \) Copy content Toggle raw display
$11$ \( T^{3} - 812 T^{2} + \cdots - 4250112 \) Copy content Toggle raw display
$13$ \( (T - 169)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 1503781672 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 1634520352 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 2376327168 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 9842619912 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 4962140928 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 415746183592 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 3603001534128 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 1801857514176 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 468694506496 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 26283641596248 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 3061733904640 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 16857050073400 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 99579619714976 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 16016399388288 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 137295199656 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 89073162215424 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 17266708920064 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 68850769971840 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 178791904801800 \) Copy content Toggle raw display
show more
show less