Properties

Label 2-936-1.1-c5-0-18
Degree $2$
Conductor $936$
Sign $1$
Analytic cond. $150.119$
Root an. cond. $12.2523$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 15.2·5-s − 66.9·7-s + 94.2·11-s + 169·13-s − 1.57e3·17-s − 610.·19-s + 863.·23-s − 2.89e3·25-s + 4.99e3·29-s − 158.·31-s − 1.01e3·35-s + 8.71e3·37-s + 1.87e4·41-s − 1.81e4·43-s + 6.09e3·47-s − 1.23e4·49-s − 2.41e4·53-s + 1.43e3·55-s + 3.21e4·59-s − 5.09e4·61-s + 2.57e3·65-s + 6.65e4·67-s − 3.38e4·71-s + 1.32e4·73-s − 6.30e3·77-s − 4.57e4·79-s + 7.68e4·83-s + ⋯
L(s)  = 1  + 0.272·5-s − 0.516·7-s + 0.234·11-s + 0.277·13-s − 1.31·17-s − 0.388·19-s + 0.340·23-s − 0.925·25-s + 1.10·29-s − 0.0296·31-s − 0.140·35-s + 1.04·37-s + 1.74·41-s − 1.49·43-s + 0.402·47-s − 0.733·49-s − 1.18·53-s + 0.0638·55-s + 1.20·59-s − 1.75·61-s + 0.0754·65-s + 1.81·67-s − 0.797·71-s + 0.290·73-s − 0.121·77-s − 0.824·79-s + 1.22·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(936\)    =    \(2^{3} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(150.119\)
Root analytic conductor: \(12.2523\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 936,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.821787178\)
\(L(\frac12)\) \(\approx\) \(1.821787178\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - 169T \)
good5 \( 1 - 15.2T + 3.12e3T^{2} \)
7 \( 1 + 66.9T + 1.68e4T^{2} \)
11 \( 1 - 94.2T + 1.61e5T^{2} \)
17 \( 1 + 1.57e3T + 1.41e6T^{2} \)
19 \( 1 + 610.T + 2.47e6T^{2} \)
23 \( 1 - 863.T + 6.43e6T^{2} \)
29 \( 1 - 4.99e3T + 2.05e7T^{2} \)
31 \( 1 + 158.T + 2.86e7T^{2} \)
37 \( 1 - 8.71e3T + 6.93e7T^{2} \)
41 \( 1 - 1.87e4T + 1.15e8T^{2} \)
43 \( 1 + 1.81e4T + 1.47e8T^{2} \)
47 \( 1 - 6.09e3T + 2.29e8T^{2} \)
53 \( 1 + 2.41e4T + 4.18e8T^{2} \)
59 \( 1 - 3.21e4T + 7.14e8T^{2} \)
61 \( 1 + 5.09e4T + 8.44e8T^{2} \)
67 \( 1 - 6.65e4T + 1.35e9T^{2} \)
71 \( 1 + 3.38e4T + 1.80e9T^{2} \)
73 \( 1 - 1.32e4T + 2.07e9T^{2} \)
79 \( 1 + 4.57e4T + 3.07e9T^{2} \)
83 \( 1 - 7.68e4T + 3.93e9T^{2} \)
89 \( 1 - 4.99e4T + 5.58e9T^{2} \)
97 \( 1 - 4.69e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.334148558884809491412019408361, −8.592342300777961453687012444901, −7.65086106839336200024231362215, −6.53028454910835973061943594793, −6.14924008856466065529247910303, −4.86786793298963223307943220731, −4.01327669582467470894986819987, −2.88098201747064775245471523441, −1.88595548758445480562503974400, −0.58537185396144996717359961338, 0.58537185396144996717359961338, 1.88595548758445480562503974400, 2.88098201747064775245471523441, 4.01327669582467470894986819987, 4.86786793298963223307943220731, 6.14924008856466065529247910303, 6.53028454910835973061943594793, 7.65086106839336200024231362215, 8.592342300777961453687012444901, 9.334148558884809491412019408361

Graph of the $Z$-function along the critical line