Properties

Label 2-936-1.1-c5-0-38
Degree $2$
Conductor $936$
Sign $1$
Analytic cond. $150.119$
Root an. cond. $12.2523$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 62.9·5-s + 85.2·7-s + 69.5·11-s + 169·13-s + 1.37e3·17-s + 1.24e3·19-s − 749.·23-s + 843.·25-s + 2.08e3·29-s + 3.86e3·31-s + 5.36e3·35-s − 1.47e4·37-s + 1.03e4·41-s + 6.75e3·43-s + 6.80e3·47-s − 9.54e3·49-s + 2.99e4·53-s + 4.38e3·55-s + 2.03e3·59-s + 2.10e4·61-s + 1.06e4·65-s − 4.52e4·67-s + 6.02e4·71-s − 1.53e3·73-s + 5.93e3·77-s + 3.03e4·79-s − 1.86e4·83-s + ⋯
L(s)  = 1  + 1.12·5-s + 0.657·7-s + 0.173·11-s + 0.277·13-s + 1.15·17-s + 0.788·19-s − 0.295·23-s + 0.269·25-s + 0.459·29-s + 0.722·31-s + 0.740·35-s − 1.76·37-s + 0.965·41-s + 0.557·43-s + 0.449·47-s − 0.567·49-s + 1.46·53-s + 0.195·55-s + 0.0759·59-s + 0.724·61-s + 0.312·65-s − 1.23·67-s + 1.41·71-s − 0.0337·73-s + 0.114·77-s + 0.546·79-s − 0.297·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(936\)    =    \(2^{3} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(150.119\)
Root analytic conductor: \(12.2523\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 936,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.758800589\)
\(L(\frac12)\) \(\approx\) \(3.758800589\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - 169T \)
good5 \( 1 - 62.9T + 3.12e3T^{2} \)
7 \( 1 - 85.2T + 1.68e4T^{2} \)
11 \( 1 - 69.5T + 1.61e5T^{2} \)
17 \( 1 - 1.37e3T + 1.41e6T^{2} \)
19 \( 1 - 1.24e3T + 2.47e6T^{2} \)
23 \( 1 + 749.T + 6.43e6T^{2} \)
29 \( 1 - 2.08e3T + 2.05e7T^{2} \)
31 \( 1 - 3.86e3T + 2.86e7T^{2} \)
37 \( 1 + 1.47e4T + 6.93e7T^{2} \)
41 \( 1 - 1.03e4T + 1.15e8T^{2} \)
43 \( 1 - 6.75e3T + 1.47e8T^{2} \)
47 \( 1 - 6.80e3T + 2.29e8T^{2} \)
53 \( 1 - 2.99e4T + 4.18e8T^{2} \)
59 \( 1 - 2.03e3T + 7.14e8T^{2} \)
61 \( 1 - 2.10e4T + 8.44e8T^{2} \)
67 \( 1 + 4.52e4T + 1.35e9T^{2} \)
71 \( 1 - 6.02e4T + 1.80e9T^{2} \)
73 \( 1 + 1.53e3T + 2.07e9T^{2} \)
79 \( 1 - 3.03e4T + 3.07e9T^{2} \)
83 \( 1 + 1.86e4T + 3.93e9T^{2} \)
89 \( 1 + 1.99e4T + 5.58e9T^{2} \)
97 \( 1 + 1.40e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.434625981259235910506775844448, −8.512841268014264647326964440661, −7.68841601282581971335006398636, −6.70435151832609779043348568426, −5.70945043144329826073824604647, −5.21243462806217000946138861843, −3.98030128601919350695001518180, −2.81075824300413417956370900430, −1.73754176313836923965239682427, −0.922578918729037410351671615835, 0.922578918729037410351671615835, 1.73754176313836923965239682427, 2.81075824300413417956370900430, 3.98030128601919350695001518180, 5.21243462806217000946138861843, 5.70945043144329826073824604647, 6.70435151832609779043348568426, 7.68841601282581971335006398636, 8.512841268014264647326964440661, 9.434625981259235910506775844448

Graph of the $Z$-function along the critical line