Properties

Label 936.2.s.f.529.19
Level $936$
Weight $2$
Character 936.529
Analytic conductor $7.474$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(529,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,-3,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 529.19
Character \(\chi\) \(=\) 936.529
Dual form 936.2.s.f.913.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.64850 + 0.531456i) q^{3} +(-1.09120 - 1.89001i) q^{5} +1.62444 q^{7} +(2.43511 + 1.75221i) q^{9} +(-1.74498 - 3.02239i) q^{11} +(2.69679 - 2.39318i) q^{13} +(-0.794383 - 3.69561i) q^{15} +(-3.55485 - 6.15718i) q^{17} +(-0.0426269 - 0.0738319i) q^{19} +(2.67788 + 0.863317i) q^{21} -1.90847 q^{23} +(0.118572 - 0.205372i) q^{25} +(3.08305 + 4.18268i) q^{27} +(3.15239 + 5.46010i) q^{29} +(2.99631 + 5.18976i) q^{31} +(-1.27033 - 5.90980i) q^{33} +(-1.77258 - 3.07020i) q^{35} +(2.50439 - 4.33773i) q^{37} +(5.71753 - 2.51193i) q^{39} +11.0342 q^{41} -3.50171 q^{43} +(0.654515 - 6.51439i) q^{45} +(-1.46942 + 2.54511i) q^{47} -4.36121 q^{49} +(-2.58790 - 12.0394i) q^{51} -13.8893 q^{53} +(-3.80824 + 6.59606i) q^{55} +(-0.0310320 - 0.144366i) q^{57} +(7.53673 - 13.0540i) q^{59} +0.0516412 q^{61} +(3.95568 + 2.84636i) q^{63} +(-7.46587 - 2.48553i) q^{65} +13.6301 q^{67} +(-3.14612 - 1.01427i) q^{69} +(6.20338 + 10.7446i) q^{71} +2.16817 q^{73} +(0.304611 - 0.275540i) q^{75} +(-2.83461 - 4.90968i) q^{77} +(1.05985 - 1.83572i) q^{79} +(2.85950 + 8.53365i) q^{81} +(-1.31415 + 2.27618i) q^{83} +(-7.75810 + 13.4374i) q^{85} +(2.29491 + 10.6763i) q^{87} +(-2.44105 + 4.22802i) q^{89} +(4.38077 - 3.88757i) q^{91} +(2.18129 + 10.1477i) q^{93} +(-0.0930288 + 0.161131i) q^{95} -9.56568 q^{97} +(1.04666 - 10.4174i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 3 q^{3} + q^{5} - 14 q^{7} - 9 q^{9} - 3 q^{13} + 2 q^{15} - q^{17} + 2 q^{19} - 30 q^{21} + 2 q^{23} - 23 q^{25} - 3 q^{27} + 12 q^{29} + 8 q^{31} - 5 q^{33} - 12 q^{35} + 18 q^{37} - 6 q^{39}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.64850 + 0.531456i 0.951762 + 0.306836i
\(4\) 0 0
\(5\) −1.09120 1.89001i −0.487999 0.845239i 0.511906 0.859042i \(-0.328940\pi\)
−0.999905 + 0.0138028i \(0.995606\pi\)
\(6\) 0 0
\(7\) 1.62444 0.613979 0.306989 0.951713i \(-0.400678\pi\)
0.306989 + 0.951713i \(0.400678\pi\)
\(8\) 0 0
\(9\) 2.43511 + 1.75221i 0.811703 + 0.584071i
\(10\) 0 0
\(11\) −1.74498 3.02239i −0.526131 0.911286i −0.999537 0.0304412i \(-0.990309\pi\)
0.473405 0.880845i \(-0.343025\pi\)
\(12\) 0 0
\(13\) 2.69679 2.39318i 0.747956 0.663749i
\(14\) 0 0
\(15\) −0.794383 3.69561i −0.205109 0.954202i
\(16\) 0 0
\(17\) −3.55485 6.15718i −0.862178 1.49334i −0.869822 0.493365i \(-0.835767\pi\)
0.00764447 0.999971i \(-0.497567\pi\)
\(18\) 0 0
\(19\) −0.0426269 0.0738319i −0.00977928 0.0169382i 0.861094 0.508445i \(-0.169780\pi\)
−0.870874 + 0.491507i \(0.836446\pi\)
\(20\) 0 0
\(21\) 2.67788 + 0.863317i 0.584362 + 0.188391i
\(22\) 0 0
\(23\) −1.90847 −0.397945 −0.198972 0.980005i \(-0.563760\pi\)
−0.198972 + 0.980005i \(0.563760\pi\)
\(24\) 0 0
\(25\) 0.118572 0.205372i 0.0237143 0.0410744i
\(26\) 0 0
\(27\) 3.08305 + 4.18268i 0.593334 + 0.804957i
\(28\) 0 0
\(29\) 3.15239 + 5.46010i 0.585384 + 1.01391i 0.994827 + 0.101579i \(0.0323894\pi\)
−0.409444 + 0.912335i \(0.634277\pi\)
\(30\) 0 0
\(31\) 2.99631 + 5.18976i 0.538153 + 0.932109i 0.999004 + 0.0446308i \(0.0142112\pi\)
−0.460850 + 0.887478i \(0.652456\pi\)
\(32\) 0 0
\(33\) −1.27033 5.90980i −0.221136 1.02876i
\(34\) 0 0
\(35\) −1.77258 3.07020i −0.299621 0.518959i
\(36\) 0 0
\(37\) 2.50439 4.33773i 0.411719 0.713119i −0.583359 0.812215i \(-0.698262\pi\)
0.995078 + 0.0990961i \(0.0315951\pi\)
\(38\) 0 0
\(39\) 5.71753 2.51193i 0.915538 0.402231i
\(40\) 0 0
\(41\) 11.0342 1.72325 0.861624 0.507548i \(-0.169448\pi\)
0.861624 + 0.507548i \(0.169448\pi\)
\(42\) 0 0
\(43\) −3.50171 −0.534006 −0.267003 0.963696i \(-0.586033\pi\)
−0.267003 + 0.963696i \(0.586033\pi\)
\(44\) 0 0
\(45\) 0.654515 6.51439i 0.0975693 0.971108i
\(46\) 0 0
\(47\) −1.46942 + 2.54511i −0.214337 + 0.371242i −0.953067 0.302759i \(-0.902092\pi\)
0.738731 + 0.674001i \(0.235426\pi\)
\(48\) 0 0
\(49\) −4.36121 −0.623030
\(50\) 0 0
\(51\) −2.58790 12.0394i −0.362378 1.68585i
\(52\) 0 0
\(53\) −13.8893 −1.90784 −0.953920 0.300060i \(-0.902993\pi\)
−0.953920 + 0.300060i \(0.902993\pi\)
\(54\) 0 0
\(55\) −3.80824 + 6.59606i −0.513503 + 0.889413i
\(56\) 0 0
\(57\) −0.0310320 0.144366i −0.00411029 0.0191218i
\(58\) 0 0
\(59\) 7.53673 13.0540i 0.981198 1.69949i 0.323454 0.946244i \(-0.395156\pi\)
0.657745 0.753241i \(-0.271511\pi\)
\(60\) 0 0
\(61\) 0.0516412 0.00661198 0.00330599 0.999995i \(-0.498948\pi\)
0.00330599 + 0.999995i \(0.498948\pi\)
\(62\) 0 0
\(63\) 3.95568 + 2.84636i 0.498368 + 0.358607i
\(64\) 0 0
\(65\) −7.46587 2.48553i −0.926028 0.308292i
\(66\) 0 0
\(67\) 13.6301 1.66518 0.832592 0.553887i \(-0.186856\pi\)
0.832592 + 0.553887i \(0.186856\pi\)
\(68\) 0 0
\(69\) −3.14612 1.01427i −0.378749 0.122104i
\(70\) 0 0
\(71\) 6.20338 + 10.7446i 0.736205 + 1.27514i 0.954193 + 0.299193i \(0.0967175\pi\)
−0.217987 + 0.975952i \(0.569949\pi\)
\(72\) 0 0
\(73\) 2.16817 0.253766 0.126883 0.991918i \(-0.459503\pi\)
0.126883 + 0.991918i \(0.459503\pi\)
\(74\) 0 0
\(75\) 0.304611 0.275540i 0.0351735 0.0318166i
\(76\) 0 0
\(77\) −2.83461 4.90968i −0.323033 0.559510i
\(78\) 0 0
\(79\) 1.05985 1.83572i 0.119243 0.206535i −0.800225 0.599700i \(-0.795287\pi\)
0.919468 + 0.393165i \(0.128620\pi\)
\(80\) 0 0
\(81\) 2.85950 + 8.53365i 0.317723 + 0.948184i
\(82\) 0 0
\(83\) −1.31415 + 2.27618i −0.144247 + 0.249843i −0.929092 0.369849i \(-0.879409\pi\)
0.784845 + 0.619692i \(0.212743\pi\)
\(84\) 0 0
\(85\) −7.75810 + 13.4374i −0.841484 + 1.45749i
\(86\) 0 0
\(87\) 2.29491 + 10.6763i 0.246040 + 1.14462i
\(88\) 0 0
\(89\) −2.44105 + 4.22802i −0.258751 + 0.448170i −0.965908 0.258887i \(-0.916644\pi\)
0.707157 + 0.707057i \(0.249978\pi\)
\(90\) 0 0
\(91\) 4.38077 3.88757i 0.459229 0.407528i
\(92\) 0 0
\(93\) 2.18129 + 10.1477i 0.226189 + 1.05227i
\(94\) 0 0
\(95\) −0.0930288 + 0.161131i −0.00954455 + 0.0165317i
\(96\) 0 0
\(97\) −9.56568 −0.971248 −0.485624 0.874168i \(-0.661408\pi\)
−0.485624 + 0.874168i \(0.661408\pi\)
\(98\) 0 0
\(99\) 1.04666 10.4174i 0.105193 1.04699i
\(100\) 0 0
\(101\) 0.247149 + 0.428074i 0.0245922 + 0.0425950i 0.878060 0.478551i \(-0.158838\pi\)
−0.853467 + 0.521146i \(0.825505\pi\)
\(102\) 0 0
\(103\) 6.42380 + 11.1263i 0.632956 + 1.09631i 0.986944 + 0.161062i \(0.0514918\pi\)
−0.353989 + 0.935250i \(0.615175\pi\)
\(104\) 0 0
\(105\) −1.29042 6.00328i −0.125932 0.585860i
\(106\) 0 0
\(107\) 5.63470 9.75958i 0.544727 0.943494i −0.453897 0.891054i \(-0.649967\pi\)
0.998624 0.0524402i \(-0.0166999\pi\)
\(108\) 0 0
\(109\) −8.17104 −0.782643 −0.391322 0.920254i \(-0.627982\pi\)
−0.391322 + 0.920254i \(0.627982\pi\)
\(110\) 0 0
\(111\) 6.43380 5.81978i 0.610670 0.552389i
\(112\) 0 0
\(113\) −5.74694 + 9.95399i −0.540626 + 0.936392i 0.458242 + 0.888828i \(0.348479\pi\)
−0.998868 + 0.0475648i \(0.984854\pi\)
\(114\) 0 0
\(115\) 2.08252 + 3.60704i 0.194196 + 0.336358i
\(116\) 0 0
\(117\) 10.7603 1.10230i 0.994794 0.101908i
\(118\) 0 0
\(119\) −5.77463 10.0019i −0.529359 0.916877i
\(120\) 0 0
\(121\) −0.589908 + 1.02175i −0.0536280 + 0.0928863i
\(122\) 0 0
\(123\) 18.1898 + 5.86418i 1.64012 + 0.528755i
\(124\) 0 0
\(125\) −11.4295 −1.02229
\(126\) 0 0
\(127\) −9.03929 + 15.6565i −0.802107 + 1.38929i 0.116120 + 0.993235i \(0.462954\pi\)
−0.918227 + 0.396055i \(0.870379\pi\)
\(128\) 0 0
\(129\) −5.77257 1.86101i −0.508246 0.163852i
\(130\) 0 0
\(131\) 4.32214 + 7.48616i 0.377627 + 0.654069i 0.990716 0.135945i \(-0.0434069\pi\)
−0.613090 + 0.790013i \(0.710074\pi\)
\(132\) 0 0
\(133\) −0.0692446 0.119935i −0.00600427 0.0103997i
\(134\) 0 0
\(135\) 4.54108 10.3911i 0.390834 0.894327i
\(136\) 0 0
\(137\) −4.88291 −0.417175 −0.208588 0.978004i \(-0.566887\pi\)
−0.208588 + 0.978004i \(0.566887\pi\)
\(138\) 0 0
\(139\) −8.44513 + 14.6274i −0.716307 + 1.24068i 0.246146 + 0.969233i \(0.420836\pi\)
−0.962453 + 0.271447i \(0.912498\pi\)
\(140\) 0 0
\(141\) −3.77495 + 3.41468i −0.317908 + 0.287568i
\(142\) 0 0
\(143\) −11.9390 3.97471i −0.998388 0.332382i
\(144\) 0 0
\(145\) 6.87976 11.9161i 0.571333 0.989578i
\(146\) 0 0
\(147\) −7.18945 2.31779i −0.592976 0.191168i
\(148\) 0 0
\(149\) −0.949804 + 1.64511i −0.0778110 + 0.134773i −0.902305 0.431098i \(-0.858126\pi\)
0.824494 + 0.565870i \(0.191460\pi\)
\(150\) 0 0
\(151\) 0.337746 0.584993i 0.0274853 0.0476060i −0.851956 0.523614i \(-0.824583\pi\)
0.879441 + 0.476008i \(0.157917\pi\)
\(152\) 0 0
\(153\) 2.13224 21.2223i 0.172382 1.71572i
\(154\) 0 0
\(155\) 6.53914 11.3261i 0.525236 0.909736i
\(156\) 0 0
\(157\) 4.74281 + 8.21479i 0.378518 + 0.655612i 0.990847 0.134991i \(-0.0431006\pi\)
−0.612329 + 0.790603i \(0.709767\pi\)
\(158\) 0 0
\(159\) −22.8965 7.38155i −1.81581 0.585395i
\(160\) 0 0
\(161\) −3.10019 −0.244330
\(162\) 0 0
\(163\) 0.374266 + 0.648248i 0.0293148 + 0.0507747i 0.880311 0.474398i \(-0.157334\pi\)
−0.850996 + 0.525172i \(0.824001\pi\)
\(164\) 0 0
\(165\) −9.78340 + 8.84970i −0.761637 + 0.688948i
\(166\) 0 0
\(167\) 8.88147 0.687269 0.343635 0.939103i \(-0.388342\pi\)
0.343635 + 0.939103i \(0.388342\pi\)
\(168\) 0 0
\(169\) 1.54537 12.9078i 0.118875 0.992909i
\(170\) 0 0
\(171\) 0.0255681 0.254480i 0.00195524 0.0194606i
\(172\) 0 0
\(173\) 12.6011 0.958040 0.479020 0.877804i \(-0.340992\pi\)
0.479020 + 0.877804i \(0.340992\pi\)
\(174\) 0 0
\(175\) 0.192612 0.333614i 0.0145601 0.0252188i
\(176\) 0 0
\(177\) 19.3619 17.5141i 1.45533 1.31644i
\(178\) 0 0
\(179\) 0.552989 0.957806i 0.0413324 0.0715898i −0.844619 0.535368i \(-0.820173\pi\)
0.885952 + 0.463778i \(0.153506\pi\)
\(180\) 0 0
\(181\) −13.0578 −0.970581 −0.485291 0.874353i \(-0.661286\pi\)
−0.485291 + 0.874353i \(0.661286\pi\)
\(182\) 0 0
\(183\) 0.0851306 + 0.0274451i 0.00629303 + 0.00202880i
\(184\) 0 0
\(185\) −10.9311 −0.803674
\(186\) 0 0
\(187\) −12.4063 + 21.4883i −0.907237 + 1.57138i
\(188\) 0 0
\(189\) 5.00822 + 6.79449i 0.364294 + 0.494226i
\(190\) 0 0
\(191\) −15.8117 −1.14409 −0.572047 0.820221i \(-0.693851\pi\)
−0.572047 + 0.820221i \(0.693851\pi\)
\(192\) 0 0
\(193\) −0.0877797 −0.00631852 −0.00315926 0.999995i \(-0.501006\pi\)
−0.00315926 + 0.999995i \(0.501006\pi\)
\(194\) 0 0
\(195\) −10.9865 8.06519i −0.786763 0.577560i
\(196\) 0 0
\(197\) 1.65641 2.86899i 0.118014 0.204407i −0.800966 0.598709i \(-0.795680\pi\)
0.918981 + 0.394302i \(0.129014\pi\)
\(198\) 0 0
\(199\) 10.0424 + 17.3940i 0.711890 + 1.23303i 0.964147 + 0.265369i \(0.0854939\pi\)
−0.252257 + 0.967660i \(0.581173\pi\)
\(200\) 0 0
\(201\) 22.4693 + 7.24381i 1.58486 + 0.510939i
\(202\) 0 0
\(203\) 5.12085 + 8.86957i 0.359413 + 0.622522i
\(204\) 0 0
\(205\) −12.0405 20.8547i −0.840943 1.45656i
\(206\) 0 0
\(207\) −4.64734 3.34405i −0.323013 0.232428i
\(208\) 0 0
\(209\) −0.148766 + 0.257670i −0.0102904 + 0.0178234i
\(210\) 0 0
\(211\) 7.95799 0.547851 0.273925 0.961751i \(-0.411678\pi\)
0.273925 + 0.961751i \(0.411678\pi\)
\(212\) 0 0
\(213\) 4.51600 + 21.0092i 0.309431 + 1.43953i
\(214\) 0 0
\(215\) 3.82106 + 6.61827i 0.260594 + 0.451362i
\(216\) 0 0
\(217\) 4.86731 + 8.43043i 0.330415 + 0.572295i
\(218\) 0 0
\(219\) 3.57424 + 1.15229i 0.241525 + 0.0778646i
\(220\) 0 0
\(221\) −24.3219 8.09724i −1.63607 0.544679i
\(222\) 0 0
\(223\) −8.59514 14.8872i −0.575573 0.996922i −0.995979 0.0895857i \(-0.971446\pi\)
0.420406 0.907336i \(-0.361888\pi\)
\(224\) 0 0
\(225\) 0.648590 0.292340i 0.0432393 0.0194894i
\(226\) 0 0
\(227\) 6.56551 0.435768 0.217884 0.975975i \(-0.430085\pi\)
0.217884 + 0.975975i \(0.430085\pi\)
\(228\) 0 0
\(229\) 3.57171 + 6.18638i 0.236025 + 0.408808i 0.959570 0.281470i \(-0.0908218\pi\)
−0.723545 + 0.690277i \(0.757489\pi\)
\(230\) 0 0
\(231\) −2.06357 9.60009i −0.135773 0.631639i
\(232\) 0 0
\(233\) −26.7650 −1.75344 −0.876718 0.481005i \(-0.840272\pi\)
−0.876718 + 0.481005i \(0.840272\pi\)
\(234\) 0 0
\(235\) 6.41371 0.418384
\(236\) 0 0
\(237\) 2.72278 2.46292i 0.176863 0.159984i
\(238\) 0 0
\(239\) −4.47336 7.74809i −0.289358 0.501182i 0.684299 0.729202i \(-0.260108\pi\)
−0.973657 + 0.228019i \(0.926775\pi\)
\(240\) 0 0
\(241\) 4.80610 0.309588 0.154794 0.987947i \(-0.450529\pi\)
0.154794 + 0.987947i \(0.450529\pi\)
\(242\) 0 0
\(243\) 0.178629 + 15.5874i 0.0114591 + 0.999934i
\(244\) 0 0
\(245\) 4.75894 + 8.24273i 0.304038 + 0.526609i
\(246\) 0 0
\(247\) −0.291649 0.0970955i −0.0185572 0.00617804i
\(248\) 0 0
\(249\) −3.37607 + 3.05387i −0.213950 + 0.193531i
\(250\) 0 0
\(251\) −3.00361 5.20240i −0.189586 0.328372i 0.755526 0.655118i \(-0.227381\pi\)
−0.945112 + 0.326746i \(0.894048\pi\)
\(252\) 0 0
\(253\) 3.33025 + 5.76816i 0.209371 + 0.362641i
\(254\) 0 0
\(255\) −19.9306 + 18.0285i −1.24810 + 1.12899i
\(256\) 0 0
\(257\) −24.8057 −1.54734 −0.773670 0.633589i \(-0.781581\pi\)
−0.773670 + 0.633589i \(0.781581\pi\)
\(258\) 0 0
\(259\) 4.06822 7.04637i 0.252787 0.437840i
\(260\) 0 0
\(261\) −1.89084 + 18.8196i −0.117040 + 1.16490i
\(262\) 0 0
\(263\) 13.4369 + 23.2734i 0.828555 + 1.43510i 0.899171 + 0.437597i \(0.144170\pi\)
−0.0706160 + 0.997504i \(0.522496\pi\)
\(264\) 0 0
\(265\) 15.1560 + 26.2509i 0.931024 + 1.61258i
\(266\) 0 0
\(267\) −6.27109 + 5.67259i −0.383784 + 0.347157i
\(268\) 0 0
\(269\) 2.24037 + 3.88044i 0.136598 + 0.236594i 0.926207 0.377016i \(-0.123050\pi\)
−0.789609 + 0.613611i \(0.789717\pi\)
\(270\) 0 0
\(271\) −8.87915 + 15.3791i −0.539370 + 0.934216i 0.459568 + 0.888142i \(0.348004\pi\)
−0.998938 + 0.0460733i \(0.985329\pi\)
\(272\) 0 0
\(273\) 9.28777 4.08047i 0.562121 0.246961i
\(274\) 0 0
\(275\) −0.827620 −0.0499073
\(276\) 0 0
\(277\) 29.1347 1.75053 0.875267 0.483641i \(-0.160686\pi\)
0.875267 + 0.483641i \(0.160686\pi\)
\(278\) 0 0
\(279\) −1.79722 + 17.8878i −0.107597 + 1.07091i
\(280\) 0 0
\(281\) −11.5323 + 19.9746i −0.687962 + 1.19158i 0.284535 + 0.958666i \(0.408161\pi\)
−0.972496 + 0.232919i \(0.925172\pi\)
\(282\) 0 0
\(283\) 0.481154 0.0286017 0.0143008 0.999898i \(-0.495448\pi\)
0.0143008 + 0.999898i \(0.495448\pi\)
\(284\) 0 0
\(285\) −0.238992 + 0.216183i −0.0141567 + 0.0128056i
\(286\) 0 0
\(287\) 17.9243 1.05804
\(288\) 0 0
\(289\) −16.7739 + 29.0533i −0.986701 + 1.70902i
\(290\) 0 0
\(291\) −15.7690 5.08374i −0.924397 0.298014i
\(292\) 0 0
\(293\) 7.51118 13.0098i 0.438808 0.760038i −0.558790 0.829309i \(-0.688734\pi\)
0.997598 + 0.0692715i \(0.0220675\pi\)
\(294\) 0 0
\(295\) −32.8963 −1.91529
\(296\) 0 0
\(297\) 7.26183 16.6169i 0.421374 0.964209i
\(298\) 0 0
\(299\) −5.14676 + 4.56733i −0.297645 + 0.264135i
\(300\) 0 0
\(301\) −5.68830 −0.327868
\(302\) 0 0
\(303\) 0.179922 + 0.837029i 0.0103363 + 0.0480861i
\(304\) 0 0
\(305\) −0.0563508 0.0976025i −0.00322664 0.00558870i
\(306\) 0 0
\(307\) −19.2835 −1.10057 −0.550283 0.834978i \(-0.685480\pi\)
−0.550283 + 0.834978i \(0.685480\pi\)
\(308\) 0 0
\(309\) 4.67647 + 21.7558i 0.266035 + 1.23764i
\(310\) 0 0
\(311\) 2.34648 + 4.06422i 0.133056 + 0.230461i 0.924853 0.380324i \(-0.124187\pi\)
−0.791797 + 0.610785i \(0.790854\pi\)
\(312\) 0 0
\(313\) 5.97393 10.3471i 0.337666 0.584855i −0.646327 0.763060i \(-0.723696\pi\)
0.983993 + 0.178205i \(0.0570292\pi\)
\(314\) 0 0
\(315\) 1.06322 10.5822i 0.0599055 0.596240i
\(316\) 0 0
\(317\) 0.834451 1.44531i 0.0468674 0.0811768i −0.841640 0.540039i \(-0.818409\pi\)
0.888507 + 0.458862i \(0.151743\pi\)
\(318\) 0 0
\(319\) 11.0017 19.0555i 0.615977 1.06690i
\(320\) 0 0
\(321\) 14.4756 13.0941i 0.807949 0.730840i
\(322\) 0 0
\(323\) −0.303064 + 0.524923i −0.0168630 + 0.0292075i
\(324\) 0 0
\(325\) −0.171729 0.837609i −0.00952583 0.0464622i
\(326\) 0 0
\(327\) −13.4700 4.34255i −0.744890 0.240144i
\(328\) 0 0
\(329\) −2.38697 + 4.13436i −0.131598 + 0.227935i
\(330\) 0 0
\(331\) 24.5403 1.34886 0.674430 0.738339i \(-0.264390\pi\)
0.674430 + 0.738339i \(0.264390\pi\)
\(332\) 0 0
\(333\) 13.6991 6.17462i 0.750705 0.338367i
\(334\) 0 0
\(335\) −14.8732 25.7611i −0.812608 1.40748i
\(336\) 0 0
\(337\) −7.09634 12.2912i −0.386562 0.669545i 0.605422 0.795904i \(-0.293004\pi\)
−0.991985 + 0.126359i \(0.959671\pi\)
\(338\) 0 0
\(339\) −14.7639 + 13.3549i −0.801867 + 0.725339i
\(340\) 0 0
\(341\) 10.4570 18.1121i 0.566278 0.980823i
\(342\) 0 0
\(343\) −18.4556 −0.996506
\(344\) 0 0
\(345\) 1.51606 + 7.05298i 0.0816219 + 0.379720i
\(346\) 0 0
\(347\) 10.9540 18.9729i 0.588042 1.01852i −0.406447 0.913674i \(-0.633232\pi\)
0.994489 0.104844i \(-0.0334343\pi\)
\(348\) 0 0
\(349\) −9.65509 16.7231i −0.516825 0.895168i −0.999809 0.0195384i \(-0.993780\pi\)
0.482984 0.875629i \(-0.339553\pi\)
\(350\) 0 0
\(351\) 18.3243 + 3.90151i 0.978076 + 0.208247i
\(352\) 0 0
\(353\) 15.1041 + 26.1610i 0.803908 + 1.39241i 0.917026 + 0.398828i \(0.130583\pi\)
−0.113118 + 0.993582i \(0.536084\pi\)
\(354\) 0 0
\(355\) 13.5382 23.4489i 0.718535 1.24454i
\(356\) 0 0
\(357\) −4.20388 19.5572i −0.222493 1.03508i
\(358\) 0 0
\(359\) 4.42088 0.233325 0.116662 0.993172i \(-0.462780\pi\)
0.116662 + 0.993172i \(0.462780\pi\)
\(360\) 0 0
\(361\) 9.49637 16.4482i 0.499809 0.865694i
\(362\) 0 0
\(363\) −1.51548 + 1.37085i −0.0795420 + 0.0719507i
\(364\) 0 0
\(365\) −2.36591 4.09788i −0.123837 0.214493i
\(366\) 0 0
\(367\) −9.39687 16.2759i −0.490513 0.849593i 0.509428 0.860513i \(-0.329857\pi\)
−0.999940 + 0.0109207i \(0.996524\pi\)
\(368\) 0 0
\(369\) 26.8694 + 19.3342i 1.39876 + 1.00650i
\(370\) 0 0
\(371\) −22.5623 −1.17137
\(372\) 0 0
\(373\) 4.49251 7.78126i 0.232614 0.402899i −0.725963 0.687734i \(-0.758606\pi\)
0.958576 + 0.284835i \(0.0919389\pi\)
\(374\) 0 0
\(375\) −18.8416 6.07429i −0.972975 0.313675i
\(376\) 0 0
\(377\) 21.5683 + 7.18051i 1.11083 + 0.369815i
\(378\) 0 0
\(379\) 3.07943 5.33373i 0.158180 0.273975i −0.776033 0.630693i \(-0.782771\pi\)
0.934212 + 0.356717i \(0.116104\pi\)
\(380\) 0 0
\(381\) −23.2220 + 21.0058i −1.18970 + 1.07616i
\(382\) 0 0
\(383\) −8.93512 + 15.4761i −0.456563 + 0.790791i −0.998777 0.0494499i \(-0.984253\pi\)
0.542213 + 0.840241i \(0.317587\pi\)
\(384\) 0 0
\(385\) −6.18624 + 10.7149i −0.315280 + 0.546081i
\(386\) 0 0
\(387\) −8.52704 6.13574i −0.433454 0.311897i
\(388\) 0 0
\(389\) 9.77128 16.9244i 0.495424 0.858099i −0.504563 0.863375i \(-0.668346\pi\)
0.999986 + 0.00527638i \(0.00167953\pi\)
\(390\) 0 0
\(391\) 6.78434 + 11.7508i 0.343099 + 0.594265i
\(392\) 0 0
\(393\) 3.14648 + 14.6380i 0.158719 + 0.738387i
\(394\) 0 0
\(395\) −4.62605 −0.232762
\(396\) 0 0
\(397\) 10.9910 + 19.0370i 0.551623 + 0.955439i 0.998158 + 0.0606729i \(0.0193246\pi\)
−0.446535 + 0.894766i \(0.647342\pi\)
\(398\) 0 0
\(399\) −0.0504095 0.234514i −0.00252363 0.0117404i
\(400\) 0 0
\(401\) 19.7203 0.984784 0.492392 0.870374i \(-0.336123\pi\)
0.492392 + 0.870374i \(0.336123\pi\)
\(402\) 0 0
\(403\) 20.5005 + 6.82500i 1.02120 + 0.339977i
\(404\) 0 0
\(405\) 13.0084 14.7164i 0.646393 0.731264i
\(406\) 0 0
\(407\) −17.4804 −0.866473
\(408\) 0 0
\(409\) 17.5244 30.3531i 0.866524 1.50086i 0.000997339 1.00000i \(-0.499683\pi\)
0.865526 0.500863i \(-0.166984\pi\)
\(410\) 0 0
\(411\) −8.04948 2.59505i −0.397052 0.128005i
\(412\) 0 0
\(413\) 12.2429 21.2054i 0.602435 1.04345i
\(414\) 0 0
\(415\) 5.73600 0.281569
\(416\) 0 0
\(417\) −21.6956 + 19.6251i −1.06244 + 0.961043i
\(418\) 0 0
\(419\) 31.8872 1.55779 0.778896 0.627153i \(-0.215780\pi\)
0.778896 + 0.627153i \(0.215780\pi\)
\(420\) 0 0
\(421\) −0.817750 + 1.41638i −0.0398547 + 0.0690304i −0.885265 0.465088i \(-0.846023\pi\)
0.845410 + 0.534118i \(0.179356\pi\)
\(422\) 0 0
\(423\) −8.03776 + 3.62288i −0.390809 + 0.176150i
\(424\) 0 0
\(425\) −1.68602 −0.0817838
\(426\) 0 0
\(427\) 0.0838878 0.00405962
\(428\) 0 0
\(429\) −17.5690 12.8974i −0.848241 0.622691i
\(430\) 0 0
\(431\) 9.96045 17.2520i 0.479778 0.831000i −0.519953 0.854195i \(-0.674051\pi\)
0.999731 + 0.0231952i \(0.00738392\pi\)
\(432\) 0 0
\(433\) −9.34496 16.1859i −0.449090 0.777847i 0.549237 0.835667i \(-0.314918\pi\)
−0.998327 + 0.0578197i \(0.981585\pi\)
\(434\) 0 0
\(435\) 17.6742 15.9874i 0.847412 0.766537i
\(436\) 0 0
\(437\) 0.0813523 + 0.140906i 0.00389161 + 0.00674047i
\(438\) 0 0
\(439\) 3.53370 + 6.12055i 0.168654 + 0.292118i 0.937947 0.346779i \(-0.112725\pi\)
−0.769293 + 0.638897i \(0.779391\pi\)
\(440\) 0 0
\(441\) −10.6200 7.64176i −0.505715 0.363894i
\(442\) 0 0
\(443\) 3.32667 5.76196i 0.158055 0.273759i −0.776112 0.630595i \(-0.782811\pi\)
0.934167 + 0.356836i \(0.116144\pi\)
\(444\) 0 0
\(445\) 10.6547 0.505081
\(446\) 0 0
\(447\) −2.44006 + 2.20718i −0.115411 + 0.104396i
\(448\) 0 0
\(449\) 13.9833 + 24.2198i 0.659913 + 1.14300i 0.980638 + 0.195830i \(0.0627402\pi\)
−0.320725 + 0.947172i \(0.603926\pi\)
\(450\) 0 0
\(451\) −19.2544 33.3496i −0.906654 1.57037i
\(452\) 0 0
\(453\) 0.867672 0.784863i 0.0407668 0.0368761i
\(454\) 0 0
\(455\) −12.1278 4.03759i −0.568562 0.189285i
\(456\) 0 0
\(457\) −18.8730 32.6889i −0.882840 1.52912i −0.848169 0.529725i \(-0.822295\pi\)
−0.0346709 0.999399i \(-0.511038\pi\)
\(458\) 0 0
\(459\) 14.7937 33.8517i 0.690511 1.58006i
\(460\) 0 0
\(461\) 13.8811 0.646508 0.323254 0.946312i \(-0.395223\pi\)
0.323254 + 0.946312i \(0.395223\pi\)
\(462\) 0 0
\(463\) 18.9410 + 32.8067i 0.880262 + 1.52466i 0.851050 + 0.525085i \(0.175966\pi\)
0.0292116 + 0.999573i \(0.490700\pi\)
\(464\) 0 0
\(465\) 16.7991 15.1958i 0.779040 0.704691i
\(466\) 0 0
\(467\) −3.86318 −0.178767 −0.0893834 0.995997i \(-0.528490\pi\)
−0.0893834 + 0.995997i \(0.528490\pi\)
\(468\) 0 0
\(469\) 22.1412 1.02239
\(470\) 0 0
\(471\) 3.45272 + 16.0627i 0.159093 + 0.740129i
\(472\) 0 0
\(473\) 6.11041 + 10.5835i 0.280957 + 0.486632i
\(474\) 0 0
\(475\) −0.0202173 −0.000927635
\(476\) 0 0
\(477\) −33.8219 24.3370i −1.54860 1.11431i
\(478\) 0 0
\(479\) 8.64276 + 14.9697i 0.394898 + 0.683983i 0.993088 0.117371i \(-0.0374467\pi\)
−0.598191 + 0.801354i \(0.704113\pi\)
\(480\) 0 0
\(481\) −3.62715 17.6914i −0.165384 0.806659i
\(482\) 0 0
\(483\) −5.11067 1.64762i −0.232544 0.0749692i
\(484\) 0 0
\(485\) 10.4381 + 18.0793i 0.473968 + 0.820936i
\(486\) 0 0
\(487\) −21.2463 36.7996i −0.962760 1.66755i −0.715516 0.698596i \(-0.753808\pi\)
−0.247244 0.968953i \(-0.579525\pi\)
\(488\) 0 0
\(489\) 0.272462 + 1.26754i 0.0123212 + 0.0573203i
\(490\) 0 0
\(491\) −18.6850 −0.843242 −0.421621 0.906772i \(-0.638539\pi\)
−0.421621 + 0.906772i \(0.638539\pi\)
\(492\) 0 0
\(493\) 22.4125 38.8196i 1.00941 1.74835i
\(494\) 0 0
\(495\) −20.8312 + 9.38928i −0.936292 + 0.422017i
\(496\) 0 0
\(497\) 10.0770 + 17.4538i 0.452015 + 0.782912i
\(498\) 0 0
\(499\) −10.3656 17.9537i −0.464028 0.803720i 0.535129 0.844770i \(-0.320263\pi\)
−0.999157 + 0.0410501i \(0.986930\pi\)
\(500\) 0 0
\(501\) 14.6411 + 4.72012i 0.654117 + 0.210879i
\(502\) 0 0
\(503\) 11.4265 + 19.7913i 0.509482 + 0.882449i 0.999940 + 0.0109836i \(0.00349625\pi\)
−0.490458 + 0.871465i \(0.663170\pi\)
\(504\) 0 0
\(505\) 0.539377 0.934228i 0.0240019 0.0415726i
\(506\) 0 0
\(507\) 9.40749 20.4572i 0.417801 0.908538i
\(508\) 0 0
\(509\) −5.63217 −0.249641 −0.124821 0.992179i \(-0.539836\pi\)
−0.124821 + 0.992179i \(0.539836\pi\)
\(510\) 0 0
\(511\) 3.52206 0.155807
\(512\) 0 0
\(513\) 0.177394 0.405922i 0.00783214 0.0179219i
\(514\) 0 0
\(515\) 14.0193 24.2821i 0.617763 1.07000i
\(516\) 0 0
\(517\) 10.2564 0.451077
\(518\) 0 0
\(519\) 20.7728 + 6.69691i 0.911826 + 0.293962i
\(520\) 0 0
\(521\) 9.68917 0.424490 0.212245 0.977216i \(-0.431922\pi\)
0.212245 + 0.977216i \(0.431922\pi\)
\(522\) 0 0
\(523\) −6.14028 + 10.6353i −0.268496 + 0.465048i −0.968474 0.249116i \(-0.919860\pi\)
0.699978 + 0.714164i \(0.253193\pi\)
\(524\) 0 0
\(525\) 0.494822 0.447597i 0.0215958 0.0195347i
\(526\) 0 0
\(527\) 21.3029 36.8977i 0.927968 1.60729i
\(528\) 0 0
\(529\) −19.3577 −0.841640
\(530\) 0 0
\(531\) 41.2261 18.5819i 1.78906 0.806387i
\(532\) 0 0
\(533\) 29.7569 26.4068i 1.28891 1.14380i
\(534\) 0 0
\(535\) −24.5943 −1.06330
\(536\) 0 0
\(537\) 1.42064 1.28505i 0.0613049 0.0554541i
\(538\) 0 0
\(539\) 7.61022 + 13.1813i 0.327795 + 0.567758i
\(540\) 0 0
\(541\) −0.713140 −0.0306603 −0.0153301 0.999882i \(-0.504880\pi\)
−0.0153301 + 0.999882i \(0.504880\pi\)
\(542\) 0 0
\(543\) −21.5258 6.93967i −0.923763 0.297810i
\(544\) 0 0
\(545\) 8.91622 + 15.4434i 0.381929 + 0.661520i
\(546\) 0 0
\(547\) −5.31715 + 9.20958i −0.227345 + 0.393773i −0.957020 0.290021i \(-0.906338\pi\)
0.729675 + 0.683794i \(0.239671\pi\)
\(548\) 0 0
\(549\) 0.125752 + 0.0904864i 0.00536696 + 0.00386186i
\(550\) 0 0
\(551\) 0.268753 0.465494i 0.0114493 0.0198307i
\(552\) 0 0
\(553\) 1.72167 2.98201i 0.0732126 0.126808i
\(554\) 0 0
\(555\) −18.0200 5.80943i −0.764907 0.246596i
\(556\) 0 0
\(557\) 3.33305 5.77301i 0.141226 0.244610i −0.786733 0.617294i \(-0.788229\pi\)
0.927958 + 0.372684i \(0.121562\pi\)
\(558\) 0 0
\(559\) −9.44338 + 8.38022i −0.399412 + 0.354446i
\(560\) 0 0
\(561\) −31.8719 + 28.8301i −1.34563 + 1.21721i
\(562\) 0 0
\(563\) −12.4797 + 21.6155i −0.525957 + 0.910984i 0.473586 + 0.880748i \(0.342959\pi\)
−0.999543 + 0.0302367i \(0.990374\pi\)
\(564\) 0 0
\(565\) 25.0842 1.05530
\(566\) 0 0
\(567\) 4.64508 + 13.8624i 0.195075 + 0.582165i
\(568\) 0 0
\(569\) −5.05096 8.74852i −0.211747 0.366757i 0.740514 0.672041i \(-0.234582\pi\)
−0.952261 + 0.305284i \(0.901249\pi\)
\(570\) 0 0
\(571\) 12.9636 + 22.4536i 0.542510 + 0.939655i 0.998759 + 0.0498029i \(0.0158593\pi\)
−0.456249 + 0.889852i \(0.650807\pi\)
\(572\) 0 0
\(573\) −26.0656 8.40323i −1.08891 0.351050i
\(574\) 0 0
\(575\) −0.226291 + 0.391947i −0.00943698 + 0.0163453i
\(576\) 0 0
\(577\) −35.4367 −1.47525 −0.737624 0.675212i \(-0.764052\pi\)
−0.737624 + 0.675212i \(0.764052\pi\)
\(578\) 0 0
\(579\) −0.144705 0.0466511i −0.00601373 0.00193875i
\(580\) 0 0
\(581\) −2.13475 + 3.69750i −0.0885645 + 0.153398i
\(582\) 0 0
\(583\) 24.2365 + 41.9789i 1.00377 + 1.73859i
\(584\) 0 0
\(585\) −13.8250 19.1343i −0.571595 0.791107i
\(586\) 0 0
\(587\) −5.26118 9.11264i −0.217152 0.376119i 0.736784 0.676128i \(-0.236343\pi\)
−0.953936 + 0.300009i \(0.903010\pi\)
\(588\) 0 0
\(589\) 0.255447 0.442447i 0.0105255 0.0182307i
\(590\) 0 0
\(591\) 4.25534 3.84922i 0.175041 0.158336i
\(592\) 0 0
\(593\) 41.5379 1.70576 0.852878 0.522111i \(-0.174855\pi\)
0.852878 + 0.522111i \(0.174855\pi\)
\(594\) 0 0
\(595\) −12.6025 + 21.8282i −0.516653 + 0.894870i
\(596\) 0 0
\(597\) 7.31081 + 34.0112i 0.299212 + 1.39198i
\(598\) 0 0
\(599\) 6.98319 + 12.0952i 0.285325 + 0.494198i 0.972688 0.232116i \(-0.0745650\pi\)
−0.687363 + 0.726314i \(0.741232\pi\)
\(600\) 0 0
\(601\) −3.52866 6.11182i −0.143937 0.249306i 0.785039 0.619447i \(-0.212643\pi\)
−0.928976 + 0.370140i \(0.879310\pi\)
\(602\) 0 0
\(603\) 33.1908 + 23.8829i 1.35163 + 0.972585i
\(604\) 0 0
\(605\) 2.57482 0.104682
\(606\) 0 0
\(607\) 12.1093 20.9740i 0.491503 0.851308i −0.508449 0.861092i \(-0.669781\pi\)
0.999952 + 0.00978374i \(0.00311431\pi\)
\(608\) 0 0
\(609\) 3.72793 + 17.3430i 0.151064 + 0.702774i
\(610\) 0 0
\(611\) 2.12818 + 10.3802i 0.0860971 + 0.419938i
\(612\) 0 0
\(613\) −2.26070 + 3.91565i −0.0913090 + 0.158152i −0.908062 0.418835i \(-0.862438\pi\)
0.816753 + 0.576987i \(0.195772\pi\)
\(614\) 0 0
\(615\) −8.76535 40.7780i −0.353453 1.64433i
\(616\) 0 0
\(617\) −1.76830 + 3.06278i −0.0711890 + 0.123303i −0.899423 0.437080i \(-0.856013\pi\)
0.828234 + 0.560383i \(0.189346\pi\)
\(618\) 0 0
\(619\) 7.35242 12.7348i 0.295519 0.511854i −0.679587 0.733595i \(-0.737841\pi\)
0.975105 + 0.221742i \(0.0711742\pi\)
\(620\) 0 0
\(621\) −5.88393 7.98253i −0.236114 0.320328i
\(622\) 0 0
\(623\) −3.96533 + 6.86815i −0.158868 + 0.275167i
\(624\) 0 0
\(625\) 11.8790 + 20.5751i 0.475161 + 0.823003i
\(626\) 0 0
\(627\) −0.382182 + 0.345707i −0.0152629 + 0.0138062i
\(628\) 0 0
\(629\) −35.6109 −1.41990
\(630\) 0 0
\(631\) −2.32952 4.03485i −0.0927367 0.160625i 0.815925 0.578158i \(-0.196228\pi\)
−0.908662 + 0.417533i \(0.862895\pi\)
\(632\) 0 0
\(633\) 13.1188 + 4.22933i 0.521424 + 0.168101i
\(634\) 0 0
\(635\) 39.4546 1.56571
\(636\) 0 0
\(637\) −11.7613 + 10.4372i −0.465999 + 0.413535i
\(638\) 0 0
\(639\) −3.72086 + 37.0338i −0.147195 + 1.46503i
\(640\) 0 0
\(641\) −7.79332 −0.307818 −0.153909 0.988085i \(-0.549186\pi\)
−0.153909 + 0.988085i \(0.549186\pi\)
\(642\) 0 0
\(643\) 12.5629 21.7596i 0.495433 0.858115i −0.504553 0.863381i \(-0.668343\pi\)
0.999986 + 0.00526553i \(0.00167608\pi\)
\(644\) 0 0
\(645\) 2.78170 + 12.9409i 0.109529 + 0.509549i
\(646\) 0 0
\(647\) 0.711209 1.23185i 0.0279605 0.0484290i −0.851707 0.524019i \(-0.824432\pi\)
0.879667 + 0.475590i \(0.157765\pi\)
\(648\) 0 0
\(649\) −52.6057 −2.06496
\(650\) 0 0
\(651\) 3.54336 + 16.4843i 0.138875 + 0.646072i
\(652\) 0 0
\(653\) 5.66303 0.221611 0.110806 0.993842i \(-0.464657\pi\)
0.110806 + 0.993842i \(0.464657\pi\)
\(654\) 0 0
\(655\) 9.43262 16.3378i 0.368563 0.638369i
\(656\) 0 0
\(657\) 5.27974 + 3.79910i 0.205982 + 0.148217i
\(658\) 0 0
\(659\) −1.25551 −0.0489077 −0.0244538 0.999701i \(-0.507785\pi\)
−0.0244538 + 0.999701i \(0.507785\pi\)
\(660\) 0 0
\(661\) −15.2540 −0.593314 −0.296657 0.954984i \(-0.595872\pi\)
−0.296657 + 0.954984i \(0.595872\pi\)
\(662\) 0 0
\(663\) −35.7914 26.2744i −1.39002 1.02041i
\(664\) 0 0
\(665\) −0.151119 + 0.261746i −0.00586015 + 0.0101501i
\(666\) 0 0
\(667\) −6.01625 10.4205i −0.232950 0.403482i
\(668\) 0 0
\(669\) −6.25718 29.1095i −0.241917 1.12544i
\(670\) 0 0
\(671\) −0.0901129 0.156080i −0.00347877 0.00602540i
\(672\) 0 0
\(673\) 20.0909 + 34.7985i 0.774449 + 1.34138i 0.935104 + 0.354374i \(0.115306\pi\)
−0.160655 + 0.987011i \(0.551361\pi\)
\(674\) 0 0
\(675\) 1.22457 0.137226i 0.0471336 0.00528183i
\(676\) 0 0
\(677\) −15.9810 + 27.6799i −0.614200 + 1.06383i 0.376324 + 0.926488i \(0.377188\pi\)
−0.990524 + 0.137338i \(0.956145\pi\)
\(678\) 0 0
\(679\) −15.5388 −0.596326
\(680\) 0 0
\(681\) 10.8232 + 3.48928i 0.414748 + 0.133710i
\(682\) 0 0
\(683\) 6.83432 + 11.8374i 0.261508 + 0.452945i 0.966643 0.256128i \(-0.0824468\pi\)
−0.705135 + 0.709073i \(0.749114\pi\)
\(684\) 0 0
\(685\) 5.32823 + 9.22876i 0.203581 + 0.352613i
\(686\) 0 0
\(687\) 2.60017 + 12.0965i 0.0992028 + 0.461509i
\(688\) 0 0
\(689\) −37.4565 + 33.2396i −1.42698 + 1.26633i
\(690\) 0 0
\(691\) −1.95001 3.37752i −0.0741819 0.128487i 0.826548 0.562866i \(-0.190301\pi\)
−0.900730 + 0.434379i \(0.856968\pi\)
\(692\) 0 0
\(693\) 1.70023 16.9224i 0.0645865 0.642831i
\(694\) 0 0
\(695\) 36.8613 1.39823
\(696\) 0 0
\(697\) −39.2248 67.9394i −1.48575 2.57339i
\(698\) 0 0
\(699\) −44.1222 14.2245i −1.66885 0.538018i
\(700\) 0 0
\(701\) 12.5312 0.473295 0.236648 0.971596i \(-0.423951\pi\)
0.236648 + 0.971596i \(0.423951\pi\)
\(702\) 0 0
\(703\) −0.427017 −0.0161053
\(704\) 0 0
\(705\) 10.5730 + 3.40861i 0.398202 + 0.128376i
\(706\) 0 0
\(707\) 0.401477 + 0.695379i 0.0150991 + 0.0261524i
\(708\) 0 0
\(709\) −6.79651 −0.255248 −0.127624 0.991823i \(-0.540735\pi\)
−0.127624 + 0.991823i \(0.540735\pi\)
\(710\) 0 0
\(711\) 5.79743 2.61309i 0.217421 0.0979986i
\(712\) 0 0
\(713\) −5.71838 9.90453i −0.214155 0.370928i
\(714\) 0 0
\(715\) 5.51554 + 26.9020i 0.206270 + 1.00608i
\(716\) 0 0
\(717\) −3.25657 15.1501i −0.121619 0.565792i
\(718\) 0 0
\(719\) 17.5386 + 30.3777i 0.654078 + 1.13290i 0.982124 + 0.188235i \(0.0602766\pi\)
−0.328046 + 0.944662i \(0.606390\pi\)
\(720\) 0 0
\(721\) 10.4350 + 18.0740i 0.388622 + 0.673112i
\(722\) 0 0
\(723\) 7.92286 + 2.55423i 0.294654 + 0.0949929i
\(724\) 0 0
\(725\) 1.49513 0.0555279
\(726\) 0 0
\(727\) 19.3818 33.5702i 0.718830 1.24505i −0.242633 0.970118i \(-0.578011\pi\)
0.961464 0.274932i \(-0.0886555\pi\)
\(728\) 0 0
\(729\) −7.98957 + 25.7908i −0.295910 + 0.955216i
\(730\) 0 0
\(731\) 12.4481 + 21.5607i 0.460408 + 0.797450i
\(732\) 0 0
\(733\) 17.4070 + 30.1498i 0.642943 + 1.11361i 0.984773 + 0.173848i \(0.0556200\pi\)
−0.341830 + 0.939762i \(0.611047\pi\)
\(734\) 0 0
\(735\) 3.46447 + 16.1173i 0.127789 + 0.594496i
\(736\) 0 0
\(737\) −23.7843 41.1956i −0.876105 1.51746i
\(738\) 0 0
\(739\) 2.48110 4.29740i 0.0912689 0.158082i −0.816776 0.576954i \(-0.804241\pi\)
0.908045 + 0.418872i \(0.137574\pi\)
\(740\) 0 0
\(741\) −0.429181 0.315061i −0.0157664 0.0115740i
\(742\) 0 0
\(743\) −33.9452 −1.24533 −0.622665 0.782489i \(-0.713950\pi\)
−0.622665 + 0.782489i \(0.713950\pi\)
\(744\) 0 0
\(745\) 4.14570 0.151887
\(746\) 0 0
\(747\) −7.18845 + 3.24007i −0.263012 + 0.118548i
\(748\) 0 0
\(749\) 9.15320 15.8538i 0.334451 0.579286i
\(750\) 0 0
\(751\) −29.1366 −1.06321 −0.531605 0.846992i \(-0.678411\pi\)
−0.531605 + 0.846992i \(0.678411\pi\)
\(752\) 0 0
\(753\) −2.18660 10.1724i −0.0796841 0.370704i
\(754\) 0 0
\(755\) −1.47419 −0.0536513
\(756\) 0 0
\(757\) 25.5034 44.1732i 0.926937 1.60550i 0.138521 0.990359i \(-0.455765\pi\)
0.788416 0.615143i \(-0.210902\pi\)
\(758\) 0 0
\(759\) 2.42439 + 11.2787i 0.0879999 + 0.409391i
\(760\) 0 0
\(761\) −11.0223 + 19.0912i −0.399557 + 0.692054i −0.993671 0.112327i \(-0.964170\pi\)
0.594114 + 0.804381i \(0.297503\pi\)
\(762\) 0 0
\(763\) −13.2733 −0.480527
\(764\) 0 0
\(765\) −42.4370 + 19.1277i −1.53431 + 0.691565i
\(766\) 0 0
\(767\) −10.9156 53.2406i −0.394139 1.92241i
\(768\) 0 0
\(769\) 11.0164 0.397262 0.198631 0.980074i \(-0.436350\pi\)
0.198631 + 0.980074i \(0.436350\pi\)
\(770\) 0 0
\(771\) −40.8923 13.1832i −1.47270 0.474780i
\(772\) 0 0
\(773\) −23.4470 40.6114i −0.843329 1.46069i −0.887064 0.461646i \(-0.847259\pi\)
0.0437347 0.999043i \(-0.486074\pi\)
\(774\) 0 0
\(775\) 1.42111 0.0510477
\(776\) 0 0
\(777\) 10.4513 9.45385i 0.374938 0.339155i
\(778\) 0 0
\(779\) −0.470352 0.814674i −0.0168521 0.0291887i
\(780\) 0 0
\(781\) 21.6495 37.4981i 0.774681 1.34179i
\(782\) 0 0
\(783\) −13.1188 + 30.0192i −0.468829 + 1.07280i
\(784\) 0 0
\(785\) 10.3507 17.9279i 0.369432 0.639875i
\(786\) 0 0
\(787\) 8.80158 15.2448i 0.313742 0.543418i −0.665427 0.746463i \(-0.731751\pi\)
0.979169 + 0.203045i \(0.0650839\pi\)
\(788\) 0 0
\(789\) 9.78195 + 45.5074i 0.348247 + 1.62011i
\(790\) 0 0
\(791\) −9.33553 + 16.1696i −0.331933 + 0.574925i
\(792\) 0 0
\(793\) 0.139266 0.123587i 0.00494547 0.00438869i
\(794\) 0 0
\(795\) 11.0334 + 51.3294i 0.391315 + 1.82047i
\(796\) 0 0
\(797\) −11.5238 + 19.9597i −0.408192 + 0.707010i −0.994687 0.102943i \(-0.967174\pi\)
0.586495 + 0.809953i \(0.300507\pi\)
\(798\) 0 0
\(799\) 20.8942 0.739185
\(800\) 0 0
\(801\) −13.3526 + 6.01846i −0.471792 + 0.212652i
\(802\) 0 0
\(803\) −3.78342 6.55308i −0.133514 0.231253i
\(804\) 0 0
\(805\) 3.38293 + 5.85940i 0.119233 + 0.206517i
\(806\) 0 0
\(807\) 1.63097 + 7.58756i 0.0574129 + 0.267095i
\(808\) 0 0
\(809\) 10.9443 18.9560i 0.384780 0.666458i −0.606959 0.794733i \(-0.707611\pi\)
0.991739 + 0.128275i \(0.0409441\pi\)
\(810\) 0 0
\(811\) −3.39855 −0.119339 −0.0596696 0.998218i \(-0.519005\pi\)
−0.0596696 + 0.998218i \(0.519005\pi\)
\(812\) 0 0
\(813\) −22.8106 + 20.6336i −0.800003 + 0.723653i
\(814\) 0 0
\(815\) 0.816797 1.41473i 0.0286112 0.0495560i
\(816\) 0 0
\(817\) 0.149267 + 0.258538i 0.00522219 + 0.00904510i
\(818\) 0 0
\(819\) 17.4795 1.79062i 0.610783 0.0625692i
\(820\) 0 0
\(821\) 17.9437 + 31.0794i 0.626239 + 1.08468i 0.988300 + 0.152523i \(0.0487397\pi\)
−0.362061 + 0.932154i \(0.617927\pi\)
\(822\) 0 0
\(823\) 7.29045 12.6274i 0.254129 0.440164i −0.710530 0.703667i \(-0.751545\pi\)
0.964659 + 0.263503i \(0.0848779\pi\)
\(824\) 0 0
\(825\) −1.36433 0.439844i −0.0474999 0.0153134i
\(826\) 0 0
\(827\) −22.7590 −0.791407 −0.395703 0.918378i \(-0.629499\pi\)
−0.395703 + 0.918378i \(0.629499\pi\)
\(828\) 0 0
\(829\) 14.1801 24.5607i 0.492496 0.853029i −0.507466 0.861672i \(-0.669418\pi\)
0.999963 + 0.00864285i \(0.00275114\pi\)
\(830\) 0 0
\(831\) 48.0285 + 15.4838i 1.66609 + 0.537127i
\(832\) 0 0
\(833\) 15.5034 + 26.8528i 0.537163 + 0.930393i
\(834\) 0 0
\(835\) −9.69145 16.7861i −0.335387 0.580907i
\(836\) 0 0
\(837\) −12.4693 + 28.5329i −0.431003 + 0.986242i
\(838\) 0 0
\(839\) 5.69149 0.196492 0.0982460 0.995162i \(-0.468677\pi\)
0.0982460 + 0.995162i \(0.468677\pi\)
\(840\) 0 0
\(841\) −5.37510 + 9.30994i −0.185348 + 0.321032i
\(842\) 0 0
\(843\) −29.6267 + 26.7992i −1.02040 + 0.923013i
\(844\) 0 0
\(845\) −26.0822 + 11.1642i −0.897256 + 0.384061i
\(846\) 0 0
\(847\) −0.958267 + 1.65977i −0.0329264 + 0.0570303i
\(848\) 0 0
\(849\) 0.793183 + 0.255713i 0.0272220 + 0.00877603i
\(850\) 0 0
\(851\) −4.77957 + 8.27845i −0.163841 + 0.283782i
\(852\) 0 0
\(853\) −27.2515 + 47.2010i −0.933073 + 1.61613i −0.155039 + 0.987908i \(0.549550\pi\)
−0.778034 + 0.628222i \(0.783783\pi\)
\(854\) 0 0
\(855\) −0.508870 + 0.229364i −0.0174030 + 0.00784409i
\(856\) 0 0
\(857\) 12.8776 22.3046i 0.439889 0.761910i −0.557791 0.829981i \(-0.688351\pi\)
0.997680 + 0.0680709i \(0.0216844\pi\)
\(858\) 0 0
\(859\) −23.5398 40.7721i −0.803167 1.39113i −0.917522 0.397686i \(-0.869813\pi\)
0.114355 0.993440i \(-0.463520\pi\)
\(860\) 0 0
\(861\) 29.5482 + 9.52598i 1.00700 + 0.324645i
\(862\) 0 0
\(863\) −30.1155 −1.02514 −0.512572 0.858644i \(-0.671307\pi\)
−0.512572 + 0.858644i \(0.671307\pi\)
\(864\) 0 0
\(865\) −13.7502 23.8161i −0.467522 0.809773i
\(866\) 0 0
\(867\) −43.0924 + 38.9798i −1.46349 + 1.32382i
\(868\) 0 0
\(869\) −7.39770 −0.250950
\(870\) 0 0
\(871\) 36.7576 32.6193i 1.24548 1.10526i
\(872\) 0 0
\(873\) −23.2935 16.7611i −0.788365 0.567278i
\(874\) 0 0
\(875\) −18.5665 −0.627663
\(876\) 0 0
\(877\) 3.22324 5.58281i 0.108841 0.188518i −0.806460 0.591289i \(-0.798619\pi\)
0.915301 + 0.402771i \(0.131953\pi\)
\(878\) 0 0
\(879\) 19.2963 17.4547i 0.650848 0.588733i
\(880\) 0 0
\(881\) −4.32579 + 7.49249i −0.145740 + 0.252429i −0.929649 0.368447i \(-0.879890\pi\)
0.783909 + 0.620876i \(0.213223\pi\)
\(882\) 0 0
\(883\) 52.3558 1.76191 0.880957 0.473197i \(-0.156900\pi\)
0.880957 + 0.473197i \(0.156900\pi\)
\(884\) 0 0
\(885\) −54.2295 17.4829i −1.82290 0.587682i
\(886\) 0 0
\(887\) −5.05784 −0.169826 −0.0849128 0.996388i \(-0.527061\pi\)
−0.0849128 + 0.996388i \(0.527061\pi\)
\(888\) 0 0
\(889\) −14.6837 + 25.4330i −0.492477 + 0.852995i
\(890\) 0 0
\(891\) 20.8023 23.5336i 0.696903 0.788405i
\(892\) 0 0
\(893\) 0.250547 0.00838423
\(894\) 0 0
\(895\) −2.41368 −0.0806806
\(896\) 0 0
\(897\) −10.9118 + 4.79396i −0.364333 + 0.160066i
\(898\) 0 0
\(899\) −18.8911 + 32.7203i −0.630052 + 1.09128i
\(900\) 0 0
\(901\) 49.3743 + 85.5189i 1.64490 + 2.84905i
\(902\) 0 0
\(903\) −9.37717 3.02308i −0.312053 0.100602i
\(904\) 0 0
\(905\) 14.2487 + 24.6795i 0.473643 + 0.820373i
\(906\) 0 0
\(907\) −29.2462 50.6560i −0.971105 1.68200i −0.692231 0.721676i \(-0.743372\pi\)
−0.278874 0.960328i \(-0.589961\pi\)
\(908\) 0 0
\(909\) −0.148243 + 1.47546i −0.00491691 + 0.0489380i
\(910\) 0 0
\(911\) −25.2747 + 43.7770i −0.837387 + 1.45040i 0.0546846 + 0.998504i \(0.482585\pi\)
−0.892072 + 0.451894i \(0.850749\pi\)
\(912\) 0 0
\(913\) 9.17267 0.303571
\(914\) 0 0
\(915\) −0.0410229 0.190846i −0.00135617 0.00630917i
\(916\) 0 0
\(917\) 7.02103 + 12.1608i 0.231855 + 0.401584i
\(918\) 0 0
\(919\) 22.2003 + 38.4520i 0.732319 + 1.26841i 0.955889 + 0.293727i \(0.0948955\pi\)
−0.223570 + 0.974688i \(0.571771\pi\)
\(920\) 0 0
\(921\) −31.7888 10.2483i −1.04748 0.337694i
\(922\) 0 0
\(923\) 42.4429 + 14.1300i 1.39702 + 0.465096i
\(924\) 0 0
\(925\) −0.593899 1.02866i −0.0195273 0.0338222i
\(926\) 0 0
\(927\) −3.85308 + 38.3497i −0.126552 + 1.25957i
\(928\) 0 0
\(929\) 6.16875 0.202390 0.101195 0.994867i \(-0.467733\pi\)
0.101195 + 0.994867i \(0.467733\pi\)
\(930\) 0 0
\(931\) 0.185905 + 0.321996i 0.00609278 + 0.0105530i
\(932\) 0 0
\(933\) 1.70821 + 7.94691i 0.0559244 + 0.260170i
\(934\) 0 0
\(935\) 54.1509 1.77092
\(936\) 0 0
\(937\) −41.0909 −1.34238 −0.671190 0.741285i \(-0.734217\pi\)
−0.671190 + 0.741285i \(0.734217\pi\)
\(938\) 0 0
\(939\) 15.3471 13.8824i 0.500833 0.453035i
\(940\) 0 0
\(941\) −19.2328 33.3122i −0.626971 1.08595i −0.988156 0.153452i \(-0.950961\pi\)
0.361185 0.932494i \(-0.382372\pi\)
\(942\) 0 0
\(943\) −21.0584 −0.685757
\(944\) 0 0
\(945\) 7.37670 16.8797i 0.239964 0.549098i
\(946\) 0 0
\(947\) −23.0226 39.8763i −0.748135 1.29581i −0.948716 0.316130i \(-0.897616\pi\)
0.200581 0.979677i \(-0.435717\pi\)
\(948\) 0 0
\(949\) 5.84712 5.18883i 0.189805 0.168437i
\(950\) 0 0
\(951\) 2.14371 1.93912i 0.0695147 0.0628804i
\(952\) 0 0
\(953\) 20.1025 + 34.8185i 0.651183 + 1.12788i 0.982836 + 0.184480i \(0.0590603\pi\)
−0.331653 + 0.943401i \(0.607606\pi\)
\(954\) 0 0
\(955\) 17.2537 + 29.8843i 0.558317 + 0.967033i
\(956\) 0 0
\(957\) 28.2635 25.5661i 0.913629 0.826434i
\(958\) 0 0
\(959\) −7.93198 −0.256137
\(960\) 0 0
\(961\) −2.45575 + 4.25348i −0.0792177 + 0.137209i
\(962\) 0 0
\(963\) 30.8220 13.8924i 0.993223 0.447678i
\(964\) 0 0
\(965\) 0.0957851 + 0.165905i 0.00308343 + 0.00534066i
\(966\) 0 0
\(967\) 24.9108 + 43.1467i 0.801077 + 1.38751i 0.918908 + 0.394472i \(0.129072\pi\)
−0.117831 + 0.993034i \(0.537594\pi\)
\(968\) 0 0
\(969\) −0.778576 + 0.704270i −0.0250114 + 0.0226244i
\(970\) 0 0
\(971\) 12.8328 + 22.2270i 0.411823 + 0.713299i 0.995089 0.0989825i \(-0.0315588\pi\)
−0.583266 + 0.812281i \(0.698225\pi\)
\(972\) 0 0
\(973\) −13.7186 + 23.7613i −0.439797 + 0.761751i
\(974\) 0 0
\(975\) 0.162056 1.47206i 0.00518996 0.0471438i
\(976\) 0 0
\(977\) 46.2016 1.47812 0.739060 0.673639i \(-0.235270\pi\)
0.739060 + 0.673639i \(0.235270\pi\)
\(978\) 0 0
\(979\) 17.0383 0.544548
\(980\) 0 0
\(981\) −19.8974 14.3174i −0.635274 0.457119i
\(982\) 0 0
\(983\) −3.29093 + 5.70005i −0.104964 + 0.181803i −0.913724 0.406336i \(-0.866806\pi\)
0.808759 + 0.588140i \(0.200139\pi\)
\(984\) 0 0
\(985\) −7.22990 −0.230364
\(986\) 0 0
\(987\) −6.13216 + 5.54692i −0.195189 + 0.176561i
\(988\) 0 0
\(989\) 6.68292 0.212505
\(990\) 0 0
\(991\) 12.7671 22.1132i 0.405560 0.702450i −0.588827 0.808259i \(-0.700410\pi\)
0.994386 + 0.105809i \(0.0337433\pi\)
\(992\) 0 0
\(993\) 40.4548 + 13.0421i 1.28379 + 0.413879i
\(994\) 0 0
\(995\) 21.9166 37.9607i 0.694803 1.20343i
\(996\) 0 0
\(997\) −32.0279 −1.01433 −0.507166 0.861848i \(-0.669307\pi\)
−0.507166 + 0.861848i \(0.669307\pi\)
\(998\) 0 0
\(999\) 25.8645 2.89840i 0.818316 0.0917013i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.s.f.529.19 yes 40
3.2 odd 2 2808.2.s.f.1153.16 40
9.4 even 3 936.2.r.f.841.6 yes 40
9.5 odd 6 2808.2.r.f.2089.16 40
13.3 even 3 936.2.r.f.601.6 40
39.29 odd 6 2808.2.r.f.289.16 40
117.68 odd 6 2808.2.s.f.1225.16 40
117.94 even 3 inner 936.2.s.f.913.19 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.r.f.601.6 40 13.3 even 3
936.2.r.f.841.6 yes 40 9.4 even 3
936.2.s.f.529.19 yes 40 1.1 even 1 trivial
936.2.s.f.913.19 yes 40 117.94 even 3 inner
2808.2.r.f.289.16 40 39.29 odd 6
2808.2.r.f.2089.16 40 9.5 odd 6
2808.2.s.f.1153.16 40 3.2 odd 2
2808.2.s.f.1225.16 40 117.68 odd 6