Properties

Label 936.2.s.f.529.11
Level $936$
Weight $2$
Character 936.529
Analytic conductor $7.474$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(529,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,-3,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 529.11
Character \(\chi\) \(=\) 936.529
Dual form 936.2.s.f.913.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0896694 - 1.72973i) q^{3} +(-1.74688 - 3.02568i) q^{5} -3.26004 q^{7} +(-2.98392 - 0.310207i) q^{9} +(-2.07747 - 3.59829i) q^{11} +(3.60353 - 0.120733i) q^{13} +(-5.39024 + 2.75031i) q^{15} +(0.552555 + 0.957054i) q^{17} +(2.87832 + 4.98540i) q^{19} +(-0.292326 + 5.63898i) q^{21} +0.808173 q^{23} +(-3.60315 + 6.24083i) q^{25} +(-0.804141 + 5.13355i) q^{27} +(-0.545617 - 0.945036i) q^{29} +(0.736669 + 1.27595i) q^{31} +(-6.41035 + 3.27081i) q^{33} +(5.69488 + 9.86383i) q^{35} +(3.26057 - 5.64747i) q^{37} +(0.114291 - 6.24395i) q^{39} -6.64738 q^{41} -11.2959 q^{43} +(4.27395 + 9.57027i) q^{45} +(0.872054 - 1.51044i) q^{47} +3.62786 q^{49} +(1.70499 - 0.869952i) q^{51} +7.33676 q^{53} +(-7.25818 + 12.5715i) q^{55} +(8.88149 - 4.53168i) q^{57} +(-1.70455 + 2.95236i) q^{59} +13.0798 q^{61} +(9.72769 + 1.01129i) q^{63} +(-6.66022 - 10.6922i) q^{65} -9.98057 q^{67} +(0.0724685 - 1.39792i) q^{69} +(-7.73554 - 13.3984i) q^{71} -1.48179 q^{73} +(10.4719 + 6.79208i) q^{75} +(6.77265 + 11.7306i) q^{77} +(-6.20956 + 10.7553i) q^{79} +(8.80754 + 1.85127i) q^{81} +(1.53846 - 2.66470i) q^{83} +(1.93049 - 3.34371i) q^{85} +(-1.68358 + 0.859028i) q^{87} +(-3.25125 + 5.63133i) q^{89} +(-11.7476 + 0.393595i) q^{91} +(2.27310 - 1.15982i) q^{93} +(10.0561 - 17.4178i) q^{95} -7.51478 q^{97} +(5.08280 + 11.3815i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 3 q^{3} + q^{5} - 14 q^{7} - 9 q^{9} - 3 q^{13} + 2 q^{15} - q^{17} + 2 q^{19} - 30 q^{21} + 2 q^{23} - 23 q^{25} - 3 q^{27} + 12 q^{29} + 8 q^{31} - 5 q^{33} - 12 q^{35} + 18 q^{37} - 6 q^{39}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0896694 1.72973i 0.0517707 0.998659i
\(4\) 0 0
\(5\) −1.74688 3.02568i −0.781226 1.35312i −0.931228 0.364438i \(-0.881261\pi\)
0.150001 0.988686i \(-0.452072\pi\)
\(6\) 0 0
\(7\) −3.26004 −1.23218 −0.616090 0.787676i \(-0.711284\pi\)
−0.616090 + 0.787676i \(0.711284\pi\)
\(8\) 0 0
\(9\) −2.98392 0.310207i −0.994640 0.103402i
\(10\) 0 0
\(11\) −2.07747 3.59829i −0.626382 1.08493i −0.988272 0.152705i \(-0.951202\pi\)
0.361890 0.932221i \(-0.382132\pi\)
\(12\) 0 0
\(13\) 3.60353 0.120733i 0.999439 0.0334854i
\(14\) 0 0
\(15\) −5.39024 + 2.75031i −1.39175 + 0.710127i
\(16\) 0 0
\(17\) 0.552555 + 0.957054i 0.134014 + 0.232120i 0.925221 0.379430i \(-0.123880\pi\)
−0.791206 + 0.611550i \(0.790547\pi\)
\(18\) 0 0
\(19\) 2.87832 + 4.98540i 0.660333 + 1.14373i 0.980528 + 0.196378i \(0.0629181\pi\)
−0.320195 + 0.947351i \(0.603749\pi\)
\(20\) 0 0
\(21\) −0.292326 + 5.63898i −0.0637907 + 1.23053i
\(22\) 0 0
\(23\) 0.808173 0.168516 0.0842579 0.996444i \(-0.473148\pi\)
0.0842579 + 0.996444i \(0.473148\pi\)
\(24\) 0 0
\(25\) −3.60315 + 6.24083i −0.720629 + 1.24817i
\(26\) 0 0
\(27\) −0.804141 + 5.13355i −0.154757 + 0.987953i
\(28\) 0 0
\(29\) −0.545617 0.945036i −0.101318 0.175489i 0.810910 0.585171i \(-0.198973\pi\)
−0.912228 + 0.409683i \(0.865639\pi\)
\(30\) 0 0
\(31\) 0.736669 + 1.27595i 0.132310 + 0.229167i 0.924567 0.381021i \(-0.124427\pi\)
−0.792257 + 0.610188i \(0.791094\pi\)
\(32\) 0 0
\(33\) −6.41035 + 3.27081i −1.11590 + 0.569375i
\(34\) 0 0
\(35\) 5.69488 + 9.86383i 0.962611 + 1.66729i
\(36\) 0 0
\(37\) 3.26057 5.64747i 0.536035 0.928439i −0.463078 0.886318i \(-0.653255\pi\)
0.999112 0.0421215i \(-0.0134117\pi\)
\(38\) 0 0
\(39\) 0.114291 6.24395i 0.0183012 0.999833i
\(40\) 0 0
\(41\) −6.64738 −1.03815 −0.519073 0.854730i \(-0.673723\pi\)
−0.519073 + 0.854730i \(0.673723\pi\)
\(42\) 0 0
\(43\) −11.2959 −1.72261 −0.861307 0.508084i \(-0.830354\pi\)
−0.861307 + 0.508084i \(0.830354\pi\)
\(44\) 0 0
\(45\) 4.27395 + 9.57027i 0.637122 + 1.42665i
\(46\) 0 0
\(47\) 0.872054 1.51044i 0.127202 0.220321i −0.795389 0.606099i \(-0.792734\pi\)
0.922592 + 0.385778i \(0.126067\pi\)
\(48\) 0 0
\(49\) 3.62786 0.518266
\(50\) 0 0
\(51\) 1.70499 0.869952i 0.238746 0.121818i
\(52\) 0 0
\(53\) 7.33676 1.00778 0.503891 0.863767i \(-0.331901\pi\)
0.503891 + 0.863767i \(0.331901\pi\)
\(54\) 0 0
\(55\) −7.25818 + 12.5715i −0.978692 + 1.69514i
\(56\) 0 0
\(57\) 8.88149 4.53168i 1.17638 0.600236i
\(58\) 0 0
\(59\) −1.70455 + 2.95236i −0.221913 + 0.384365i −0.955389 0.295351i \(-0.904564\pi\)
0.733476 + 0.679716i \(0.237897\pi\)
\(60\) 0 0
\(61\) 13.0798 1.67470 0.837350 0.546667i \(-0.184103\pi\)
0.837350 + 0.546667i \(0.184103\pi\)
\(62\) 0 0
\(63\) 9.72769 + 1.01129i 1.22557 + 0.127410i
\(64\) 0 0
\(65\) −6.66022 10.6922i −0.826098 1.32621i
\(66\) 0 0
\(67\) −9.98057 −1.21932 −0.609660 0.792663i \(-0.708694\pi\)
−0.609660 + 0.792663i \(0.708694\pi\)
\(68\) 0 0
\(69\) 0.0724685 1.39792i 0.00872418 0.168290i
\(70\) 0 0
\(71\) −7.73554 13.3984i −0.918040 1.59009i −0.802388 0.596802i \(-0.796438\pi\)
−0.115652 0.993290i \(-0.536896\pi\)
\(72\) 0 0
\(73\) −1.48179 −0.173430 −0.0867152 0.996233i \(-0.527637\pi\)
−0.0867152 + 0.996233i \(0.527637\pi\)
\(74\) 0 0
\(75\) 10.4719 + 6.79208i 1.20919 + 0.784281i
\(76\) 0 0
\(77\) 6.77265 + 11.7306i 0.771815 + 1.33682i
\(78\) 0 0
\(79\) −6.20956 + 10.7553i −0.698630 + 1.21006i 0.270312 + 0.962773i \(0.412873\pi\)
−0.968942 + 0.247290i \(0.920460\pi\)
\(80\) 0 0
\(81\) 8.80754 + 1.85127i 0.978616 + 0.205696i
\(82\) 0 0
\(83\) 1.53846 2.66470i 0.168868 0.292488i −0.769154 0.639063i \(-0.779322\pi\)
0.938022 + 0.346575i \(0.112655\pi\)
\(84\) 0 0
\(85\) 1.93049 3.34371i 0.209391 0.362676i
\(86\) 0 0
\(87\) −1.68358 + 0.859028i −0.180499 + 0.0920975i
\(88\) 0 0
\(89\) −3.25125 + 5.63133i −0.344632 + 0.596920i −0.985287 0.170909i \(-0.945330\pi\)
0.640655 + 0.767829i \(0.278663\pi\)
\(90\) 0 0
\(91\) −11.7476 + 0.393595i −1.23149 + 0.0412600i
\(92\) 0 0
\(93\) 2.27310 1.15982i 0.235710 0.120268i
\(94\) 0 0
\(95\) 10.0561 17.4178i 1.03174 1.78702i
\(96\) 0 0
\(97\) −7.51478 −0.763011 −0.381505 0.924367i \(-0.624594\pi\)
−0.381505 + 0.924367i \(0.624594\pi\)
\(98\) 0 0
\(99\) 5.08280 + 11.3815i 0.510840 + 1.14388i
\(100\) 0 0
\(101\) −2.90712 5.03528i −0.289269 0.501029i 0.684366 0.729138i \(-0.260079\pi\)
−0.973635 + 0.228110i \(0.926746\pi\)
\(102\) 0 0
\(103\) −7.91522 13.7096i −0.779910 1.35084i −0.931993 0.362475i \(-0.881932\pi\)
0.152084 0.988368i \(-0.451402\pi\)
\(104\) 0 0
\(105\) 17.5724 8.96612i 1.71489 0.875003i
\(106\) 0 0
\(107\) −6.39874 + 11.0829i −0.618589 + 1.07143i 0.371154 + 0.928571i \(0.378962\pi\)
−0.989743 + 0.142857i \(0.954371\pi\)
\(108\) 0 0
\(109\) −15.7657 −1.51008 −0.755040 0.655678i \(-0.772383\pi\)
−0.755040 + 0.655678i \(0.772383\pi\)
\(110\) 0 0
\(111\) −9.47622 6.14631i −0.899443 0.583382i
\(112\) 0 0
\(113\) 8.87881 15.3785i 0.835248 1.44669i −0.0585804 0.998283i \(-0.518657\pi\)
0.893828 0.448409i \(-0.148009\pi\)
\(114\) 0 0
\(115\) −1.41178 2.44527i −0.131649 0.228023i
\(116\) 0 0
\(117\) −10.7901 0.757584i −0.997544 0.0700386i
\(118\) 0 0
\(119\) −1.80135 3.12003i −0.165130 0.286013i
\(120\) 0 0
\(121\) −3.13180 + 5.42443i −0.284709 + 0.493130i
\(122\) 0 0
\(123\) −0.596067 + 11.4982i −0.0537455 + 1.03675i
\(124\) 0 0
\(125\) 7.70824 0.689446
\(126\) 0 0
\(127\) −10.5669 + 18.3024i −0.937662 + 1.62408i −0.167845 + 0.985813i \(0.553681\pi\)
−0.769817 + 0.638265i \(0.779652\pi\)
\(128\) 0 0
\(129\) −1.01290 + 19.5389i −0.0891809 + 1.72030i
\(130\) 0 0
\(131\) −0.909216 1.57481i −0.0794385 0.137592i 0.823569 0.567216i \(-0.191979\pi\)
−0.903008 + 0.429624i \(0.858646\pi\)
\(132\) 0 0
\(133\) −9.38345 16.2526i −0.813648 1.40928i
\(134\) 0 0
\(135\) 16.9372 6.53460i 1.45772 0.562409i
\(136\) 0 0
\(137\) −2.14499 −0.183259 −0.0916295 0.995793i \(-0.529208\pi\)
−0.0916295 + 0.995793i \(0.529208\pi\)
\(138\) 0 0
\(139\) 4.38582 7.59646i 0.372000 0.644323i −0.617873 0.786278i \(-0.712005\pi\)
0.989873 + 0.141955i \(0.0453387\pi\)
\(140\) 0 0
\(141\) −2.53446 1.64386i −0.213440 0.138438i
\(142\) 0 0
\(143\) −7.92067 12.7157i −0.662360 1.06334i
\(144\) 0 0
\(145\) −1.90625 + 3.30172i −0.158305 + 0.274193i
\(146\) 0 0
\(147\) 0.325308 6.27521i 0.0268310 0.517571i
\(148\) 0 0
\(149\) −4.09119 + 7.08615i −0.335163 + 0.580520i −0.983516 0.180820i \(-0.942125\pi\)
0.648353 + 0.761340i \(0.275458\pi\)
\(150\) 0 0
\(151\) 6.19162 10.7242i 0.503867 0.872724i −0.496123 0.868252i \(-0.665243\pi\)
0.999990 0.00447118i \(-0.00142323\pi\)
\(152\) 0 0
\(153\) −1.35189 3.02718i −0.109294 0.244733i
\(154\) 0 0
\(155\) 2.57374 4.45784i 0.206728 0.358063i
\(156\) 0 0
\(157\) 10.5834 + 18.3309i 0.844644 + 1.46297i 0.885930 + 0.463819i \(0.153521\pi\)
−0.0412855 + 0.999147i \(0.513145\pi\)
\(158\) 0 0
\(159\) 0.657883 12.6906i 0.0521735 1.00643i
\(160\) 0 0
\(161\) −2.63468 −0.207642
\(162\) 0 0
\(163\) −1.14969 1.99132i −0.0900504 0.155972i 0.817482 0.575955i \(-0.195369\pi\)
−0.907532 + 0.419983i \(0.862036\pi\)
\(164\) 0 0
\(165\) 21.0945 + 13.6820i 1.64220 + 1.06514i
\(166\) 0 0
\(167\) 2.86707 0.221860 0.110930 0.993828i \(-0.464617\pi\)
0.110930 + 0.993828i \(0.464617\pi\)
\(168\) 0 0
\(169\) 12.9708 0.870132i 0.997757 0.0669332i
\(170\) 0 0
\(171\) −7.04217 15.7689i −0.538529 1.20588i
\(172\) 0 0
\(173\) 9.71181 0.738375 0.369188 0.929355i \(-0.379636\pi\)
0.369188 + 0.929355i \(0.379636\pi\)
\(174\) 0 0
\(175\) 11.7464 20.3454i 0.887944 1.53796i
\(176\) 0 0
\(177\) 4.95394 + 3.21314i 0.372361 + 0.241515i
\(178\) 0 0
\(179\) −7.20045 + 12.4715i −0.538187 + 0.932167i 0.460815 + 0.887496i \(0.347557\pi\)
−0.999002 + 0.0446705i \(0.985776\pi\)
\(180\) 0 0
\(181\) −10.1986 −0.758056 −0.379028 0.925385i \(-0.623742\pi\)
−0.379028 + 0.925385i \(0.623742\pi\)
\(182\) 0 0
\(183\) 1.17286 22.6246i 0.0867004 1.67245i
\(184\) 0 0
\(185\) −22.7832 −1.67506
\(186\) 0 0
\(187\) 2.29584 3.97651i 0.167888 0.290791i
\(188\) 0 0
\(189\) 2.62153 16.7356i 0.190688 1.21733i
\(190\) 0 0
\(191\) 17.0121 1.23095 0.615475 0.788157i \(-0.288964\pi\)
0.615475 + 0.788157i \(0.288964\pi\)
\(192\) 0 0
\(193\) 17.7222 1.27567 0.637837 0.770171i \(-0.279829\pi\)
0.637837 + 0.770171i \(0.279829\pi\)
\(194\) 0 0
\(195\) −19.0918 + 10.5616i −1.36719 + 0.756332i
\(196\) 0 0
\(197\) 10.3626 17.9486i 0.738306 1.27878i −0.214952 0.976625i \(-0.568959\pi\)
0.953258 0.302159i \(-0.0977073\pi\)
\(198\) 0 0
\(199\) 3.07376 + 5.32390i 0.217893 + 0.377402i 0.954164 0.299286i \(-0.0967483\pi\)
−0.736271 + 0.676687i \(0.763415\pi\)
\(200\) 0 0
\(201\) −0.894952 + 17.2637i −0.0631251 + 1.21769i
\(202\) 0 0
\(203\) 1.77873 + 3.08085i 0.124843 + 0.216234i
\(204\) 0 0
\(205\) 11.6121 + 20.1128i 0.811027 + 1.40474i
\(206\) 0 0
\(207\) −2.41152 0.250701i −0.167612 0.0174250i
\(208\) 0 0
\(209\) 11.9593 20.7141i 0.827241 1.43282i
\(210\) 0 0
\(211\) −2.34876 −0.161696 −0.0808478 0.996726i \(-0.525763\pi\)
−0.0808478 + 0.996726i \(0.525763\pi\)
\(212\) 0 0
\(213\) −23.8692 + 12.1790i −1.63549 + 0.834489i
\(214\) 0 0
\(215\) 19.7326 + 34.1779i 1.34575 + 2.33091i
\(216\) 0 0
\(217\) −2.40157 4.15964i −0.163029 0.282375i
\(218\) 0 0
\(219\) −0.132871 + 2.56309i −0.00897861 + 0.173198i
\(220\) 0 0
\(221\) 2.10670 + 3.38206i 0.141712 + 0.227502i
\(222\) 0 0
\(223\) −8.52301 14.7623i −0.570743 0.988556i −0.996490 0.0837137i \(-0.973322\pi\)
0.425747 0.904842i \(-0.360011\pi\)
\(224\) 0 0
\(225\) 12.6874 17.5044i 0.845830 1.16696i
\(226\) 0 0
\(227\) −8.62994 −0.572789 −0.286395 0.958112i \(-0.592457\pi\)
−0.286395 + 0.958112i \(0.592457\pi\)
\(228\) 0 0
\(229\) −10.9992 19.0511i −0.726845 1.25893i −0.958210 0.286066i \(-0.907652\pi\)
0.231365 0.972867i \(-0.425681\pi\)
\(230\) 0 0
\(231\) 20.8980 10.6630i 1.37499 0.701572i
\(232\) 0 0
\(233\) −8.82556 −0.578181 −0.289091 0.957302i \(-0.593353\pi\)
−0.289091 + 0.957302i \(0.593353\pi\)
\(234\) 0 0
\(235\) −6.09348 −0.397495
\(236\) 0 0
\(237\) 18.0469 + 11.7053i 1.17227 + 0.760339i
\(238\) 0 0
\(239\) −6.84824 11.8615i −0.442976 0.767256i 0.554933 0.831895i \(-0.312744\pi\)
−0.997909 + 0.0646387i \(0.979411\pi\)
\(240\) 0 0
\(241\) −10.7757 −0.694126 −0.347063 0.937842i \(-0.612821\pi\)
−0.347063 + 0.937842i \(0.612821\pi\)
\(242\) 0 0
\(243\) 3.99196 15.0687i 0.256084 0.966654i
\(244\) 0 0
\(245\) −6.33742 10.9767i −0.404883 0.701278i
\(246\) 0 0
\(247\) 10.9740 + 17.6175i 0.698261 + 1.12098i
\(248\) 0 0
\(249\) −4.47125 2.90006i −0.283354 0.183784i
\(250\) 0 0
\(251\) −9.80361 16.9804i −0.618798 1.07179i −0.989705 0.143120i \(-0.954286\pi\)
0.370907 0.928670i \(-0.379047\pi\)
\(252\) 0 0
\(253\) −1.67896 2.90804i −0.105555 0.182827i
\(254\) 0 0
\(255\) −5.61060 3.63905i −0.351349 0.227886i
\(256\) 0 0
\(257\) −27.6851 −1.72695 −0.863476 0.504390i \(-0.831717\pi\)
−0.863476 + 0.504390i \(0.831717\pi\)
\(258\) 0 0
\(259\) −10.6296 + 18.4110i −0.660491 + 1.14400i
\(260\) 0 0
\(261\) 1.33492 + 2.98916i 0.0826294 + 0.185025i
\(262\) 0 0
\(263\) 11.8244 + 20.4805i 0.729123 + 1.26288i 0.957254 + 0.289248i \(0.0934053\pi\)
−0.228131 + 0.973630i \(0.573261\pi\)
\(264\) 0 0
\(265\) −12.8164 22.1987i −0.787306 1.36365i
\(266\) 0 0
\(267\) 9.44913 + 6.12874i 0.578277 + 0.375073i
\(268\) 0 0
\(269\) −1.35958 2.35487i −0.0828952 0.143579i 0.821597 0.570068i \(-0.193083\pi\)
−0.904492 + 0.426490i \(0.859750\pi\)
\(270\) 0 0
\(271\) 0.815695 1.41283i 0.0495500 0.0858231i −0.840187 0.542297i \(-0.817555\pi\)
0.889737 + 0.456474i \(0.150888\pi\)
\(272\) 0 0
\(273\) −0.372592 + 20.3555i −0.0225503 + 1.23197i
\(274\) 0 0
\(275\) 29.9418 1.80556
\(276\) 0 0
\(277\) −8.71041 −0.523358 −0.261679 0.965155i \(-0.584276\pi\)
−0.261679 + 0.965155i \(0.584276\pi\)
\(278\) 0 0
\(279\) −1.80235 4.03585i −0.107904 0.241620i
\(280\) 0 0
\(281\) −1.45902 + 2.52709i −0.0870377 + 0.150754i −0.906258 0.422726i \(-0.861073\pi\)
0.819220 + 0.573479i \(0.194407\pi\)
\(282\) 0 0
\(283\) 27.6959 1.64635 0.823175 0.567787i \(-0.192200\pi\)
0.823175 + 0.567787i \(0.192200\pi\)
\(284\) 0 0
\(285\) −29.2263 18.9562i −1.73121 1.12287i
\(286\) 0 0
\(287\) 21.6707 1.27918
\(288\) 0 0
\(289\) 7.88937 13.6648i 0.464080 0.803811i
\(290\) 0 0
\(291\) −0.673846 + 12.9985i −0.0395016 + 0.761987i
\(292\) 0 0
\(293\) 6.05326 10.4846i 0.353635 0.612514i −0.633248 0.773949i \(-0.718279\pi\)
0.986883 + 0.161435i \(0.0516121\pi\)
\(294\) 0 0
\(295\) 11.9105 0.693458
\(296\) 0 0
\(297\) 20.1426 7.77129i 1.16879 0.450936i
\(298\) 0 0
\(299\) 2.91228 0.0975734i 0.168421 0.00564282i
\(300\) 0 0
\(301\) 36.8252 2.12257
\(302\) 0 0
\(303\) −8.97034 + 4.57701i −0.515333 + 0.262943i
\(304\) 0 0
\(305\) −22.8488 39.5753i −1.30832 2.26608i
\(306\) 0 0
\(307\) 21.6976 1.23835 0.619173 0.785255i \(-0.287468\pi\)
0.619173 + 0.785255i \(0.287468\pi\)
\(308\) 0 0
\(309\) −24.4236 + 12.4618i −1.38941 + 0.708930i
\(310\) 0 0
\(311\) −13.6794 23.6934i −0.775686 1.34353i −0.934408 0.356205i \(-0.884071\pi\)
0.158722 0.987323i \(-0.449263\pi\)
\(312\) 0 0
\(313\) −5.73787 + 9.93828i −0.324323 + 0.561745i −0.981375 0.192101i \(-0.938470\pi\)
0.657052 + 0.753845i \(0.271803\pi\)
\(314\) 0 0
\(315\) −13.9332 31.1995i −0.785049 1.75789i
\(316\) 0 0
\(317\) 16.5421 28.6517i 0.929096 1.60924i 0.144259 0.989540i \(-0.453920\pi\)
0.784837 0.619702i \(-0.212747\pi\)
\(318\) 0 0
\(319\) −2.26701 + 3.92658i −0.126928 + 0.219846i
\(320\) 0 0
\(321\) 18.5967 + 12.0619i 1.03797 + 0.673228i
\(322\) 0 0
\(323\) −3.18087 + 5.50942i −0.176988 + 0.306552i
\(324\) 0 0
\(325\) −12.2306 + 22.9240i −0.678430 + 1.27160i
\(326\) 0 0
\(327\) −1.41370 + 27.2704i −0.0781779 + 1.50806i
\(328\) 0 0
\(329\) −2.84293 + 4.92410i −0.156736 + 0.271474i
\(330\) 0 0
\(331\) 5.16863 0.284094 0.142047 0.989860i \(-0.454632\pi\)
0.142047 + 0.989860i \(0.454632\pi\)
\(332\) 0 0
\(333\) −11.4812 + 15.8402i −0.629164 + 0.868035i
\(334\) 0 0
\(335\) 17.4348 + 30.1980i 0.952566 + 1.64989i
\(336\) 0 0
\(337\) 6.63334 + 11.4893i 0.361341 + 0.625862i 0.988182 0.153286i \(-0.0489856\pi\)
−0.626841 + 0.779148i \(0.715652\pi\)
\(338\) 0 0
\(339\) −25.8045 16.7369i −1.40151 0.909024i
\(340\) 0 0
\(341\) 3.06082 5.30150i 0.165753 0.287092i
\(342\) 0 0
\(343\) 10.9933 0.593583
\(344\) 0 0
\(345\) −4.35625 + 2.22273i −0.234533 + 0.119668i
\(346\) 0 0
\(347\) −2.80449 + 4.85752i −0.150553 + 0.260765i −0.931431 0.363918i \(-0.881439\pi\)
0.780878 + 0.624684i \(0.214772\pi\)
\(348\) 0 0
\(349\) −12.3179 21.3351i −0.659360 1.14204i −0.980782 0.195108i \(-0.937494\pi\)
0.321422 0.946936i \(-0.395839\pi\)
\(350\) 0 0
\(351\) −2.27795 + 18.5960i −0.121588 + 0.992581i
\(352\) 0 0
\(353\) 9.92300 + 17.1871i 0.528148 + 0.914780i 0.999461 + 0.0328137i \(0.0104468\pi\)
−0.471313 + 0.881966i \(0.656220\pi\)
\(354\) 0 0
\(355\) −27.0261 + 46.8105i −1.43439 + 2.48444i
\(356\) 0 0
\(357\) −5.55834 + 2.83608i −0.294178 + 0.150101i
\(358\) 0 0
\(359\) 11.8976 0.627930 0.313965 0.949435i \(-0.398343\pi\)
0.313965 + 0.949435i \(0.398343\pi\)
\(360\) 0 0
\(361\) −7.06949 + 12.2447i −0.372079 + 0.644459i
\(362\) 0 0
\(363\) 9.10196 + 5.90356i 0.477729 + 0.309857i
\(364\) 0 0
\(365\) 2.58850 + 4.48342i 0.135488 + 0.234673i
\(366\) 0 0
\(367\) 0.264953 + 0.458912i 0.0138304 + 0.0239550i 0.872858 0.487975i \(-0.162264\pi\)
−0.859027 + 0.511930i \(0.828931\pi\)
\(368\) 0 0
\(369\) 19.8352 + 2.06207i 1.03258 + 0.107347i
\(370\) 0 0
\(371\) −23.9181 −1.24177
\(372\) 0 0
\(373\) −7.43275 + 12.8739i −0.384853 + 0.666585i −0.991749 0.128196i \(-0.959081\pi\)
0.606896 + 0.794781i \(0.292415\pi\)
\(374\) 0 0
\(375\) 0.691193 13.3332i 0.0356931 0.688521i
\(376\) 0 0
\(377\) −2.08024 3.33959i −0.107138 0.171998i
\(378\) 0 0
\(379\) 2.35909 4.08607i 0.121178 0.209887i −0.799054 0.601259i \(-0.794666\pi\)
0.920233 + 0.391372i \(0.127999\pi\)
\(380\) 0 0
\(381\) 30.7107 + 19.9191i 1.57336 + 1.02048i
\(382\) 0 0
\(383\) 0.211063 0.365573i 0.0107848 0.0186799i −0.860583 0.509311i \(-0.829900\pi\)
0.871367 + 0.490631i \(0.163234\pi\)
\(384\) 0 0
\(385\) 23.6619 40.9837i 1.20592 2.08872i
\(386\) 0 0
\(387\) 33.7062 + 3.50409i 1.71338 + 0.178123i
\(388\) 0 0
\(389\) −15.4956 + 26.8392i −0.785658 + 1.36080i 0.142947 + 0.989730i \(0.454342\pi\)
−0.928605 + 0.371069i \(0.878991\pi\)
\(390\) 0 0
\(391\) 0.446561 + 0.773465i 0.0225835 + 0.0391158i
\(392\) 0 0
\(393\) −2.80552 + 1.43148i −0.141520 + 0.0722088i
\(394\) 0 0
\(395\) 43.3893 2.18315
\(396\) 0 0
\(397\) 9.90767 + 17.1606i 0.497252 + 0.861266i 0.999995 0.00317030i \(-0.00100914\pi\)
−0.502743 + 0.864436i \(0.667676\pi\)
\(398\) 0 0
\(399\) −28.9540 + 14.7735i −1.44951 + 0.739598i
\(400\) 0 0
\(401\) −28.8904 −1.44272 −0.721358 0.692562i \(-0.756482\pi\)
−0.721358 + 0.692562i \(0.756482\pi\)
\(402\) 0 0
\(403\) 2.80866 + 4.50898i 0.139909 + 0.224608i
\(404\) 0 0
\(405\) −9.78434 29.8827i −0.486188 1.48488i
\(406\) 0 0
\(407\) −27.0950 −1.34305
\(408\) 0 0
\(409\) −2.23746 + 3.87539i −0.110635 + 0.191626i −0.916027 0.401118i \(-0.868622\pi\)
0.805391 + 0.592743i \(0.201955\pi\)
\(410\) 0 0
\(411\) −0.192340 + 3.71025i −0.00948744 + 0.183013i
\(412\) 0 0
\(413\) 5.55690 9.62483i 0.273437 0.473607i
\(414\) 0 0
\(415\) −10.7500 −0.527697
\(416\) 0 0
\(417\) −12.7465 8.26745i −0.624201 0.404859i
\(418\) 0 0
\(419\) −23.0891 −1.12798 −0.563988 0.825783i \(-0.690734\pi\)
−0.563988 + 0.825783i \(0.690734\pi\)
\(420\) 0 0
\(421\) 3.41595 5.91660i 0.166483 0.288357i −0.770698 0.637201i \(-0.780092\pi\)
0.937181 + 0.348843i \(0.113426\pi\)
\(422\) 0 0
\(423\) −3.07069 + 4.23652i −0.149302 + 0.205987i
\(424\) 0 0
\(425\) −7.96375 −0.386299
\(426\) 0 0
\(427\) −42.6408 −2.06353
\(428\) 0 0
\(429\) −22.7050 + 12.5604i −1.09621 + 0.606422i
\(430\) 0 0
\(431\) 2.34407 4.06004i 0.112910 0.195565i −0.804033 0.594585i \(-0.797316\pi\)
0.916942 + 0.399020i \(0.130650\pi\)
\(432\) 0 0
\(433\) −8.67081 15.0183i −0.416692 0.721732i 0.578912 0.815390i \(-0.303477\pi\)
−0.995604 + 0.0936576i \(0.970144\pi\)
\(434\) 0 0
\(435\) 5.54015 + 3.59336i 0.265630 + 0.172288i
\(436\) 0 0
\(437\) 2.32618 + 4.02907i 0.111277 + 0.192737i
\(438\) 0 0
\(439\) −17.3274 30.0119i −0.826990 1.43239i −0.900389 0.435086i \(-0.856718\pi\)
0.0733984 0.997303i \(-0.476616\pi\)
\(440\) 0 0
\(441\) −10.8252 1.12539i −0.515487 0.0535900i
\(442\) 0 0
\(443\) 6.02528 10.4361i 0.286270 0.495834i −0.686647 0.726991i \(-0.740918\pi\)
0.972916 + 0.231158i \(0.0742513\pi\)
\(444\) 0 0
\(445\) 22.7181 1.07694
\(446\) 0 0
\(447\) 11.8903 + 7.71206i 0.562390 + 0.364768i
\(448\) 0 0
\(449\) −7.96171 13.7901i −0.375737 0.650795i 0.614700 0.788761i \(-0.289277\pi\)
−0.990437 + 0.137966i \(0.955944\pi\)
\(450\) 0 0
\(451\) 13.8098 + 23.9192i 0.650276 + 1.12631i
\(452\) 0 0
\(453\) −17.9948 11.6715i −0.845468 0.548373i
\(454\) 0 0
\(455\) 21.7126 + 34.8570i 1.01790 + 1.63412i
\(456\) 0 0
\(457\) 11.8870 + 20.5889i 0.556051 + 0.963108i 0.997821 + 0.0659801i \(0.0210174\pi\)
−0.441770 + 0.897128i \(0.645649\pi\)
\(458\) 0 0
\(459\) −5.35742 + 2.06697i −0.250063 + 0.0964777i
\(460\) 0 0
\(461\) −18.6163 −0.867046 −0.433523 0.901142i \(-0.642730\pi\)
−0.433523 + 0.901142i \(0.642730\pi\)
\(462\) 0 0
\(463\) −5.18777 8.98549i −0.241096 0.417591i 0.719931 0.694046i \(-0.244174\pi\)
−0.961027 + 0.276455i \(0.910840\pi\)
\(464\) 0 0
\(465\) −7.48007 4.85160i −0.346880 0.224988i
\(466\) 0 0
\(467\) −10.1207 −0.468328 −0.234164 0.972197i \(-0.575235\pi\)
−0.234164 + 0.972197i \(0.575235\pi\)
\(468\) 0 0
\(469\) 32.5371 1.50242
\(470\) 0 0
\(471\) 32.6565 16.6626i 1.50473 0.767773i
\(472\) 0 0
\(473\) 23.4670 + 40.6461i 1.07901 + 1.86891i
\(474\) 0 0
\(475\) −41.4841 −1.90342
\(476\) 0 0
\(477\) −21.8923 2.27592i −1.00238 0.104207i
\(478\) 0 0
\(479\) 1.97866 + 3.42713i 0.0904071 + 0.156590i 0.907682 0.419658i \(-0.137850\pi\)
−0.817275 + 0.576247i \(0.804517\pi\)
\(480\) 0 0
\(481\) 11.0677 20.7445i 0.504645 0.945868i
\(482\) 0 0
\(483\) −0.236250 + 4.55728i −0.0107497 + 0.207363i
\(484\) 0 0
\(485\) 13.1274 + 22.7373i 0.596084 + 1.03245i
\(486\) 0 0
\(487\) 11.2053 + 19.4081i 0.507760 + 0.879466i 0.999960 + 0.00898379i \(0.00285967\pi\)
−0.492200 + 0.870482i \(0.663807\pi\)
\(488\) 0 0
\(489\) −3.54753 + 1.81008i −0.160425 + 0.0818549i
\(490\) 0 0
\(491\) −2.20639 −0.0995730 −0.0497865 0.998760i \(-0.515854\pi\)
−0.0497865 + 0.998760i \(0.515854\pi\)
\(492\) 0 0
\(493\) 0.602967 1.04437i 0.0271563 0.0470360i
\(494\) 0 0
\(495\) 25.5576 35.2609i 1.14873 1.58486i
\(496\) 0 0
\(497\) 25.2182 + 43.6792i 1.13119 + 1.95928i
\(498\) 0 0
\(499\) −7.64022 13.2332i −0.342023 0.592401i 0.642785 0.766046i \(-0.277779\pi\)
−0.984808 + 0.173645i \(0.944445\pi\)
\(500\) 0 0
\(501\) 0.257088 4.95925i 0.0114859 0.221563i
\(502\) 0 0
\(503\) 3.34762 + 5.79824i 0.149263 + 0.258531i 0.930955 0.365133i \(-0.118977\pi\)
−0.781692 + 0.623664i \(0.785643\pi\)
\(504\) 0 0
\(505\) −10.1567 + 17.5920i −0.451969 + 0.782834i
\(506\) 0 0
\(507\) −0.342003 22.5141i −0.0151889 0.999885i
\(508\) 0 0
\(509\) −33.3335 −1.47748 −0.738741 0.673989i \(-0.764580\pi\)
−0.738741 + 0.673989i \(0.764580\pi\)
\(510\) 0 0
\(511\) 4.83069 0.213697
\(512\) 0 0
\(513\) −27.9074 + 10.7671i −1.23214 + 0.475377i
\(514\) 0 0
\(515\) −27.6538 + 47.8978i −1.21857 + 2.11063i
\(516\) 0 0
\(517\) −7.24668 −0.318709
\(518\) 0 0
\(519\) 0.870852 16.7988i 0.0382262 0.737385i
\(520\) 0 0
\(521\) −38.5782 −1.69014 −0.845072 0.534653i \(-0.820442\pi\)
−0.845072 + 0.534653i \(0.820442\pi\)
\(522\) 0 0
\(523\) 13.8573 24.0015i 0.605936 1.04951i −0.385967 0.922513i \(-0.626132\pi\)
0.991903 0.126999i \(-0.0405346\pi\)
\(524\) 0 0
\(525\) −34.1387 22.1424i −1.48993 0.966375i
\(526\) 0 0
\(527\) −0.814101 + 1.41006i −0.0354628 + 0.0614233i
\(528\) 0 0
\(529\) −22.3469 −0.971602
\(530\) 0 0
\(531\) 6.00208 8.28085i 0.260468 0.359358i
\(532\) 0 0
\(533\) −23.9540 + 0.802560i −1.03756 + 0.0347627i
\(534\) 0 0
\(535\) 44.7112 1.93303
\(536\) 0 0
\(537\) 20.9267 + 13.5731i 0.903054 + 0.585724i
\(538\) 0 0
\(539\) −7.53678 13.0541i −0.324632 0.562280i
\(540\) 0 0
\(541\) −20.7927 −0.893948 −0.446974 0.894547i \(-0.647498\pi\)
−0.446974 + 0.894547i \(0.647498\pi\)
\(542\) 0 0
\(543\) −0.914502 + 17.6408i −0.0392451 + 0.757039i
\(544\) 0 0
\(545\) 27.5407 + 47.7019i 1.17971 + 2.04333i
\(546\) 0 0
\(547\) 17.6044 30.4917i 0.752709 1.30373i −0.193797 0.981042i \(-0.562080\pi\)
0.946505 0.322688i \(-0.104586\pi\)
\(548\) 0 0
\(549\) −39.0292 4.05746i −1.66572 0.173168i
\(550\) 0 0
\(551\) 3.14092 5.44024i 0.133808 0.231762i
\(552\) 0 0
\(553\) 20.2434 35.0626i 0.860837 1.49101i
\(554\) 0 0
\(555\) −2.04296 + 39.4088i −0.0867188 + 1.67281i
\(556\) 0 0
\(557\) −15.1215 + 26.1912i −0.640720 + 1.10976i 0.344553 + 0.938767i \(0.388031\pi\)
−0.985272 + 0.170992i \(0.945303\pi\)
\(558\) 0 0
\(559\) −40.7053 + 1.36380i −1.72165 + 0.0576824i
\(560\) 0 0
\(561\) −6.67241 4.32775i −0.281710 0.182718i
\(562\) 0 0
\(563\) −2.75421 + 4.77044i −0.116076 + 0.201050i −0.918209 0.396095i \(-0.870365\pi\)
0.802133 + 0.597145i \(0.203698\pi\)
\(564\) 0 0
\(565\) −62.0407 −2.61007
\(566\) 0 0
\(567\) −28.7129 6.03521i −1.20583 0.253455i
\(568\) 0 0
\(569\) 19.7441 + 34.1979i 0.827717 + 1.43365i 0.899825 + 0.436252i \(0.143694\pi\)
−0.0721073 + 0.997397i \(0.522972\pi\)
\(570\) 0 0
\(571\) 12.3460 + 21.3840i 0.516665 + 0.894891i 0.999813 + 0.0193515i \(0.00616017\pi\)
−0.483147 + 0.875539i \(0.660507\pi\)
\(572\) 0 0
\(573\) 1.52546 29.4262i 0.0637271 1.22930i
\(574\) 0 0
\(575\) −2.91197 + 5.04368i −0.121437 + 0.210336i
\(576\) 0 0
\(577\) 31.8513 1.32599 0.662994 0.748625i \(-0.269286\pi\)
0.662994 + 0.748625i \(0.269286\pi\)
\(578\) 0 0
\(579\) 1.58914 30.6547i 0.0660425 1.27396i
\(580\) 0 0
\(581\) −5.01545 + 8.68701i −0.208076 + 0.360398i
\(582\) 0 0
\(583\) −15.2419 26.3998i −0.631256 1.09337i
\(584\) 0 0
\(585\) 16.5567 + 33.9707i 0.684537 + 1.40452i
\(586\) 0 0
\(587\) 15.5979 + 27.0163i 0.643793 + 1.11508i 0.984579 + 0.174941i \(0.0559734\pi\)
−0.340786 + 0.940141i \(0.610693\pi\)
\(588\) 0 0
\(589\) −4.24074 + 7.34518i −0.174737 + 0.302653i
\(590\) 0 0
\(591\) −30.1170 19.5340i −1.23885 0.803519i
\(592\) 0 0
\(593\) −39.8104 −1.63482 −0.817409 0.576058i \(-0.804590\pi\)
−0.817409 + 0.576058i \(0.804590\pi\)
\(594\) 0 0
\(595\) −6.29348 + 10.9006i −0.258007 + 0.446882i
\(596\) 0 0
\(597\) 9.48453 4.83937i 0.388176 0.198062i
\(598\) 0 0
\(599\) 2.77344 + 4.80375i 0.113320 + 0.196276i 0.917107 0.398641i \(-0.130518\pi\)
−0.803787 + 0.594917i \(0.797185\pi\)
\(600\) 0 0
\(601\) −15.9890 27.6937i −0.652203 1.12965i −0.982587 0.185803i \(-0.940511\pi\)
0.330384 0.943847i \(-0.392822\pi\)
\(602\) 0 0
\(603\) 29.7812 + 3.09605i 1.21278 + 0.126081i
\(604\) 0 0
\(605\) 21.8834 0.889688
\(606\) 0 0
\(607\) 14.2496 24.6810i 0.578372 1.00177i −0.417295 0.908771i \(-0.637022\pi\)
0.995666 0.0929978i \(-0.0296450\pi\)
\(608\) 0 0
\(609\) 5.48854 2.80046i 0.222407 0.113481i
\(610\) 0 0
\(611\) 2.96011 5.54821i 0.119753 0.224456i
\(612\) 0 0
\(613\) 13.3338 23.0949i 0.538549 0.932793i −0.460434 0.887694i \(-0.652306\pi\)
0.998982 0.0450995i \(-0.0143605\pi\)
\(614\) 0 0
\(615\) 35.8310 18.2823i 1.44484 0.737215i
\(616\) 0 0
\(617\) 1.52340 2.63861i 0.0613299 0.106226i −0.833730 0.552172i \(-0.813799\pi\)
0.895060 + 0.445946i \(0.147133\pi\)
\(618\) 0 0
\(619\) 3.60192 6.23871i 0.144774 0.250755i −0.784515 0.620110i \(-0.787088\pi\)
0.929288 + 0.369355i \(0.120421\pi\)
\(620\) 0 0
\(621\) −0.649885 + 4.14880i −0.0260790 + 0.166486i
\(622\) 0 0
\(623\) 10.5992 18.3584i 0.424648 0.735512i
\(624\) 0 0
\(625\) 4.55040 + 7.88153i 0.182016 + 0.315261i
\(626\) 0 0
\(627\) −34.7574 22.5437i −1.38808 0.900310i
\(628\) 0 0
\(629\) 7.20658 0.287345
\(630\) 0 0
\(631\) 3.16229 + 5.47725i 0.125889 + 0.218046i 0.922080 0.386999i \(-0.126488\pi\)
−0.796191 + 0.605045i \(0.793155\pi\)
\(632\) 0 0
\(633\) −0.210612 + 4.06272i −0.00837109 + 0.161479i
\(634\) 0 0
\(635\) 73.8363 2.93011
\(636\) 0 0
\(637\) 13.0731 0.438003i 0.517975 0.0173543i
\(638\) 0 0
\(639\) 18.9260 + 42.3792i 0.748700 + 1.67650i
\(640\) 0 0
\(641\) −34.7861 −1.37397 −0.686985 0.726672i \(-0.741066\pi\)
−0.686985 + 0.726672i \(0.741066\pi\)
\(642\) 0 0
\(643\) 7.43293 12.8742i 0.293126 0.507709i −0.681421 0.731891i \(-0.738638\pi\)
0.974547 + 0.224182i \(0.0719711\pi\)
\(644\) 0 0
\(645\) 60.8878 31.0673i 2.39746 1.22327i
\(646\) 0 0
\(647\) 16.6248 28.7950i 0.653587 1.13205i −0.328658 0.944449i \(-0.606597\pi\)
0.982246 0.187598i \(-0.0600702\pi\)
\(648\) 0 0
\(649\) 14.1646 0.556010
\(650\) 0 0
\(651\) −7.41040 + 3.78107i −0.290436 + 0.148192i
\(652\) 0 0
\(653\) 8.26905 0.323593 0.161796 0.986824i \(-0.448271\pi\)
0.161796 + 0.986824i \(0.448271\pi\)
\(654\) 0 0
\(655\) −3.17657 + 5.50199i −0.124119 + 0.214980i
\(656\) 0 0
\(657\) 4.42154 + 0.459662i 0.172501 + 0.0179331i
\(658\) 0 0
\(659\) −17.8429 −0.695062 −0.347531 0.937669i \(-0.612980\pi\)
−0.347531 + 0.937669i \(0.612980\pi\)
\(660\) 0 0
\(661\) 30.9102 1.20227 0.601134 0.799148i \(-0.294716\pi\)
0.601134 + 0.799148i \(0.294716\pi\)
\(662\) 0 0
\(663\) 6.03895 3.34075i 0.234533 0.129744i
\(664\) 0 0
\(665\) −32.7834 + 56.7826i −1.27129 + 2.20193i
\(666\) 0 0
\(667\) −0.440953 0.763753i −0.0170738 0.0295726i
\(668\) 0 0
\(669\) −26.2990 + 13.4188i −1.01678 + 0.518800i
\(670\) 0 0
\(671\) −27.1730 47.0650i −1.04900 1.81693i
\(672\) 0 0
\(673\) 5.95868 + 10.3207i 0.229690 + 0.397835i 0.957716 0.287714i \(-0.0928954\pi\)
−0.728026 + 0.685549i \(0.759562\pi\)
\(674\) 0 0
\(675\) −29.1402 23.5154i −1.12161 0.905110i
\(676\) 0 0
\(677\) 7.28262 12.6139i 0.279894 0.484790i −0.691464 0.722411i \(-0.743034\pi\)
0.971358 + 0.237620i \(0.0763674\pi\)
\(678\) 0 0
\(679\) 24.4985 0.940166
\(680\) 0 0
\(681\) −0.773842 + 14.9275i −0.0296537 + 0.572021i
\(682\) 0 0
\(683\) 20.2410 + 35.0584i 0.774500 + 1.34147i 0.935075 + 0.354449i \(0.115332\pi\)
−0.160576 + 0.987024i \(0.551335\pi\)
\(684\) 0 0
\(685\) 3.74703 + 6.49005i 0.143167 + 0.247972i
\(686\) 0 0
\(687\) −33.9395 + 17.3173i −1.29487 + 0.660695i
\(688\) 0 0
\(689\) 26.4382 0.885791i 1.00722 0.0337459i
\(690\) 0 0
\(691\) 17.9488 + 31.0883i 0.682805 + 1.18265i 0.974121 + 0.226026i \(0.0725736\pi\)
−0.291316 + 0.956627i \(0.594093\pi\)
\(692\) 0 0
\(693\) −16.5701 37.1040i −0.629447 1.40946i
\(694\) 0 0
\(695\) −30.6459 −1.16247
\(696\) 0 0
\(697\) −3.67305 6.36190i −0.139127 0.240974i
\(698\) 0 0
\(699\) −0.791383 + 15.2658i −0.0299328 + 0.577406i
\(700\) 0 0
\(701\) 47.7682 1.80418 0.902090 0.431549i \(-0.142033\pi\)
0.902090 + 0.431549i \(0.142033\pi\)
\(702\) 0 0
\(703\) 37.5399 1.41584
\(704\) 0 0
\(705\) −0.546399 + 10.5401i −0.0205786 + 0.396962i
\(706\) 0 0
\(707\) 9.47732 + 16.4152i 0.356431 + 0.617357i
\(708\) 0 0
\(709\) 23.4567 0.880936 0.440468 0.897768i \(-0.354812\pi\)
0.440468 + 0.897768i \(0.354812\pi\)
\(710\) 0 0
\(711\) 21.8652 30.1666i 0.820009 1.13134i
\(712\) 0 0
\(713\) 0.595356 + 1.03119i 0.0222963 + 0.0386183i
\(714\) 0 0
\(715\) −24.6372 + 46.1782i −0.921381 + 1.72697i
\(716\) 0 0
\(717\) −21.1312 + 10.7820i −0.789160 + 0.402660i
\(718\) 0 0
\(719\) −20.1360 34.8766i −0.750947 1.30068i −0.947364 0.320158i \(-0.896264\pi\)
0.196417 0.980520i \(-0.437069\pi\)
\(720\) 0 0
\(721\) 25.8039 + 44.6937i 0.960988 + 1.66448i
\(722\) 0 0
\(723\) −0.966254 + 18.6391i −0.0359354 + 0.693195i
\(724\) 0 0
\(725\) 7.86375 0.292052
\(726\) 0 0
\(727\) 18.7386 32.4562i 0.694976 1.20373i −0.275213 0.961383i \(-0.588748\pi\)
0.970189 0.242350i \(-0.0779183\pi\)
\(728\) 0 0
\(729\) −25.7067 8.25620i −0.952101 0.305785i
\(730\) 0 0
\(731\) −6.24163 10.8108i −0.230855 0.399853i
\(732\) 0 0
\(733\) 4.76007 + 8.24469i 0.175817 + 0.304524i 0.940444 0.339949i \(-0.110410\pi\)
−0.764627 + 0.644474i \(0.777077\pi\)
\(734\) 0 0
\(735\) −19.5550 + 9.97773i −0.721298 + 0.368034i
\(736\) 0 0
\(737\) 20.7344 + 35.9130i 0.763761 + 1.32287i
\(738\) 0 0
\(739\) −5.50057 + 9.52726i −0.202342 + 0.350466i −0.949282 0.314424i \(-0.898188\pi\)
0.746941 + 0.664891i \(0.231522\pi\)
\(740\) 0 0
\(741\) 31.4576 17.4023i 1.15562 0.639291i
\(742\) 0 0
\(743\) 10.0202 0.367606 0.183803 0.982963i \(-0.441159\pi\)
0.183803 + 0.982963i \(0.441159\pi\)
\(744\) 0 0
\(745\) 28.5872 1.04735
\(746\) 0 0
\(747\) −5.41726 + 7.47399i −0.198207 + 0.273459i
\(748\) 0 0
\(749\) 20.8601 36.1308i 0.762213 1.32019i
\(750\) 0 0
\(751\) −13.8520 −0.505467 −0.252734 0.967536i \(-0.581330\pi\)
−0.252734 + 0.967536i \(0.581330\pi\)
\(752\) 0 0
\(753\) −30.2505 + 15.4350i −1.10239 + 0.562481i
\(754\) 0 0
\(755\) −43.2640 −1.57454
\(756\) 0 0
\(757\) 5.21869 9.03903i 0.189676 0.328529i −0.755466 0.655188i \(-0.772589\pi\)
0.945142 + 0.326659i \(0.105923\pi\)
\(758\) 0 0
\(759\) −5.18067 + 2.64338i −0.188047 + 0.0959486i
\(760\) 0 0
\(761\) 13.5198 23.4170i 0.490093 0.848866i −0.509842 0.860268i \(-0.670296\pi\)
0.999935 + 0.0114020i \(0.00362946\pi\)
\(762\) 0 0
\(763\) 51.3968 1.86069
\(764\) 0 0
\(765\) −6.79767 + 9.37850i −0.245770 + 0.339080i
\(766\) 0 0
\(767\) −5.78594 + 10.8447i −0.208918 + 0.391580i
\(768\) 0 0
\(769\) −40.1404 −1.44750 −0.723750 0.690062i \(-0.757583\pi\)
−0.723750 + 0.690062i \(0.757583\pi\)
\(770\) 0 0
\(771\) −2.48251 + 47.8878i −0.0894054 + 1.72464i
\(772\) 0 0
\(773\) −11.8314 20.4926i −0.425546 0.737067i 0.570925 0.821002i \(-0.306585\pi\)
−0.996471 + 0.0839349i \(0.973251\pi\)
\(774\) 0 0
\(775\) −10.6173 −0.381385
\(776\) 0 0
\(777\) 30.8929 + 20.0372i 1.10828 + 0.718831i
\(778\) 0 0
\(779\) −19.1333 33.1399i −0.685522 1.18736i
\(780\) 0 0
\(781\) −32.1408 + 55.6695i −1.15009 + 1.99201i
\(782\) 0 0
\(783\) 5.29014 2.04101i 0.189054 0.0729397i
\(784\) 0 0
\(785\) 36.9756 64.0437i 1.31972 2.28582i
\(786\) 0 0
\(787\) 10.1504 17.5811i 0.361824 0.626698i −0.626437 0.779472i \(-0.715487\pi\)
0.988261 + 0.152774i \(0.0488206\pi\)
\(788\) 0 0
\(789\) 36.4859 18.6165i 1.29893 0.662766i
\(790\) 0 0
\(791\) −28.9453 + 50.1347i −1.02918 + 1.78258i
\(792\) 0 0
\(793\) 47.1336 1.57917i 1.67376 0.0560780i
\(794\) 0 0
\(795\) −39.5469 + 20.1784i −1.40258 + 0.715653i
\(796\) 0 0
\(797\) 4.07456 7.05735i 0.144328 0.249984i −0.784794 0.619757i \(-0.787231\pi\)
0.929122 + 0.369773i \(0.120565\pi\)
\(798\) 0 0
\(799\) 1.92743 0.0681877
\(800\) 0 0
\(801\) 11.4483 15.7949i 0.404507 0.558084i
\(802\) 0 0
\(803\) 3.07838 + 5.33191i 0.108634 + 0.188159i
\(804\) 0 0
\(805\) 4.60245 + 7.97168i 0.162215 + 0.280965i
\(806\) 0 0
\(807\) −4.19519 + 2.14055i −0.147678 + 0.0753509i
\(808\) 0 0
\(809\) 5.64102 9.77053i 0.198328 0.343513i −0.749659 0.661825i \(-0.769782\pi\)
0.947986 + 0.318311i \(0.103116\pi\)
\(810\) 0 0
\(811\) 12.5271 0.439884 0.219942 0.975513i \(-0.429413\pi\)
0.219942 + 0.975513i \(0.429413\pi\)
\(812\) 0 0
\(813\) −2.37066 1.53762i −0.0831427 0.0539266i
\(814\) 0 0
\(815\) −4.01672 + 6.95716i −0.140699 + 0.243699i
\(816\) 0 0
\(817\) −32.5134 56.3148i −1.13750 1.97021i
\(818\) 0 0
\(819\) 35.1761 + 2.46975i 1.22915 + 0.0863001i
\(820\) 0 0
\(821\) 12.0938 + 20.9470i 0.422076 + 0.731057i 0.996142 0.0877518i \(-0.0279683\pi\)
−0.574067 + 0.818809i \(0.694635\pi\)
\(822\) 0 0
\(823\) −1.31155 + 2.27167i −0.0457177 + 0.0791855i −0.887979 0.459884i \(-0.847891\pi\)
0.842261 + 0.539070i \(0.181224\pi\)
\(824\) 0 0
\(825\) 2.68486 51.7911i 0.0934749 1.80314i
\(826\) 0 0
\(827\) 47.9894 1.66875 0.834377 0.551195i \(-0.185828\pi\)
0.834377 + 0.551195i \(0.185828\pi\)
\(828\) 0 0
\(829\) −0.761001 + 1.31809i −0.0264306 + 0.0457792i −0.878938 0.476936i \(-0.841747\pi\)
0.852508 + 0.522715i \(0.175081\pi\)
\(830\) 0 0
\(831\) −0.781058 + 15.0666i −0.0270946 + 0.522656i
\(832\) 0 0
\(833\) 2.00459 + 3.47206i 0.0694550 + 0.120300i
\(834\) 0 0
\(835\) −5.00841 8.67482i −0.173323 0.300205i
\(836\) 0 0
\(837\) −7.14253 + 2.75569i −0.246882 + 0.0952505i
\(838\) 0 0
\(839\) −47.7459 −1.64837 −0.824185 0.566320i \(-0.808366\pi\)
−0.824185 + 0.566320i \(0.808366\pi\)
\(840\) 0 0
\(841\) 13.9046 24.0835i 0.479469 0.830465i
\(842\) 0 0
\(843\) 4.24035 + 2.75031i 0.146045 + 0.0947256i
\(844\) 0 0
\(845\) −25.2912 37.7256i −0.870043 1.29780i
\(846\) 0 0
\(847\) 10.2098 17.6839i 0.350812 0.607625i
\(848\) 0 0
\(849\) 2.48348 47.9064i 0.0852327 1.64414i
\(850\) 0 0
\(851\) 2.63511 4.56414i 0.0903303 0.156457i
\(852\) 0 0
\(853\) −24.6570 + 42.7072i −0.844241 + 1.46227i 0.0420383 + 0.999116i \(0.486615\pi\)
−0.886279 + 0.463152i \(0.846718\pi\)
\(854\) 0 0
\(855\) −35.4098 + 48.8537i −1.21099 + 1.67076i
\(856\) 0 0
\(857\) 9.82724 17.0213i 0.335692 0.581436i −0.647925 0.761704i \(-0.724363\pi\)
0.983618 + 0.180268i \(0.0576965\pi\)
\(858\) 0 0
\(859\) −1.87497 3.24755i −0.0639732 0.110805i 0.832265 0.554378i \(-0.187044\pi\)
−0.896238 + 0.443573i \(0.853711\pi\)
\(860\) 0 0
\(861\) 1.94320 37.4845i 0.0662241 1.27747i
\(862\) 0 0
\(863\) −24.8648 −0.846407 −0.423203 0.906035i \(-0.639094\pi\)
−0.423203 + 0.906035i \(0.639094\pi\)
\(864\) 0 0
\(865\) −16.9653 29.3848i −0.576838 0.999113i
\(866\) 0 0
\(867\) −22.9289 14.8718i −0.778707 0.505072i
\(868\) 0 0
\(869\) 51.6008 1.75044
\(870\) 0 0
\(871\) −35.9653 + 1.20499i −1.21864 + 0.0408294i
\(872\) 0 0
\(873\) 22.4235 + 2.33114i 0.758921 + 0.0788972i
\(874\) 0 0
\(875\) −25.1292 −0.849521
\(876\) 0 0
\(877\) 1.22672 2.12474i 0.0414233 0.0717472i −0.844570 0.535444i \(-0.820144\pi\)
0.885994 + 0.463697i \(0.153477\pi\)
\(878\) 0 0
\(879\) −17.5926 11.4106i −0.593385 0.384871i
\(880\) 0 0
\(881\) 13.2745 22.9922i 0.447230 0.774625i −0.550974 0.834522i \(-0.685744\pi\)
0.998205 + 0.0598968i \(0.0190772\pi\)
\(882\) 0 0
\(883\) 8.86518 0.298337 0.149169 0.988812i \(-0.452340\pi\)
0.149169 + 0.988812i \(0.452340\pi\)
\(884\) 0 0
\(885\) 1.06801 20.6020i 0.0359008 0.692528i
\(886\) 0 0
\(887\) −23.2991 −0.782306 −0.391153 0.920326i \(-0.627924\pi\)
−0.391153 + 0.920326i \(0.627924\pi\)
\(888\) 0 0
\(889\) 34.4486 59.6667i 1.15537 2.00116i
\(890\) 0 0
\(891\) −11.6360 35.5381i −0.389822 1.19057i
\(892\) 0 0
\(893\) 10.0402 0.335983
\(894\) 0 0
\(895\) 50.3131 1.68178
\(896\) 0 0
\(897\) 0.0923667 5.04620i 0.00308404 0.168488i
\(898\) 0 0
\(899\) 0.803878 1.39236i 0.0268108 0.0464377i
\(900\) 0 0
\(901\) 4.05397 + 7.02168i 0.135057 + 0.233926i
\(902\) 0 0
\(903\) 3.30210 63.6976i 0.109887 2.11972i
\(904\) 0 0
\(905\) 17.8157 + 30.8577i 0.592213 + 1.02574i
\(906\) 0 0
\(907\) 6.34404 + 10.9882i 0.210650 + 0.364857i 0.951918 0.306352i \(-0.0991085\pi\)
−0.741268 + 0.671209i \(0.765775\pi\)
\(908\) 0 0
\(909\) 7.11263 + 15.9267i 0.235911 + 0.528254i
\(910\) 0 0
\(911\) 0.714408 1.23739i 0.0236694 0.0409966i −0.853948 0.520358i \(-0.825798\pi\)
0.877617 + 0.479362i \(0.159132\pi\)
\(912\) 0 0
\(913\) −12.7845 −0.423104
\(914\) 0 0
\(915\) −70.5034 + 35.9736i −2.33077 + 1.18925i
\(916\) 0 0
\(917\) 2.96408 + 5.13394i 0.0978825 + 0.169538i
\(918\) 0 0
\(919\) −16.1627 27.9946i −0.533158 0.923456i −0.999250 0.0387201i \(-0.987672\pi\)
0.466092 0.884736i \(-0.345661\pi\)
\(920\) 0 0
\(921\) 1.94561 37.5309i 0.0641100 1.23669i
\(922\) 0 0
\(923\) −29.4929 47.3474i −0.970770 1.55846i
\(924\) 0 0
\(925\) 23.4966 + 40.6974i 0.772564 + 1.33812i
\(926\) 0 0
\(927\) 19.3656 + 43.3636i 0.636048 + 1.42425i
\(928\) 0 0
\(929\) 15.0290 0.493085 0.246542 0.969132i \(-0.420706\pi\)
0.246542 + 0.969132i \(0.420706\pi\)
\(930\) 0 0
\(931\) 10.4422 + 18.0863i 0.342228 + 0.592756i
\(932\) 0 0
\(933\) −42.2097 + 21.5370i −1.38188 + 0.705091i
\(934\) 0 0
\(935\) −16.0422 −0.524635
\(936\) 0 0
\(937\) 3.69756 0.120794 0.0603970 0.998174i \(-0.480763\pi\)
0.0603970 + 0.998174i \(0.480763\pi\)
\(938\) 0 0
\(939\) 16.6760 + 10.8161i 0.544201 + 0.352970i
\(940\) 0 0
\(941\) −1.16379 2.01574i −0.0379384 0.0657112i 0.846433 0.532496i \(-0.178746\pi\)
−0.884371 + 0.466784i \(0.845412\pi\)
\(942\) 0 0
\(943\) −5.37224 −0.174944
\(944\) 0 0
\(945\) −55.2160 + 21.3031i −1.79618 + 0.692989i
\(946\) 0 0
\(947\) −19.3378 33.4940i −0.628393 1.08841i −0.987874 0.155257i \(-0.950380\pi\)
0.359481 0.933152i \(-0.382954\pi\)
\(948\) 0 0
\(949\) −5.33967 + 0.178901i −0.173333 + 0.00580738i
\(950\) 0 0
\(951\) −48.0764 31.1825i −1.55898 1.01116i
\(952\) 0 0
\(953\) −18.4777 32.0043i −0.598550 1.03672i −0.993035 0.117817i \(-0.962410\pi\)
0.394485 0.918902i \(-0.370923\pi\)
\(954\) 0 0
\(955\) −29.7180 51.4730i −0.961650 1.66563i
\(956\) 0 0
\(957\) 6.58863 + 4.27340i 0.212980 + 0.138140i
\(958\) 0 0
\(959\) 6.99275 0.225808
\(960\) 0 0
\(961\) 14.4146 24.9669i 0.464988 0.805383i
\(962\) 0 0
\(963\) 22.5313 31.0857i 0.726062 1.00172i
\(964\) 0 0
\(965\) −30.9585 53.6218i −0.996591 1.72615i
\(966\) 0 0
\(967\) −21.6462 37.4923i −0.696094 1.20567i −0.969810 0.243860i \(-0.921586\pi\)
0.273716 0.961811i \(-0.411747\pi\)
\(968\) 0 0
\(969\) 9.24458 + 5.99606i 0.296979 + 0.192621i
\(970\) 0 0
\(971\) 24.4287 + 42.3117i 0.783954 + 1.35785i 0.929622 + 0.368515i \(0.120134\pi\)
−0.145668 + 0.989334i \(0.546533\pi\)
\(972\) 0 0
\(973\) −14.2979 + 24.7648i −0.458371 + 0.793922i
\(974\) 0 0
\(975\) 38.5557 + 23.2111i 1.23477 + 0.743352i
\(976\) 0 0
\(977\) −33.9666 −1.08669 −0.543345 0.839510i \(-0.682842\pi\)
−0.543345 + 0.839510i \(0.682842\pi\)
\(978\) 0 0
\(979\) 27.0175 0.863485
\(980\) 0 0
\(981\) 47.0436 + 4.89064i 1.50199 + 0.156146i
\(982\) 0 0
\(983\) 17.3063 29.9754i 0.551985 0.956067i −0.446146 0.894960i \(-0.647204\pi\)
0.998131 0.0611065i \(-0.0194629\pi\)
\(984\) 0 0
\(985\) −72.4088 −2.30714
\(986\) 0 0
\(987\) 8.26243 + 5.35904i 0.262996 + 0.170580i
\(988\) 0 0
\(989\) −9.12908 −0.290288
\(990\) 0 0
\(991\) 9.40338 16.2871i 0.298708 0.517378i −0.677132 0.735861i \(-0.736778\pi\)
0.975841 + 0.218483i \(0.0701109\pi\)
\(992\) 0 0
\(993\) 0.463468 8.94033i 0.0147077 0.283713i
\(994\) 0 0
\(995\) 10.7389 18.6004i 0.340447 0.589672i
\(996\) 0 0
\(997\) 7.20534 0.228196 0.114098 0.993470i \(-0.463602\pi\)
0.114098 + 0.993470i \(0.463602\pi\)
\(998\) 0 0
\(999\) 26.3696 + 21.2797i 0.834299 + 0.673259i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.s.f.529.11 yes 40
3.2 odd 2 2808.2.s.f.1153.18 40
9.4 even 3 936.2.r.f.841.17 yes 40
9.5 odd 6 2808.2.r.f.2089.18 40
13.3 even 3 936.2.r.f.601.17 40
39.29 odd 6 2808.2.r.f.289.18 40
117.68 odd 6 2808.2.s.f.1225.18 40
117.94 even 3 inner 936.2.s.f.913.11 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.r.f.601.17 40 13.3 even 3
936.2.r.f.841.17 yes 40 9.4 even 3
936.2.s.f.529.11 yes 40 1.1 even 1 trivial
936.2.s.f.913.11 yes 40 117.94 even 3 inner
2808.2.r.f.289.18 40 39.29 odd 6
2808.2.r.f.2089.18 40 9.5 odd 6
2808.2.s.f.1153.18 40 3.2 odd 2
2808.2.s.f.1225.18 40 117.68 odd 6