Properties

Label 936.2.q.g.313.4
Level $936$
Weight $2$
Character 936.313
Analytic conductor $7.474$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(313,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.313"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,0,-3,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 313.4
Character \(\chi\) \(=\) 936.313
Dual form 936.2.q.g.625.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.722210 - 1.57430i) q^{3} +(-1.89006 - 3.27368i) q^{5} +(-0.659907 + 1.14299i) q^{7} +(-1.95682 + 2.27395i) q^{9} +(-2.20538 + 3.81984i) q^{11} +(-0.500000 - 0.866025i) q^{13} +(-3.78872 + 5.33980i) q^{15} -3.06205 q^{17} +7.13223 q^{19} +(2.27600 + 0.213409i) q^{21} +(-1.08498 - 1.87925i) q^{23} +(-4.64465 + 8.04477i) q^{25} +(4.99311 + 1.43836i) q^{27} +(-4.17231 + 7.22665i) q^{29} +(-0.669313 - 1.15928i) q^{31} +(7.60631 + 0.713205i) q^{33} +4.98905 q^{35} +1.24930 q^{37} +(-1.00228 + 1.41260i) q^{39} +(-1.62494 - 2.81448i) q^{41} +(5.93250 - 10.2754i) q^{43} +(11.1427 + 2.10812i) q^{45} +(-0.203201 + 0.351955i) q^{47} +(2.62905 + 4.55364i) q^{49} +(2.21144 + 4.82058i) q^{51} +2.17588 q^{53} +16.6732 q^{55} +(-5.15097 - 11.2282i) q^{57} +(4.05223 + 7.01866i) q^{59} +(-4.39869 + 7.61875i) q^{61} +(-1.30778 - 3.73723i) q^{63} +(-1.89006 + 3.27368i) q^{65} +(4.69012 + 8.12353i) q^{67} +(-2.17491 + 3.06530i) q^{69} -9.45879 q^{71} -12.2720 q^{73} +(16.0193 + 1.50205i) q^{75} +(-2.91070 - 5.04147i) q^{77} +(-3.64033 + 6.30524i) q^{79} +(-1.34167 - 8.89943i) q^{81} +(-6.04966 + 10.4783i) q^{83} +(5.78746 + 10.0242i) q^{85} +(14.3902 + 1.34929i) q^{87} -5.47746 q^{89} +1.31981 q^{91} +(-1.34167 + 1.89094i) q^{93} +(-13.4803 - 23.3486i) q^{95} +(-6.70181 + 11.6079i) q^{97} +(-4.37056 - 12.4897i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 3 q^{5} - 4 q^{7} - 4 q^{9} + 5 q^{11} - 11 q^{13} + 5 q^{15} + 8 q^{17} + 10 q^{19} + 4 q^{21} + 9 q^{23} - 24 q^{25} - 12 q^{27} - 16 q^{29} - q^{31} + 9 q^{33} + 18 q^{37} + 3 q^{39} - 6 q^{41}+ \cdots - 109 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.722210 1.57430i −0.416968 0.908921i
\(4\) 0 0
\(5\) −1.89006 3.27368i −0.845260 1.46403i −0.885395 0.464839i \(-0.846112\pi\)
0.0401347 0.999194i \(-0.487221\pi\)
\(6\) 0 0
\(7\) −0.659907 + 1.14299i −0.249421 + 0.432011i −0.963365 0.268192i \(-0.913574\pi\)
0.713944 + 0.700203i \(0.246907\pi\)
\(8\) 0 0
\(9\) −1.95682 + 2.27395i −0.652275 + 0.757982i
\(10\) 0 0
\(11\) −2.20538 + 3.81984i −0.664948 + 1.15172i 0.314351 + 0.949307i \(0.398213\pi\)
−0.979299 + 0.202417i \(0.935120\pi\)
\(12\) 0 0
\(13\) −0.500000 0.866025i −0.138675 0.240192i
\(14\) 0 0
\(15\) −3.78872 + 5.33980i −0.978244 + 1.37873i
\(16\) 0 0
\(17\) −3.06205 −0.742656 −0.371328 0.928502i \(-0.621098\pi\)
−0.371328 + 0.928502i \(0.621098\pi\)
\(18\) 0 0
\(19\) 7.13223 1.63624 0.818122 0.575044i \(-0.195015\pi\)
0.818122 + 0.575044i \(0.195015\pi\)
\(20\) 0 0
\(21\) 2.27600 + 0.213409i 0.496664 + 0.0465697i
\(22\) 0 0
\(23\) −1.08498 1.87925i −0.226235 0.391850i 0.730454 0.682961i \(-0.239308\pi\)
−0.956689 + 0.291111i \(0.905975\pi\)
\(24\) 0 0
\(25\) −4.64465 + 8.04477i −0.928930 + 1.60895i
\(26\) 0 0
\(27\) 4.99311 + 1.43836i 0.960924 + 0.276812i
\(28\) 0 0
\(29\) −4.17231 + 7.22665i −0.774778 + 1.34195i 0.160141 + 0.987094i \(0.448805\pi\)
−0.934919 + 0.354861i \(0.884528\pi\)
\(30\) 0 0
\(31\) −0.669313 1.15928i −0.120212 0.208213i 0.799639 0.600481i \(-0.205024\pi\)
−0.919851 + 0.392267i \(0.871691\pi\)
\(32\) 0 0
\(33\) 7.60631 + 0.713205i 1.32409 + 0.124153i
\(34\) 0 0
\(35\) 4.98905 0.843304
\(36\) 0 0
\(37\) 1.24930 0.205384 0.102692 0.994713i \(-0.467254\pi\)
0.102692 + 0.994713i \(0.467254\pi\)
\(38\) 0 0
\(39\) −1.00228 + 1.41260i −0.160493 + 0.226197i
\(40\) 0 0
\(41\) −1.62494 2.81448i −0.253773 0.439548i 0.710788 0.703406i \(-0.248338\pi\)
−0.964562 + 0.263858i \(0.915005\pi\)
\(42\) 0 0
\(43\) 5.93250 10.2754i 0.904698 1.56698i 0.0833760 0.996518i \(-0.473430\pi\)
0.821322 0.570465i \(-0.193237\pi\)
\(44\) 0 0
\(45\) 11.1427 + 2.10812i 1.66105 + 0.314260i
\(46\) 0 0
\(47\) −0.203201 + 0.351955i −0.0296400 + 0.0513380i −0.880465 0.474111i \(-0.842769\pi\)
0.850825 + 0.525449i \(0.176103\pi\)
\(48\) 0 0
\(49\) 2.62905 + 4.55364i 0.375578 + 0.650520i
\(50\) 0 0
\(51\) 2.21144 + 4.82058i 0.309664 + 0.675016i
\(52\) 0 0
\(53\) 2.17588 0.298881 0.149440 0.988771i \(-0.452253\pi\)
0.149440 + 0.988771i \(0.452253\pi\)
\(54\) 0 0
\(55\) 16.6732 2.24822
\(56\) 0 0
\(57\) −5.15097 11.2282i −0.682262 1.48722i
\(58\) 0 0
\(59\) 4.05223 + 7.01866i 0.527555 + 0.913752i 0.999484 + 0.0321154i \(0.0102244\pi\)
−0.471929 + 0.881636i \(0.656442\pi\)
\(60\) 0 0
\(61\) −4.39869 + 7.61875i −0.563194 + 0.975481i 0.434021 + 0.900903i \(0.357094\pi\)
−0.997215 + 0.0745784i \(0.976239\pi\)
\(62\) 0 0
\(63\) −1.30778 3.73723i −0.164765 0.470847i
\(64\) 0 0
\(65\) −1.89006 + 3.27368i −0.234433 + 0.406050i
\(66\) 0 0
\(67\) 4.69012 + 8.12353i 0.572990 + 0.992448i 0.996257 + 0.0864426i \(0.0275499\pi\)
−0.423267 + 0.906005i \(0.639117\pi\)
\(68\) 0 0
\(69\) −2.17491 + 3.06530i −0.261828 + 0.369019i
\(70\) 0 0
\(71\) −9.45879 −1.12255 −0.561276 0.827629i \(-0.689689\pi\)
−0.561276 + 0.827629i \(0.689689\pi\)
\(72\) 0 0
\(73\) −12.2720 −1.43633 −0.718165 0.695872i \(-0.755018\pi\)
−0.718165 + 0.695872i \(0.755018\pi\)
\(74\) 0 0
\(75\) 16.0193 + 1.50205i 1.84975 + 0.173441i
\(76\) 0 0
\(77\) −2.91070 5.04147i −0.331705 0.574529i
\(78\) 0 0
\(79\) −3.64033 + 6.30524i −0.409569 + 0.709395i −0.994841 0.101442i \(-0.967654\pi\)
0.585272 + 0.810837i \(0.300988\pi\)
\(80\) 0 0
\(81\) −1.34167 8.89943i −0.149075 0.988826i
\(82\) 0 0
\(83\) −6.04966 + 10.4783i −0.664036 + 1.15014i 0.315510 + 0.948922i \(0.397825\pi\)
−0.979546 + 0.201222i \(0.935509\pi\)
\(84\) 0 0
\(85\) 5.78746 + 10.0242i 0.627738 + 1.08727i
\(86\) 0 0
\(87\) 14.3902 + 1.34929i 1.54279 + 0.144659i
\(88\) 0 0
\(89\) −5.47746 −0.580609 −0.290305 0.956934i \(-0.593757\pi\)
−0.290305 + 0.956934i \(0.593757\pi\)
\(90\) 0 0
\(91\) 1.31981 0.138354
\(92\) 0 0
\(93\) −1.34167 + 1.89094i −0.139125 + 0.196082i
\(94\) 0 0
\(95\) −13.4803 23.3486i −1.38305 2.39552i
\(96\) 0 0
\(97\) −6.70181 + 11.6079i −0.680465 + 1.17860i 0.294374 + 0.955690i \(0.404889\pi\)
−0.974839 + 0.222910i \(0.928444\pi\)
\(98\) 0 0
\(99\) −4.37056 12.4897i −0.439257 1.25526i
\(100\) 0 0
\(101\) 6.65426 11.5255i 0.662124 1.14683i −0.317933 0.948113i \(-0.602989\pi\)
0.980057 0.198719i \(-0.0636780\pi\)
\(102\) 0 0
\(103\) 0.675053 + 1.16923i 0.0665149 + 0.115207i 0.897365 0.441289i \(-0.145479\pi\)
−0.830850 + 0.556496i \(0.812145\pi\)
\(104\) 0 0
\(105\) −3.60315 7.85426i −0.351631 0.766497i
\(106\) 0 0
\(107\) 5.74705 0.555588 0.277794 0.960641i \(-0.410397\pi\)
0.277794 + 0.960641i \(0.410397\pi\)
\(108\) 0 0
\(109\) −16.1839 −1.55014 −0.775069 0.631877i \(-0.782285\pi\)
−0.775069 + 0.631877i \(0.782285\pi\)
\(110\) 0 0
\(111\) −0.902257 1.96677i −0.0856384 0.186677i
\(112\) 0 0
\(113\) 2.55790 + 4.43040i 0.240627 + 0.416777i 0.960893 0.276920i \(-0.0893138\pi\)
−0.720266 + 0.693698i \(0.755980\pi\)
\(114\) 0 0
\(115\) −4.10137 + 7.10378i −0.382455 + 0.662431i
\(116\) 0 0
\(117\) 2.94771 + 0.557686i 0.272516 + 0.0515581i
\(118\) 0 0
\(119\) 2.02067 3.49990i 0.185234 0.320835i
\(120\) 0 0
\(121\) −4.22743 7.32212i −0.384312 0.665647i
\(122\) 0 0
\(123\) −3.25728 + 4.59079i −0.293699 + 0.413937i
\(124\) 0 0
\(125\) 16.2141 1.45023
\(126\) 0 0
\(127\) −17.4520 −1.54861 −0.774305 0.632812i \(-0.781901\pi\)
−0.774305 + 0.632812i \(0.781901\pi\)
\(128\) 0 0
\(129\) −20.4610 1.91853i −1.80149 0.168917i
\(130\) 0 0
\(131\) 1.53713 + 2.66239i 0.134300 + 0.232614i 0.925330 0.379163i \(-0.123788\pi\)
−0.791030 + 0.611777i \(0.790455\pi\)
\(132\) 0 0
\(133\) −4.70661 + 8.15208i −0.408115 + 0.706875i
\(134\) 0 0
\(135\) −4.72855 19.0644i −0.406969 1.64080i
\(136\) 0 0
\(137\) −6.40458 + 11.0931i −0.547181 + 0.947745i 0.451286 + 0.892380i \(0.350966\pi\)
−0.998466 + 0.0553650i \(0.982368\pi\)
\(138\) 0 0
\(139\) 9.62910 + 16.6781i 0.816730 + 1.41462i 0.908079 + 0.418798i \(0.137549\pi\)
−0.0913499 + 0.995819i \(0.529118\pi\)
\(140\) 0 0
\(141\) 0.700836 + 0.0657139i 0.0590211 + 0.00553411i
\(142\) 0 0
\(143\) 4.41077 0.368847
\(144\) 0 0
\(145\) 31.5436 2.61956
\(146\) 0 0
\(147\) 5.27006 7.42758i 0.434667 0.612617i
\(148\) 0 0
\(149\) −5.33391 9.23860i −0.436971 0.756856i 0.560483 0.828166i \(-0.310615\pi\)
−0.997454 + 0.0713099i \(0.977282\pi\)
\(150\) 0 0
\(151\) −4.99869 + 8.65799i −0.406788 + 0.704577i −0.994528 0.104473i \(-0.966684\pi\)
0.587740 + 0.809050i \(0.300018\pi\)
\(152\) 0 0
\(153\) 5.99190 6.96294i 0.484416 0.562921i
\(154\) 0 0
\(155\) −2.53008 + 4.38223i −0.203221 + 0.351989i
\(156\) 0 0
\(157\) −6.75613 11.7020i −0.539198 0.933919i −0.998947 0.0458699i \(-0.985394\pi\)
0.459749 0.888049i \(-0.347939\pi\)
\(158\) 0 0
\(159\) −1.57144 3.42549i −0.124624 0.271659i
\(160\) 0 0
\(161\) 2.86395 0.225711
\(162\) 0 0
\(163\) −5.22981 −0.409631 −0.204815 0.978801i \(-0.565659\pi\)
−0.204815 + 0.978801i \(0.565659\pi\)
\(164\) 0 0
\(165\) −12.0416 26.2486i −0.937435 2.04345i
\(166\) 0 0
\(167\) 4.85695 + 8.41248i 0.375842 + 0.650977i 0.990453 0.137853i \(-0.0440202\pi\)
−0.614611 + 0.788831i \(0.710687\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 0 0
\(171\) −13.9565 + 16.2183i −1.06728 + 1.24024i
\(172\) 0 0
\(173\) 12.2600 21.2350i 0.932113 1.61447i 0.152410 0.988317i \(-0.451297\pi\)
0.779703 0.626149i \(-0.215370\pi\)
\(174\) 0 0
\(175\) −6.13007 10.6176i −0.463390 0.802615i
\(176\) 0 0
\(177\) 8.12290 11.4484i 0.610555 0.860511i
\(178\) 0 0
\(179\) −19.4506 −1.45381 −0.726903 0.686740i \(-0.759041\pi\)
−0.726903 + 0.686740i \(0.759041\pi\)
\(180\) 0 0
\(181\) 15.4476 1.14821 0.574104 0.818782i \(-0.305350\pi\)
0.574104 + 0.818782i \(0.305350\pi\)
\(182\) 0 0
\(183\) 15.1710 + 1.42250i 1.12147 + 0.105154i
\(184\) 0 0
\(185\) −2.36125 4.08981i −0.173603 0.300689i
\(186\) 0 0
\(187\) 6.75300 11.6965i 0.493828 0.855335i
\(188\) 0 0
\(189\) −4.93902 + 4.75790i −0.359261 + 0.346087i
\(190\) 0 0
\(191\) 4.31759 7.47829i 0.312410 0.541110i −0.666474 0.745529i \(-0.732197\pi\)
0.978884 + 0.204419i \(0.0655304\pi\)
\(192\) 0 0
\(193\) −9.17262 15.8874i −0.660260 1.14360i −0.980547 0.196283i \(-0.937113\pi\)
0.320287 0.947320i \(-0.396220\pi\)
\(194\) 0 0
\(195\) 6.51876 + 0.611231i 0.466818 + 0.0437712i
\(196\) 0 0
\(197\) −3.26698 −0.232762 −0.116381 0.993205i \(-0.537129\pi\)
−0.116381 + 0.993205i \(0.537129\pi\)
\(198\) 0 0
\(199\) 18.4899 1.31071 0.655357 0.755320i \(-0.272518\pi\)
0.655357 + 0.755320i \(0.272518\pi\)
\(200\) 0 0
\(201\) 9.40160 13.2506i 0.663138 0.934622i
\(202\) 0 0
\(203\) −5.50667 9.53783i −0.386493 0.669425i
\(204\) 0 0
\(205\) −6.14247 + 10.6391i −0.429009 + 0.743065i
\(206\) 0 0
\(207\) 6.39643 + 1.21016i 0.444583 + 0.0841120i
\(208\) 0 0
\(209\) −15.7293 + 27.2439i −1.08802 + 1.88450i
\(210\) 0 0
\(211\) −1.54759 2.68050i −0.106540 0.184533i 0.807826 0.589421i \(-0.200644\pi\)
−0.914367 + 0.404888i \(0.867311\pi\)
\(212\) 0 0
\(213\) 6.83123 + 14.8909i 0.468068 + 1.02031i
\(214\) 0 0
\(215\) −44.8511 −3.05882
\(216\) 0 0
\(217\) 1.76674 0.119934
\(218\) 0 0
\(219\) 8.86298 + 19.3198i 0.598904 + 1.30551i
\(220\) 0 0
\(221\) 1.53103 + 2.65181i 0.102988 + 0.178380i
\(222\) 0 0
\(223\) −1.28975 + 2.23391i −0.0863679 + 0.149594i −0.905973 0.423335i \(-0.860859\pi\)
0.819605 + 0.572928i \(0.194193\pi\)
\(224\) 0 0
\(225\) −9.20461 26.3039i −0.613641 1.75359i
\(226\) 0 0
\(227\) 4.97484 8.61667i 0.330192 0.571909i −0.652358 0.757911i \(-0.726220\pi\)
0.982549 + 0.186003i \(0.0595533\pi\)
\(228\) 0 0
\(229\) −2.34074 4.05428i −0.154680 0.267914i 0.778262 0.627939i \(-0.216101\pi\)
−0.932943 + 0.360025i \(0.882768\pi\)
\(230\) 0 0
\(231\) −5.83464 + 8.22330i −0.383891 + 0.541054i
\(232\) 0 0
\(233\) −15.8323 −1.03721 −0.518604 0.855015i \(-0.673548\pi\)
−0.518604 + 0.855015i \(0.673548\pi\)
\(234\) 0 0
\(235\) 1.53625 0.100214
\(236\) 0 0
\(237\) 12.5554 + 1.17726i 0.815561 + 0.0764710i
\(238\) 0 0
\(239\) 6.53305 + 11.3156i 0.422588 + 0.731944i 0.996192 0.0871889i \(-0.0277884\pi\)
−0.573604 + 0.819133i \(0.694455\pi\)
\(240\) 0 0
\(241\) −8.30511 + 14.3849i −0.534979 + 0.926611i 0.464185 + 0.885738i \(0.346347\pi\)
−0.999164 + 0.0408729i \(0.986986\pi\)
\(242\) 0 0
\(243\) −13.0414 + 8.53945i −0.836605 + 0.547806i
\(244\) 0 0
\(245\) 9.93810 17.2133i 0.634922 1.09972i
\(246\) 0 0
\(247\) −3.56611 6.17669i −0.226906 0.393013i
\(248\) 0 0
\(249\) 20.8651 + 1.95641i 1.32227 + 0.123983i
\(250\) 0 0
\(251\) −20.1047 −1.26900 −0.634500 0.772923i \(-0.718794\pi\)
−0.634500 + 0.772923i \(0.718794\pi\)
\(252\) 0 0
\(253\) 9.57122 0.601737
\(254\) 0 0
\(255\) 11.6013 16.3507i 0.726499 1.02392i
\(256\) 0 0
\(257\) 8.56913 + 14.8422i 0.534527 + 0.925829i 0.999186 + 0.0403387i \(0.0128437\pi\)
−0.464659 + 0.885490i \(0.653823\pi\)
\(258\) 0 0
\(259\) −0.824422 + 1.42794i −0.0512271 + 0.0887279i
\(260\) 0 0
\(261\) −8.26854 23.6289i −0.511810 1.46259i
\(262\) 0 0
\(263\) 10.0441 17.3970i 0.619348 1.07274i −0.370256 0.928930i \(-0.620730\pi\)
0.989605 0.143813i \(-0.0459365\pi\)
\(264\) 0 0
\(265\) −4.11255 7.12314i −0.252632 0.437571i
\(266\) 0 0
\(267\) 3.95587 + 8.62315i 0.242096 + 0.527728i
\(268\) 0 0
\(269\) −4.10780 −0.250457 −0.125228 0.992128i \(-0.539966\pi\)
−0.125228 + 0.992128i \(0.539966\pi\)
\(270\) 0 0
\(271\) 13.1958 0.801585 0.400793 0.916169i \(-0.368735\pi\)
0.400793 + 0.916169i \(0.368735\pi\)
\(272\) 0 0
\(273\) −0.953183 2.07778i −0.0576893 0.125753i
\(274\) 0 0
\(275\) −20.4865 35.4836i −1.23538 2.13974i
\(276\) 0 0
\(277\) 11.3036 19.5785i 0.679170 1.17636i −0.296061 0.955169i \(-0.595673\pi\)
0.975231 0.221188i \(-0.0709935\pi\)
\(278\) 0 0
\(279\) 3.94588 + 0.746533i 0.236233 + 0.0446938i
\(280\) 0 0
\(281\) −7.61926 + 13.1969i −0.454527 + 0.787263i −0.998661 0.0517348i \(-0.983525\pi\)
0.544134 + 0.838998i \(0.316858\pi\)
\(282\) 0 0
\(283\) −4.59195 7.95348i −0.272963 0.472786i 0.696656 0.717405i \(-0.254670\pi\)
−0.969619 + 0.244620i \(0.921337\pi\)
\(284\) 0 0
\(285\) −27.0220 + 38.0847i −1.60065 + 2.25594i
\(286\) 0 0
\(287\) 4.28924 0.253186
\(288\) 0 0
\(289\) −7.62384 −0.448461
\(290\) 0 0
\(291\) 23.1144 + 2.16731i 1.35499 + 0.127050i
\(292\) 0 0
\(293\) 0.232689 + 0.403030i 0.0135939 + 0.0235453i 0.872742 0.488181i \(-0.162339\pi\)
−0.859148 + 0.511726i \(0.829006\pi\)
\(294\) 0 0
\(295\) 15.3179 26.5314i 0.891842 1.54472i
\(296\) 0 0
\(297\) −16.5060 + 15.9007i −0.957775 + 0.922654i
\(298\) 0 0
\(299\) −1.08498 + 1.87925i −0.0627462 + 0.108680i
\(300\) 0 0
\(301\) 7.82980 + 13.5616i 0.451302 + 0.781678i
\(302\) 0 0
\(303\) −22.9504 2.15194i −1.31846 0.123626i
\(304\) 0 0
\(305\) 33.2551 1.90418
\(306\) 0 0
\(307\) −13.8035 −0.787810 −0.393905 0.919151i \(-0.628876\pi\)
−0.393905 + 0.919151i \(0.628876\pi\)
\(308\) 0 0
\(309\) 1.35318 1.90716i 0.0769797 0.108495i
\(310\) 0 0
\(311\) −3.59547 6.22754i −0.203880 0.353131i 0.745895 0.666063i \(-0.232022\pi\)
−0.949775 + 0.312932i \(0.898689\pi\)
\(312\) 0 0
\(313\) 4.14223 7.17456i 0.234133 0.405530i −0.724888 0.688867i \(-0.758108\pi\)
0.959020 + 0.283337i \(0.0914416\pi\)
\(314\) 0 0
\(315\) −9.76271 + 11.3448i −0.550066 + 0.639210i
\(316\) 0 0
\(317\) −2.21178 + 3.83091i −0.124226 + 0.215165i −0.921430 0.388544i \(-0.872978\pi\)
0.797204 + 0.603710i \(0.206311\pi\)
\(318\) 0 0
\(319\) −18.4031 31.8751i −1.03037 1.78466i
\(320\) 0 0
\(321\) −4.15058 9.04756i −0.231663 0.504986i
\(322\) 0 0
\(323\) −21.8392 −1.21517
\(324\) 0 0
\(325\) 9.28930 0.515278
\(326\) 0 0
\(327\) 11.6882 + 25.4783i 0.646358 + 1.40895i
\(328\) 0 0
\(329\) −0.268188 0.464516i −0.0147857 0.0256096i
\(330\) 0 0
\(331\) 11.7011 20.2668i 0.643148 1.11397i −0.341577 0.939854i \(-0.610961\pi\)
0.984726 0.174112i \(-0.0557055\pi\)
\(332\) 0 0
\(333\) −2.44466 + 2.84084i −0.133967 + 0.155677i
\(334\) 0 0
\(335\) 17.7292 30.7079i 0.968651 1.67775i
\(336\) 0 0
\(337\) 15.8641 + 27.4774i 0.864171 + 1.49679i 0.867868 + 0.496795i \(0.165490\pi\)
−0.00369700 + 0.999993i \(0.501177\pi\)
\(338\) 0 0
\(339\) 5.12744 7.22657i 0.278484 0.392493i
\(340\) 0 0
\(341\) 5.90436 0.319739
\(342\) 0 0
\(343\) −16.1784 −0.873552
\(344\) 0 0
\(345\) 14.1455 + 1.32635i 0.761569 + 0.0714084i
\(346\) 0 0
\(347\) 15.6119 + 27.0407i 0.838092 + 1.45162i 0.891488 + 0.453045i \(0.149662\pi\)
−0.0533955 + 0.998573i \(0.517004\pi\)
\(348\) 0 0
\(349\) −13.8233 + 23.9426i −0.739944 + 1.28162i 0.212577 + 0.977144i \(0.431814\pi\)
−0.952520 + 0.304475i \(0.901519\pi\)
\(350\) 0 0
\(351\) −1.25090 5.04334i −0.0667682 0.269193i
\(352\) 0 0
\(353\) −2.49914 + 4.32864i −0.133016 + 0.230390i −0.924838 0.380362i \(-0.875799\pi\)
0.791822 + 0.610752i \(0.209133\pi\)
\(354\) 0 0
\(355\) 17.8777 + 30.9650i 0.948848 + 1.64345i
\(356\) 0 0
\(357\) −6.96923 0.653470i −0.368851 0.0345853i
\(358\) 0 0
\(359\) −10.1761 −0.537075 −0.268537 0.963269i \(-0.586540\pi\)
−0.268537 + 0.963269i \(0.586540\pi\)
\(360\) 0 0
\(361\) 31.8686 1.67730
\(362\) 0 0
\(363\) −8.47410 + 11.9433i −0.444775 + 0.626863i
\(364\) 0 0
\(365\) 23.1948 + 40.1746i 1.21407 + 2.10284i
\(366\) 0 0
\(367\) 3.85242 6.67258i 0.201094 0.348306i −0.747787 0.663939i \(-0.768884\pi\)
0.948881 + 0.315633i \(0.102217\pi\)
\(368\) 0 0
\(369\) 9.57971 + 1.81241i 0.498700 + 0.0943505i
\(370\) 0 0
\(371\) −1.43588 + 2.48702i −0.0745472 + 0.129120i
\(372\) 0 0
\(373\) −14.6275 25.3356i −0.757384 1.31183i −0.944180 0.329429i \(-0.893144\pi\)
0.186797 0.982399i \(-0.440189\pi\)
\(374\) 0 0
\(375\) −11.7100 25.5257i −0.604700 1.31814i
\(376\) 0 0
\(377\) 8.34461 0.429769
\(378\) 0 0
\(379\) −20.9948 −1.07843 −0.539215 0.842168i \(-0.681279\pi\)
−0.539215 + 0.842168i \(0.681279\pi\)
\(380\) 0 0
\(381\) 12.6040 + 27.4746i 0.645722 + 1.40757i
\(382\) 0 0
\(383\) 8.49637 + 14.7161i 0.434144 + 0.751960i 0.997225 0.0744417i \(-0.0237175\pi\)
−0.563081 + 0.826402i \(0.690384\pi\)
\(384\) 0 0
\(385\) −11.0028 + 19.0574i −0.560753 + 0.971253i
\(386\) 0 0
\(387\) 11.7568 + 33.5973i 0.597634 + 1.70785i
\(388\) 0 0
\(389\) −11.5122 + 19.9398i −0.583694 + 1.01099i 0.411343 + 0.911481i \(0.365060\pi\)
−0.995037 + 0.0995069i \(0.968273\pi\)
\(390\) 0 0
\(391\) 3.32228 + 5.75435i 0.168015 + 0.291010i
\(392\) 0 0
\(393\) 3.08126 4.34271i 0.155429 0.219061i
\(394\) 0 0
\(395\) 27.5218 1.38477
\(396\) 0 0
\(397\) −10.2161 −0.512731 −0.256365 0.966580i \(-0.582525\pi\)
−0.256365 + 0.966580i \(0.582525\pi\)
\(398\) 0 0
\(399\) 16.2330 + 1.52208i 0.812665 + 0.0761994i
\(400\) 0 0
\(401\) −17.0998 29.6177i −0.853921 1.47904i −0.877642 0.479317i \(-0.840885\pi\)
0.0237206 0.999719i \(-0.492449\pi\)
\(402\) 0 0
\(403\) −0.669313 + 1.15928i −0.0333408 + 0.0577480i
\(404\) 0 0
\(405\) −26.5980 + 21.2127i −1.32167 + 1.05407i
\(406\) 0 0
\(407\) −2.75518 + 4.77212i −0.136569 + 0.236545i
\(408\) 0 0
\(409\) −14.9088 25.8229i −0.737195 1.27686i −0.953754 0.300590i \(-0.902817\pi\)
0.216558 0.976270i \(-0.430517\pi\)
\(410\) 0 0
\(411\) 22.0892 + 2.07120i 1.08958 + 0.102165i
\(412\) 0 0
\(413\) −10.6964 −0.526334
\(414\) 0 0
\(415\) 45.7368 2.24513
\(416\) 0 0
\(417\) 19.3020 27.2042i 0.945225 1.33219i
\(418\) 0 0
\(419\) −7.45668 12.9153i −0.364283 0.630956i 0.624378 0.781122i \(-0.285352\pi\)
−0.988661 + 0.150166i \(0.952019\pi\)
\(420\) 0 0
\(421\) −6.46463 + 11.1971i −0.315067 + 0.545712i −0.979452 0.201679i \(-0.935360\pi\)
0.664385 + 0.747391i \(0.268694\pi\)
\(422\) 0 0
\(423\) −0.402698 1.15078i −0.0195799 0.0559530i
\(424\) 0 0
\(425\) 14.2222 24.6335i 0.689876 1.19490i
\(426\) 0 0
\(427\) −5.80545 10.0553i −0.280946 0.486612i
\(428\) 0 0
\(429\) −3.18550 6.94386i −0.153797 0.335253i
\(430\) 0 0
\(431\) 9.00134 0.433579 0.216790 0.976218i \(-0.430441\pi\)
0.216790 + 0.976218i \(0.430441\pi\)
\(432\) 0 0
\(433\) 11.7638 0.565333 0.282667 0.959218i \(-0.408781\pi\)
0.282667 + 0.959218i \(0.408781\pi\)
\(434\) 0 0
\(435\) −22.7811 49.6591i −1.09227 2.38097i
\(436\) 0 0
\(437\) −7.73835 13.4032i −0.370175 0.641163i
\(438\) 0 0
\(439\) −15.8633 + 27.4760i −0.757114 + 1.31136i 0.187202 + 0.982321i \(0.440058\pi\)
−0.944316 + 0.329039i \(0.893275\pi\)
\(440\) 0 0
\(441\) −15.4993 2.93236i −0.738063 0.139636i
\(442\) 0 0
\(443\) 1.83382 3.17626i 0.0871272 0.150909i −0.819168 0.573553i \(-0.805565\pi\)
0.906296 + 0.422644i \(0.138898\pi\)
\(444\) 0 0
\(445\) 10.3527 + 17.9314i 0.490766 + 0.850031i
\(446\) 0 0
\(447\) −10.6921 + 15.0694i −0.505719 + 0.712757i
\(448\) 0 0
\(449\) 39.4850 1.86341 0.931706 0.363213i \(-0.118320\pi\)
0.931706 + 0.363213i \(0.118320\pi\)
\(450\) 0 0
\(451\) 14.3345 0.674984
\(452\) 0 0
\(453\) 17.2404 + 1.61654i 0.810022 + 0.0759517i
\(454\) 0 0
\(455\) −2.49453 4.32065i −0.116945 0.202555i
\(456\) 0 0
\(457\) −12.1028 + 20.9626i −0.566144 + 0.980590i 0.430798 + 0.902448i \(0.358232\pi\)
−0.996942 + 0.0781417i \(0.975101\pi\)
\(458\) 0 0
\(459\) −15.2892 4.40432i −0.713637 0.205576i
\(460\) 0 0
\(461\) 4.62828 8.01641i 0.215560 0.373362i −0.737885 0.674926i \(-0.764176\pi\)
0.953446 + 0.301564i \(0.0975089\pi\)
\(462\) 0 0
\(463\) −4.06304 7.03739i −0.188826 0.327055i 0.756033 0.654533i \(-0.227135\pi\)
−0.944859 + 0.327478i \(0.893801\pi\)
\(464\) 0 0
\(465\) 8.72618 + 0.818210i 0.404667 + 0.0379436i
\(466\) 0 0
\(467\) 3.39825 0.157252 0.0786261 0.996904i \(-0.474947\pi\)
0.0786261 + 0.996904i \(0.474947\pi\)
\(468\) 0 0
\(469\) −12.3802 −0.571664
\(470\) 0 0
\(471\) −13.5430 + 19.0874i −0.624030 + 0.879503i
\(472\) 0 0
\(473\) 26.1669 + 45.3224i 1.20315 + 2.08392i
\(474\) 0 0
\(475\) −33.1267 + 57.3771i −1.51996 + 2.63264i
\(476\) 0 0
\(477\) −4.25782 + 4.94784i −0.194952 + 0.226546i
\(478\) 0 0
\(479\) −15.5576 + 26.9466i −0.710847 + 1.23122i 0.253693 + 0.967285i \(0.418355\pi\)
−0.964540 + 0.263938i \(0.914979\pi\)
\(480\) 0 0
\(481\) −0.624650 1.08193i −0.0284816 0.0493315i
\(482\) 0 0
\(483\) −2.06838 4.50872i −0.0941144 0.205154i
\(484\) 0 0
\(485\) 50.6672 2.30068
\(486\) 0 0
\(487\) 5.20054 0.235659 0.117829 0.993034i \(-0.462406\pi\)
0.117829 + 0.993034i \(0.462406\pi\)
\(488\) 0 0
\(489\) 3.77702 + 8.23328i 0.170803 + 0.372322i
\(490\) 0 0
\(491\) 17.2623 + 29.8992i 0.779037 + 1.34933i 0.932497 + 0.361177i \(0.117625\pi\)
−0.153460 + 0.988155i \(0.549042\pi\)
\(492\) 0 0
\(493\) 12.7758 22.1284i 0.575394 0.996611i
\(494\) 0 0
\(495\) −32.6266 + 37.9140i −1.46646 + 1.70411i
\(496\) 0 0
\(497\) 6.24192 10.8113i 0.279988 0.484954i
\(498\) 0 0
\(499\) −4.65602 8.06446i −0.208432 0.361015i 0.742789 0.669526i \(-0.233503\pi\)
−0.951221 + 0.308511i \(0.900169\pi\)
\(500\) 0 0
\(501\) 9.73601 13.7219i 0.434973 0.613047i
\(502\) 0 0
\(503\) −16.3420 −0.728656 −0.364328 0.931271i \(-0.618701\pi\)
−0.364328 + 0.931271i \(0.618701\pi\)
\(504\) 0 0
\(505\) −50.3078 −2.23867
\(506\) 0 0
\(507\) 1.72449 + 0.161696i 0.0765871 + 0.00718119i
\(508\) 0 0
\(509\) −19.7266 34.1675i −0.874368 1.51445i −0.857435 0.514593i \(-0.827943\pi\)
−0.0169335 0.999857i \(-0.505390\pi\)
\(510\) 0 0
\(511\) 8.09839 14.0268i 0.358252 0.620510i
\(512\) 0 0
\(513\) 35.6120 + 10.2587i 1.57231 + 0.452932i
\(514\) 0 0
\(515\) 2.55178 4.41981i 0.112445 0.194760i
\(516\) 0 0
\(517\) −0.896274 1.55239i −0.0394181 0.0682741i
\(518\) 0 0
\(519\) −42.2845 3.96480i −1.85608 0.174036i
\(520\) 0 0
\(521\) −24.7139 −1.08274 −0.541368 0.840786i \(-0.682093\pi\)
−0.541368 + 0.840786i \(0.682093\pi\)
\(522\) 0 0
\(523\) 25.3771 1.10966 0.554832 0.831963i \(-0.312783\pi\)
0.554832 + 0.831963i \(0.312783\pi\)
\(524\) 0 0
\(525\) −12.2881 + 17.3187i −0.536295 + 0.755850i
\(526\) 0 0
\(527\) 2.04947 + 3.54978i 0.0892763 + 0.154631i
\(528\) 0 0
\(529\) 9.14562 15.8407i 0.397636 0.688725i
\(530\) 0 0
\(531\) −23.8896 4.51974i −1.03672 0.196140i
\(532\) 0 0
\(533\) −1.62494 + 2.81448i −0.0703840 + 0.121909i
\(534\) 0 0
\(535\) −10.8623 18.8140i −0.469616 0.813400i
\(536\) 0 0
\(537\) 14.0474 + 30.6210i 0.606191 + 1.32140i
\(538\) 0 0
\(539\) −23.1922 −0.998959
\(540\) 0 0
\(541\) −22.0818 −0.949370 −0.474685 0.880156i \(-0.657438\pi\)
−0.474685 + 0.880156i \(0.657438\pi\)
\(542\) 0 0
\(543\) −11.1564 24.3191i −0.478766 1.04363i
\(544\) 0 0
\(545\) 30.5886 + 52.9809i 1.31027 + 2.26945i
\(546\) 0 0
\(547\) −3.02667 + 5.24235i −0.129411 + 0.224147i −0.923449 0.383722i \(-0.874642\pi\)
0.794037 + 0.607869i \(0.207975\pi\)
\(548\) 0 0
\(549\) −8.71718 24.9110i −0.372040 1.06317i
\(550\) 0 0
\(551\) −29.7578 + 51.5421i −1.26773 + 2.19577i
\(552\) 0 0
\(553\) −4.80456 8.32174i −0.204311 0.353876i
\(554\) 0 0
\(555\) −4.73325 + 6.67101i −0.200915 + 0.283169i
\(556\) 0 0
\(557\) 27.8981 1.18208 0.591039 0.806643i \(-0.298718\pi\)
0.591039 + 0.806643i \(0.298718\pi\)
\(558\) 0 0
\(559\) −11.8650 −0.501836
\(560\) 0 0
\(561\) −23.2909 2.18387i −0.983343 0.0922030i
\(562\) 0 0
\(563\) 10.9423 + 18.9526i 0.461162 + 0.798755i 0.999019 0.0442804i \(-0.0140995\pi\)
−0.537858 + 0.843036i \(0.680766\pi\)
\(564\) 0 0
\(565\) 9.66915 16.7475i 0.406784 0.704571i
\(566\) 0 0
\(567\) 11.0574 + 4.33928i 0.464366 + 0.182233i
\(568\) 0 0
\(569\) 0.0845017 0.146361i 0.00354249 0.00613578i −0.864249 0.503065i \(-0.832206\pi\)
0.867791 + 0.496929i \(0.165539\pi\)
\(570\) 0 0
\(571\) −12.7297 22.0485i −0.532722 0.922701i −0.999270 0.0382052i \(-0.987836\pi\)
0.466548 0.884496i \(-0.345497\pi\)
\(572\) 0 0
\(573\) −14.8913 1.39628i −0.622091 0.0583303i
\(574\) 0 0
\(575\) 20.1575 0.840625
\(576\) 0 0
\(577\) −2.82205 −0.117484 −0.0587418 0.998273i \(-0.518709\pi\)
−0.0587418 + 0.998273i \(0.518709\pi\)
\(578\) 0 0
\(579\) −18.3870 + 25.9145i −0.764138 + 1.07697i
\(580\) 0 0
\(581\) −7.98442 13.8294i −0.331250 0.573741i
\(582\) 0 0
\(583\) −4.79866 + 8.31151i −0.198740 + 0.344228i
\(584\) 0 0
\(585\) −3.74566 10.7039i −0.154864 0.442552i
\(586\) 0 0
\(587\) 14.4040 24.9485i 0.594518 1.02973i −0.399097 0.916909i \(-0.630676\pi\)
0.993615 0.112826i \(-0.0359903\pi\)
\(588\) 0 0
\(589\) −4.77369 8.26827i −0.196696 0.340688i
\(590\) 0 0
\(591\) 2.35944 + 5.14319i 0.0970545 + 0.211563i
\(592\) 0 0
\(593\) 27.6059 1.13364 0.566819 0.823842i \(-0.308174\pi\)
0.566819 + 0.823842i \(0.308174\pi\)
\(594\) 0 0
\(595\) −15.2767 −0.626285
\(596\) 0 0
\(597\) −13.3536 29.1086i −0.546526 1.19133i
\(598\) 0 0
\(599\) 20.9533 + 36.2921i 0.856127 + 1.48285i 0.875596 + 0.483044i \(0.160469\pi\)
−0.0194691 + 0.999810i \(0.506198\pi\)
\(600\) 0 0
\(601\) 10.1877 17.6457i 0.415566 0.719781i −0.579922 0.814672i \(-0.696917\pi\)
0.995488 + 0.0948909i \(0.0302502\pi\)
\(602\) 0 0
\(603\) −27.6502 5.23124i −1.12600 0.213032i
\(604\) 0 0
\(605\) −15.9802 + 27.6785i −0.649687 + 1.12529i
\(606\) 0 0
\(607\) −21.4089 37.0812i −0.868959 1.50508i −0.863062 0.505098i \(-0.831456\pi\)
−0.00589722 0.999983i \(-0.501877\pi\)
\(608\) 0 0
\(609\) −11.0384 + 15.5575i −0.447299 + 0.630420i
\(610\) 0 0
\(611\) 0.406403 0.0164413
\(612\) 0 0
\(613\) 26.9648 1.08910 0.544549 0.838729i \(-0.316701\pi\)
0.544549 + 0.838729i \(0.316701\pi\)
\(614\) 0 0
\(615\) 21.1852 + 1.98643i 0.854270 + 0.0801006i
\(616\) 0 0
\(617\) 12.2801 + 21.2697i 0.494378 + 0.856287i 0.999979 0.00647995i \(-0.00206265\pi\)
−0.505601 + 0.862767i \(0.668729\pi\)
\(618\) 0 0
\(619\) 8.80180 15.2452i 0.353774 0.612755i −0.633133 0.774043i \(-0.718231\pi\)
0.986907 + 0.161288i \(0.0515648\pi\)
\(620\) 0 0
\(621\) −2.71442 10.9439i −0.108926 0.439163i
\(622\) 0 0
\(623\) 3.61461 6.26069i 0.144816 0.250829i
\(624\) 0 0
\(625\) −7.42228 12.8558i −0.296891 0.514231i
\(626\) 0 0
\(627\) 54.2499 + 5.08674i 2.16653 + 0.203145i
\(628\) 0 0
\(629\) −3.82542 −0.152529
\(630\) 0 0
\(631\) 11.6431 0.463503 0.231752 0.972775i \(-0.425554\pi\)
0.231752 + 0.972775i \(0.425554\pi\)
\(632\) 0 0
\(633\) −3.10222 + 4.37225i −0.123302 + 0.173781i
\(634\) 0 0
\(635\) 32.9852 + 57.1321i 1.30898 + 2.26722i
\(636\) 0 0
\(637\) 2.62905 4.55364i 0.104167 0.180422i
\(638\) 0 0
\(639\) 18.5092 21.5088i 0.732212 0.850874i
\(640\) 0 0
\(641\) 16.3997 28.4051i 0.647750 1.12194i −0.335909 0.941894i \(-0.609044\pi\)
0.983659 0.180041i \(-0.0576230\pi\)
\(642\) 0 0
\(643\) 3.44097 + 5.95994i 0.135699 + 0.235037i 0.925864 0.377857i \(-0.123339\pi\)
−0.790165 + 0.612894i \(0.790005\pi\)
\(644\) 0 0
\(645\) 32.3919 + 70.6090i 1.27543 + 2.78023i
\(646\) 0 0
\(647\) 8.22182 0.323233 0.161617 0.986854i \(-0.448329\pi\)
0.161617 + 0.986854i \(0.448329\pi\)
\(648\) 0 0
\(649\) −35.7468 −1.40319
\(650\) 0 0
\(651\) −1.27596 2.78137i −0.0500086 0.109010i
\(652\) 0 0
\(653\) −20.1786 34.9503i −0.789649 1.36771i −0.926182 0.377077i \(-0.876929\pi\)
0.136533 0.990635i \(-0.456404\pi\)
\(654\) 0 0
\(655\) 5.81054 10.0641i 0.227037 0.393239i
\(656\) 0 0
\(657\) 24.0142 27.9059i 0.936883 1.08871i
\(658\) 0 0
\(659\) 0.0788685 0.136604i 0.00307228 0.00532135i −0.864485 0.502658i \(-0.832355\pi\)
0.867557 + 0.497337i \(0.165689\pi\)
\(660\) 0 0
\(661\) 12.8347 + 22.2304i 0.499214 + 0.864663i 1.00000 0.000907872i \(-0.000288985\pi\)
−0.500786 + 0.865571i \(0.666956\pi\)
\(662\) 0 0
\(663\) 3.06902 4.32546i 0.119191 0.167987i
\(664\) 0 0
\(665\) 35.5831 1.37985
\(666\) 0 0
\(667\) 18.1075 0.701127
\(668\) 0 0
\(669\) 4.44830 + 0.417095i 0.171981 + 0.0161258i
\(670\) 0 0
\(671\) −19.4016 33.6045i −0.748990 1.29729i
\(672\) 0 0
\(673\) −8.87413 + 15.3704i −0.342072 + 0.592487i −0.984817 0.173593i \(-0.944462\pi\)
0.642745 + 0.766080i \(0.277796\pi\)
\(674\) 0 0
\(675\) −34.7625 + 33.4877i −1.33801 + 1.28894i
\(676\) 0 0
\(677\) 18.6184 32.2480i 0.715564 1.23939i −0.247178 0.968970i \(-0.579503\pi\)
0.962742 0.270422i \(-0.0871633\pi\)
\(678\) 0 0
\(679\) −8.84514 15.3202i −0.339445 0.587937i
\(680\) 0 0
\(681\) −17.1581 1.60883i −0.657499 0.0616504i
\(682\) 0 0
\(683\) 13.1276 0.502315 0.251158 0.967946i \(-0.419189\pi\)
0.251158 + 0.967946i \(0.419189\pi\)
\(684\) 0 0
\(685\) 48.4202 1.85004
\(686\) 0 0
\(687\) −4.69214 + 6.61306i −0.179016 + 0.252304i
\(688\) 0 0
\(689\) −1.08794 1.88437i −0.0414473 0.0717888i
\(690\) 0 0
\(691\) −2.44120 + 4.22828i −0.0928676 + 0.160851i −0.908717 0.417414i \(-0.862937\pi\)
0.815849 + 0.578265i \(0.196270\pi\)
\(692\) 0 0
\(693\) 17.1598 + 3.24651i 0.651846 + 0.123325i
\(694\) 0 0
\(695\) 36.3991 63.0452i 1.38070 2.39144i
\(696\) 0 0
\(697\) 4.97565 + 8.61808i 0.188466 + 0.326433i
\(698\) 0 0
\(699\) 11.4342 + 24.9247i 0.432483 + 0.942740i
\(700\) 0 0
\(701\) −1.88397 −0.0711565 −0.0355782 0.999367i \(-0.511327\pi\)
−0.0355782 + 0.999367i \(0.511327\pi\)
\(702\) 0 0
\(703\) 8.91029 0.336058
\(704\) 0 0
\(705\) −1.10950 2.41852i −0.0417861 0.0910866i
\(706\) 0 0
\(707\) 8.78239 + 15.2115i 0.330296 + 0.572089i
\(708\) 0 0
\(709\) −10.2918 + 17.8259i −0.386516 + 0.669466i −0.991978 0.126408i \(-0.959655\pi\)
0.605462 + 0.795874i \(0.292988\pi\)
\(710\) 0 0
\(711\) −7.21429 20.6162i −0.270557 0.773167i
\(712\) 0 0
\(713\) −1.45239 + 2.51561i −0.0543923 + 0.0942102i
\(714\) 0 0
\(715\) −8.33661 14.4394i −0.311772 0.540004i
\(716\) 0 0
\(717\) 13.0959 18.4572i 0.489074 0.689297i
\(718\) 0 0
\(719\) 8.09546 0.301910 0.150955 0.988541i \(-0.451765\pi\)
0.150955 + 0.988541i \(0.451765\pi\)
\(720\) 0 0
\(721\) −1.78189 −0.0663610
\(722\) 0 0
\(723\) 28.6441 + 2.68581i 1.06529 + 0.0998864i
\(724\) 0 0
\(725\) −38.7578 67.1305i −1.43943 2.49316i
\(726\) 0 0
\(727\) −16.8348 + 29.1587i −0.624367 + 1.08144i 0.364296 + 0.931283i \(0.381310\pi\)
−0.988663 + 0.150152i \(0.952024\pi\)
\(728\) 0 0
\(729\) 22.8623 + 14.3637i 0.846750 + 0.531990i
\(730\) 0 0
\(731\) −18.1656 + 31.4638i −0.671880 + 1.16373i
\(732\) 0 0
\(733\) 19.7069 + 34.1334i 0.727891 + 1.26074i 0.957773 + 0.287526i \(0.0928327\pi\)
−0.229882 + 0.973219i \(0.573834\pi\)
\(734\) 0 0
\(735\) −34.2763 3.21391i −1.26430 0.118547i
\(736\) 0 0
\(737\) −41.3741 −1.52403
\(738\) 0 0
\(739\) 13.3865 0.492429 0.246215 0.969215i \(-0.420813\pi\)
0.246215 + 0.969215i \(0.420813\pi\)
\(740\) 0 0
\(741\) −7.14846 + 10.0750i −0.262605 + 0.370114i
\(742\) 0 0
\(743\) 9.03777 + 15.6539i 0.331564 + 0.574285i 0.982819 0.184574i \(-0.0590905\pi\)
−0.651255 + 0.758859i \(0.725757\pi\)
\(744\) 0 0
\(745\) −20.1628 + 34.9230i −0.738708 + 1.27948i
\(746\) 0 0
\(747\) −11.9890 34.2608i −0.438655 1.25354i
\(748\) 0 0
\(749\) −3.79252 + 6.56883i −0.138576 + 0.240020i
\(750\) 0 0
\(751\) −10.4782 18.1488i −0.382356 0.662260i 0.609042 0.793138i \(-0.291554\pi\)
−0.991399 + 0.130877i \(0.958221\pi\)
\(752\) 0 0
\(753\) 14.5198 + 31.6508i 0.529132 + 1.15342i
\(754\) 0 0
\(755\) 37.7913 1.37537
\(756\) 0 0
\(757\) 40.0649 1.45618 0.728092 0.685479i \(-0.240407\pi\)
0.728092 + 0.685479i \(0.240407\pi\)
\(758\) 0 0
\(759\) −6.91243 15.0679i −0.250905 0.546932i
\(760\) 0 0
\(761\) −0.455916 0.789670i −0.0165269 0.0286255i 0.857644 0.514244i \(-0.171928\pi\)
−0.874171 + 0.485619i \(0.838594\pi\)
\(762\) 0 0
\(763\) 10.6799 18.4981i 0.386638 0.669676i
\(764\) 0 0
\(765\) −34.1195 6.45517i −1.23359 0.233387i
\(766\) 0 0
\(767\) 4.05223 7.01866i 0.146317 0.253429i
\(768\) 0 0
\(769\) −12.3273 21.3514i −0.444532 0.769952i 0.553487 0.832858i \(-0.313297\pi\)
−0.998019 + 0.0629054i \(0.979963\pi\)
\(770\) 0 0
\(771\) 17.1773 24.2095i 0.618624 0.871884i
\(772\) 0 0
\(773\) −41.8304 −1.50454 −0.752268 0.658858i \(-0.771040\pi\)
−0.752268 + 0.658858i \(0.771040\pi\)
\(774\) 0 0
\(775\) 12.4349 0.446674
\(776\) 0 0
\(777\) 2.84341 + 0.266612i 0.102007 + 0.00956465i
\(778\) 0 0
\(779\) −11.5894 20.0735i −0.415235 0.719208i
\(780\) 0 0
\(781\) 20.8602 36.1310i 0.746438 1.29287i
\(782\) 0 0
\(783\) −31.2273 + 30.0822i −1.11597 + 1.07505i
\(784\) 0 0
\(785\) −25.5390 + 44.2348i −0.911526 + 1.57881i
\(786\) 0 0
\(787\) 8.80612 + 15.2526i 0.313904 + 0.543698i 0.979204 0.202878i \(-0.0650296\pi\)
−0.665300 + 0.746576i \(0.731696\pi\)
\(788\) 0 0
\(789\) −34.6420 3.24820i −1.23329 0.115639i
\(790\) 0 0
\(791\) −6.75189 −0.240070
\(792\) 0 0
\(793\) 8.79738 0.312404
\(794\) 0 0
\(795\) −8.24382 + 11.6188i −0.292378 + 0.412076i
\(796\) 0 0
\(797\) 1.39125 + 2.40971i 0.0492805 + 0.0853563i 0.889613 0.456714i \(-0.150974\pi\)
−0.840333 + 0.542071i \(0.817641\pi\)
\(798\) 0 0
\(799\) 0.622213 1.07771i 0.0220123 0.0381265i
\(800\) 0 0
\(801\) 10.7184 12.4554i 0.378717 0.440092i
\(802\) 0 0
\(803\) 27.0645 46.8771i 0.955085 1.65426i
\(804\) 0 0
\(805\) −5.41304 9.37567i −0.190785 0.330449i
\(806\) 0 0
\(807\) 2.96669 + 6.46690i 0.104433 + 0.227646i
\(808\) 0 0
\(809\) 20.0046 0.703324 0.351662 0.936127i \(-0.385617\pi\)
0.351662 + 0.936127i \(0.385617\pi\)
\(810\) 0 0
\(811\) 21.7172 0.762593 0.381297 0.924453i \(-0.375478\pi\)
0.381297 + 0.924453i \(0.375478\pi\)
\(812\) 0 0
\(813\) −9.53011 20.7741i −0.334236 0.728578i
\(814\) 0 0
\(815\) 9.88466 + 17.1207i 0.346244 + 0.599713i
\(816\) 0 0
\(817\) 42.3119 73.2864i 1.48031 2.56397i
\(818\) 0 0
\(819\) −2.58265 + 3.00119i −0.0902449 + 0.104870i
\(820\) 0 0
\(821\) −25.6483 + 44.4242i −0.895133 + 1.55042i −0.0614936 + 0.998107i \(0.519586\pi\)
−0.833640 + 0.552309i \(0.813747\pi\)
\(822\) 0 0
\(823\) −7.54360 13.0659i −0.262953 0.455449i 0.704072 0.710129i \(-0.251363\pi\)
−0.967025 + 0.254680i \(0.918030\pi\)
\(824\) 0 0
\(825\) −41.0662 + 57.8784i −1.42974 + 2.01507i
\(826\) 0 0
\(827\) 24.8406 0.863792 0.431896 0.901923i \(-0.357845\pi\)
0.431896 + 0.901923i \(0.357845\pi\)
\(828\) 0 0
\(829\) −23.4924 −0.815924 −0.407962 0.912999i \(-0.633760\pi\)
−0.407962 + 0.912999i \(0.633760\pi\)
\(830\) 0 0
\(831\) −38.9860 3.65552i −1.35241 0.126808i
\(832\) 0 0
\(833\) −8.05027 13.9435i −0.278925 0.483113i
\(834\) 0 0
\(835\) 18.3598 31.8002i 0.635368 1.10049i
\(836\) 0 0
\(837\) −1.67449 6.75114i −0.0578788 0.233353i
\(838\) 0 0
\(839\) 22.7569 39.4161i 0.785656 1.36080i −0.142950 0.989730i \(-0.545659\pi\)
0.928606 0.371066i \(-0.121008\pi\)
\(840\) 0 0
\(841\) −20.3163 35.1889i −0.700562 1.21341i
\(842\) 0 0
\(843\) 26.2786 + 2.46401i 0.905084 + 0.0848651i
\(844\) 0 0
\(845\) 3.78012 0.130040
\(846\) 0 0
\(847\) 11.1588 0.383422
\(848\) 0 0
\(849\) −9.20480 + 12.9732i −0.315908 + 0.445238i
\(850\) 0 0
\(851\) −1.35547 2.34774i −0.0464649 0.0804796i
\(852\) 0 0
\(853\) 8.22123 14.2396i 0.281489 0.487554i −0.690262 0.723559i \(-0.742505\pi\)
0.971752 + 0.236005i \(0.0758382\pi\)
\(854\) 0 0
\(855\) 79.4722 + 15.0356i 2.71789 + 0.514206i
\(856\) 0 0
\(857\) −7.08343 + 12.2689i −0.241965 + 0.419096i −0.961274 0.275594i \(-0.911125\pi\)
0.719309 + 0.694690i \(0.244459\pi\)
\(858\) 0 0
\(859\) −26.9365 46.6554i −0.919062 1.59186i −0.800844 0.598874i \(-0.795615\pi\)
−0.118218 0.992988i \(-0.537718\pi\)
\(860\) 0 0
\(861\) −3.09773 6.75254i −0.105570 0.230126i
\(862\) 0 0
\(863\) −23.9687 −0.815905 −0.407952 0.913003i \(-0.633757\pi\)
−0.407952 + 0.913003i \(0.633757\pi\)
\(864\) 0 0
\(865\) −92.6887 −3.15151
\(866\) 0 0
\(867\) 5.50602 + 12.0022i 0.186994 + 0.407616i
\(868\) 0 0
\(869\) −16.0566 27.8109i −0.544684 0.943421i
\(870\) 0 0
\(871\) 4.69012 8.12353i 0.158919 0.275255i
\(872\) 0 0
\(873\) −13.2814 37.9541i −0.449508 1.28455i
\(874\) 0 0
\(875\) −10.6998 + 18.5325i −0.361718 + 0.626514i
\(876\) 0 0
\(877\) 7.89845 + 13.6805i 0.266712 + 0.461958i 0.968011 0.250909i \(-0.0807295\pi\)
−0.701299 + 0.712867i \(0.747396\pi\)
\(878\) 0 0
\(879\) 0.466438 0.657395i 0.0157326 0.0221734i
\(880\) 0 0
\(881\) −47.9966 −1.61705 −0.808523 0.588464i \(-0.799733\pi\)
−0.808523 + 0.588464i \(0.799733\pi\)
\(882\) 0 0
\(883\) −30.6008 −1.02980 −0.514899 0.857251i \(-0.672171\pi\)
−0.514899 + 0.857251i \(0.672171\pi\)
\(884\) 0 0
\(885\) −52.8310 4.95369i −1.77590 0.166517i
\(886\) 0 0
\(887\) −17.1661 29.7326i −0.576382 0.998323i −0.995890 0.0905710i \(-0.971131\pi\)
0.419508 0.907752i \(-0.362203\pi\)
\(888\) 0 0
\(889\) 11.5167 19.9475i 0.386257 0.669016i
\(890\) 0 0
\(891\) 36.9533 + 14.5017i 1.23798 + 0.485825i
\(892\) 0 0
\(893\) −1.44928 + 2.51022i −0.0484983 + 0.0840015i
\(894\) 0 0
\(895\) 36.7628 + 63.6750i 1.22884 + 2.12842i
\(896\) 0 0
\(897\) 3.74208 + 0.350876i 0.124944 + 0.0117154i
\(898\) 0 0
\(899\) 11.1703 0.372551
\(900\) 0 0
\(901\) −6.66266 −0.221966
\(902\) 0 0
\(903\) 15.6952 22.1208i 0.522305 0.736133i
\(904\) 0 0
\(905\) −29.1968 50.5704i −0.970535 1.68102i
\(906\) 0 0
\(907\) −8.32595 + 14.4210i −0.276459 + 0.478840i −0.970502 0.241093i \(-0.922494\pi\)
0.694044 + 0.719933i \(0.255828\pi\)
\(908\) 0 0
\(909\) 13.1872 + 37.6849i 0.437392 + 1.24993i
\(910\) 0 0
\(911\) 4.00817 6.94235i 0.132797 0.230010i −0.791957 0.610577i \(-0.790938\pi\)
0.924754 + 0.380566i \(0.124271\pi\)
\(912\) 0 0
\(913\) −26.6836 46.2174i −0.883099 1.52957i
\(914\) 0 0
\(915\) −24.0172 52.3535i −0.793984 1.73075i
\(916\) 0 0
\(917\) −4.05746 −0.133989
\(918\) 0 0
\(919\) 3.98767 0.131541 0.0657705 0.997835i \(-0.479049\pi\)
0.0657705 + 0.997835i \(0.479049\pi\)
\(920\) 0 0
\(921\) 9.96906 + 21.7309i 0.328492 + 0.716057i
\(922\) 0 0
\(923\) 4.72939 + 8.19155i 0.155670 + 0.269628i
\(924\) 0 0
\(925\) −5.80256 + 10.0503i −0.190787 + 0.330453i
\(926\) 0 0
\(927\) −3.97972 0.752936i −0.130711 0.0247296i
\(928\) 0 0
\(929\) 3.22140 5.57962i 0.105691 0.183062i −0.808330 0.588730i \(-0.799628\pi\)
0.914020 + 0.405669i \(0.132961\pi\)
\(930\) 0 0
\(931\) 18.7509 + 32.4776i 0.614537 + 1.06441i
\(932\) 0 0
\(933\) −7.20731 + 10.1579i −0.235957 + 0.332556i
\(934\) 0 0
\(935\) −51.0542 −1.66965
\(936\) 0 0
\(937\) 12.2388 0.399824 0.199912 0.979814i \(-0.435934\pi\)
0.199912 + 0.979814i \(0.435934\pi\)
\(938\) 0 0
\(939\) −14.2864 1.33957i −0.466221 0.0437151i
\(940\) 0 0
\(941\) −9.99773 17.3166i −0.325917 0.564504i 0.655781 0.754951i \(-0.272340\pi\)
−0.981697 + 0.190447i \(0.939006\pi\)
\(942\) 0 0
\(943\) −3.52607 + 6.10733i −0.114825 + 0.198882i
\(944\) 0 0
\(945\) 24.9109 + 7.17604i 0.810351 + 0.233437i
\(946\) 0 0
\(947\) −17.6942 + 30.6472i −0.574983 + 0.995899i 0.421061 + 0.907032i \(0.361658\pi\)
−0.996044 + 0.0888669i \(0.971675\pi\)
\(948\) 0 0
\(949\) 6.13601 + 10.6279i 0.199183 + 0.344996i
\(950\) 0 0
\(951\) 7.62836 + 0.715272i 0.247366 + 0.0231943i
\(952\) 0 0
\(953\) 11.3690 0.368278 0.184139 0.982900i \(-0.441050\pi\)
0.184139 + 0.982900i \(0.441050\pi\)
\(954\) 0 0
\(955\) −32.6420 −1.05627
\(956\) 0 0
\(957\) −36.8899 + 51.9924i −1.19248 + 1.68068i
\(958\) 0 0
\(959\) −8.45286 14.6408i −0.272957 0.472776i
\(960\) 0 0
\(961\) 14.6040 25.2949i 0.471098 0.815966i
\(962\) 0 0
\(963\) −11.2460 + 13.0685i −0.362396 + 0.421126i
\(964\) 0 0
\(965\) −34.6736 + 60.0564i −1.11618 + 1.93329i
\(966\) 0 0
\(967\) −29.3632 50.8586i −0.944258 1.63550i −0.757229 0.653149i \(-0.773447\pi\)
−0.187029 0.982354i \(-0.559886\pi\)
\(968\) 0 0
\(969\) 15.7725 + 34.3815i 0.506686 + 1.10449i
\(970\) 0 0
\(971\) 15.1168 0.485121 0.242560 0.970136i \(-0.422013\pi\)
0.242560 + 0.970136i \(0.422013\pi\)
\(972\) 0 0
\(973\) −25.4172 −0.814839
\(974\) 0 0
\(975\) −6.70883 14.6241i −0.214854 0.468347i
\(976\) 0 0
\(977\) −27.1415 47.0105i −0.868335 1.50400i −0.863698 0.504010i \(-0.831857\pi\)
−0.00463697 0.999989i \(-0.501476\pi\)
\(978\) 0 0
\(979\) 12.0799 20.9230i 0.386075 0.668701i
\(980\) 0 0
\(981\) 31.6691 36.8014i 1.01112 1.17498i
\(982\) 0 0
\(983\) −15.7221 + 27.2316i −0.501459 + 0.868552i 0.498540 + 0.866867i \(0.333870\pi\)
−0.999999 + 0.00168512i \(0.999464\pi\)
\(984\) 0 0
\(985\) 6.17478 + 10.6950i 0.196745 + 0.340772i
\(986\) 0 0
\(987\) −0.537597 + 0.757686i −0.0171119 + 0.0241174i
\(988\) 0 0
\(989\) −25.7467 −0.818697
\(990\) 0 0
\(991\) −42.6265 −1.35408 −0.677038 0.735948i \(-0.736737\pi\)
−0.677038 + 0.735948i \(0.736737\pi\)
\(992\) 0 0
\(993\) −40.3566 3.78404i −1.28068 0.120083i
\(994\) 0 0
\(995\) −34.9470 60.5300i −1.10789 1.91893i
\(996\) 0 0
\(997\) 5.60659 9.71091i 0.177563 0.307548i −0.763483 0.645829i \(-0.776512\pi\)
0.941045 + 0.338281i \(0.109845\pi\)
\(998\) 0 0
\(999\) 6.23789 + 1.79694i 0.197358 + 0.0568526i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.q.g.313.4 22
3.2 odd 2 2808.2.q.g.937.11 22
9.2 odd 6 8424.2.a.be.1.1 11
9.4 even 3 inner 936.2.q.g.625.4 yes 22
9.5 odd 6 2808.2.q.g.1873.11 22
9.7 even 3 8424.2.a.bf.1.11 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.q.g.313.4 22 1.1 even 1 trivial
936.2.q.g.625.4 yes 22 9.4 even 3 inner
2808.2.q.g.937.11 22 3.2 odd 2
2808.2.q.g.1873.11 22 9.5 odd 6
8424.2.a.be.1.1 11 9.2 odd 6
8424.2.a.bf.1.11 11 9.7 even 3