Properties

Label 2808.2.q.g.1873.11
Level $2808$
Weight $2$
Character 2808.1873
Analytic conductor $22.422$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,2,Mod(937,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.937"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2808.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,0,3,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4219928876\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1873.11
Character \(\chi\) \(=\) 2808.1873
Dual form 2808.2.q.g.937.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.89006 - 3.27368i) q^{5} +(-0.659907 - 1.14299i) q^{7} +(2.20538 + 3.81984i) q^{11} +(-0.500000 + 0.866025i) q^{13} +3.06205 q^{17} +7.13223 q^{19} +(1.08498 - 1.87925i) q^{23} +(-4.64465 - 8.04477i) q^{25} +(4.17231 + 7.22665i) q^{29} +(-0.669313 + 1.15928i) q^{31} -4.98905 q^{35} +1.24930 q^{37} +(1.62494 - 2.81448i) q^{41} +(5.93250 + 10.2754i) q^{43} +(0.203201 + 0.351955i) q^{47} +(2.62905 - 4.55364i) q^{49} -2.17588 q^{53} +16.6732 q^{55} +(-4.05223 + 7.01866i) q^{59} +(-4.39869 - 7.61875i) q^{61} +(1.89006 + 3.27368i) q^{65} +(4.69012 - 8.12353i) q^{67} +9.45879 q^{71} -12.2720 q^{73} +(2.91070 - 5.04147i) q^{77} +(-3.64033 - 6.30524i) q^{79} +(6.04966 + 10.4783i) q^{83} +(5.78746 - 10.0242i) q^{85} +5.47746 q^{89} +1.31981 q^{91} +(13.4803 - 23.3486i) q^{95} +(-6.70181 - 11.6079i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q + 3 q^{5} - 4 q^{7} - 5 q^{11} - 11 q^{13} - 8 q^{17} + 10 q^{19} - 9 q^{23} - 24 q^{25} + 16 q^{29} - q^{31} + 18 q^{37} + 6 q^{41} - 7 q^{43} - 21 q^{47} - 27 q^{49} - 32 q^{53} + 34 q^{55} - 11 q^{59}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.89006 3.27368i 0.845260 1.46403i −0.0401347 0.999194i \(-0.512779\pi\)
0.885395 0.464839i \(-0.153888\pi\)
\(6\) 0 0
\(7\) −0.659907 1.14299i −0.249421 0.432011i 0.713944 0.700203i \(-0.246907\pi\)
−0.963365 + 0.268192i \(0.913574\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.20538 + 3.81984i 0.664948 + 1.15172i 0.979299 + 0.202417i \(0.0648796\pi\)
−0.314351 + 0.949307i \(0.601787\pi\)
\(12\) 0 0
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.06205 0.742656 0.371328 0.928502i \(-0.378902\pi\)
0.371328 + 0.928502i \(0.378902\pi\)
\(18\) 0 0
\(19\) 7.13223 1.63624 0.818122 0.575044i \(-0.195015\pi\)
0.818122 + 0.575044i \(0.195015\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.08498 1.87925i 0.226235 0.391850i −0.730454 0.682961i \(-0.760692\pi\)
0.956689 + 0.291111i \(0.0940250\pi\)
\(24\) 0 0
\(25\) −4.64465 8.04477i −0.928930 1.60895i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.17231 + 7.22665i 0.774778 + 1.34195i 0.934919 + 0.354861i \(0.115472\pi\)
−0.160141 + 0.987094i \(0.551195\pi\)
\(30\) 0 0
\(31\) −0.669313 + 1.15928i −0.120212 + 0.208213i −0.919851 0.392267i \(-0.871691\pi\)
0.799639 + 0.600481i \(0.205024\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.98905 −0.843304
\(36\) 0 0
\(37\) 1.24930 0.205384 0.102692 0.994713i \(-0.467254\pi\)
0.102692 + 0.994713i \(0.467254\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.62494 2.81448i 0.253773 0.439548i −0.710788 0.703406i \(-0.751662\pi\)
0.964562 + 0.263858i \(0.0849950\pi\)
\(42\) 0 0
\(43\) 5.93250 + 10.2754i 0.904698 + 1.56698i 0.821322 + 0.570465i \(0.193237\pi\)
0.0833760 + 0.996518i \(0.473430\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.203201 + 0.351955i 0.0296400 + 0.0513380i 0.880465 0.474111i \(-0.157231\pi\)
−0.850825 + 0.525449i \(0.823897\pi\)
\(48\) 0 0
\(49\) 2.62905 4.55364i 0.375578 0.650520i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.17588 −0.298881 −0.149440 0.988771i \(-0.547747\pi\)
−0.149440 + 0.988771i \(0.547747\pi\)
\(54\) 0 0
\(55\) 16.6732 2.24822
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.05223 + 7.01866i −0.527555 + 0.913752i 0.471929 + 0.881636i \(0.343558\pi\)
−0.999484 + 0.0321154i \(0.989776\pi\)
\(60\) 0 0
\(61\) −4.39869 7.61875i −0.563194 0.975481i −0.997215 0.0745784i \(-0.976239\pi\)
0.434021 0.900903i \(-0.357094\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.89006 + 3.27368i 0.234433 + 0.406050i
\(66\) 0 0
\(67\) 4.69012 8.12353i 0.572990 0.992448i −0.423267 0.906005i \(-0.639117\pi\)
0.996257 0.0864426i \(-0.0275499\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.45879 1.12255 0.561276 0.827629i \(-0.310311\pi\)
0.561276 + 0.827629i \(0.310311\pi\)
\(72\) 0 0
\(73\) −12.2720 −1.43633 −0.718165 0.695872i \(-0.755018\pi\)
−0.718165 + 0.695872i \(0.755018\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.91070 5.04147i 0.331705 0.574529i
\(78\) 0 0
\(79\) −3.64033 6.30524i −0.409569 0.709395i 0.585272 0.810837i \(-0.300988\pi\)
−0.994841 + 0.101442i \(0.967654\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.04966 + 10.4783i 0.664036 + 1.15014i 0.979546 + 0.201222i \(0.0644912\pi\)
−0.315510 + 0.948922i \(0.602175\pi\)
\(84\) 0 0
\(85\) 5.78746 10.0242i 0.627738 1.08727i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.47746 0.580609 0.290305 0.956934i \(-0.406243\pi\)
0.290305 + 0.956934i \(0.406243\pi\)
\(90\) 0 0
\(91\) 1.31981 0.138354
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 13.4803 23.3486i 1.38305 2.39552i
\(96\) 0 0
\(97\) −6.70181 11.6079i −0.680465 1.17860i −0.974839 0.222910i \(-0.928444\pi\)
0.294374 0.955690i \(-0.404889\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.65426 11.5255i −0.662124 1.14683i −0.980057 0.198719i \(-0.936322\pi\)
0.317933 0.948113i \(-0.397011\pi\)
\(102\) 0 0
\(103\) 0.675053 1.16923i 0.0665149 0.115207i −0.830850 0.556496i \(-0.812145\pi\)
0.897365 + 0.441289i \(0.145479\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.74705 −0.555588 −0.277794 0.960641i \(-0.589603\pi\)
−0.277794 + 0.960641i \(0.589603\pi\)
\(108\) 0 0
\(109\) −16.1839 −1.55014 −0.775069 0.631877i \(-0.782285\pi\)
−0.775069 + 0.631877i \(0.782285\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.55790 + 4.43040i −0.240627 + 0.416777i −0.960893 0.276920i \(-0.910686\pi\)
0.720266 + 0.693698i \(0.244020\pi\)
\(114\) 0 0
\(115\) −4.10137 7.10378i −0.382455 0.662431i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.02067 3.49990i −0.185234 0.320835i
\(120\) 0 0
\(121\) −4.22743 + 7.32212i −0.384312 + 0.665647i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −16.2141 −1.45023
\(126\) 0 0
\(127\) −17.4520 −1.54861 −0.774305 0.632812i \(-0.781901\pi\)
−0.774305 + 0.632812i \(0.781901\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.53713 + 2.66239i −0.134300 + 0.232614i −0.925330 0.379163i \(-0.876212\pi\)
0.791030 + 0.611777i \(0.209545\pi\)
\(132\) 0 0
\(133\) −4.70661 8.15208i −0.408115 0.706875i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.40458 + 11.0931i 0.547181 + 0.947745i 0.998466 + 0.0553650i \(0.0176322\pi\)
−0.451286 + 0.892380i \(0.649034\pi\)
\(138\) 0 0
\(139\) 9.62910 16.6781i 0.816730 1.41462i −0.0913499 0.995819i \(-0.529118\pi\)
0.908079 0.418798i \(-0.137549\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.41077 −0.368847
\(144\) 0 0
\(145\) 31.5436 2.61956
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.33391 9.23860i 0.436971 0.756856i −0.560483 0.828166i \(-0.689385\pi\)
0.997454 + 0.0713099i \(0.0227179\pi\)
\(150\) 0 0
\(151\) −4.99869 8.65799i −0.406788 0.704577i 0.587740 0.809050i \(-0.300018\pi\)
−0.994528 + 0.104473i \(0.966684\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.53008 + 4.38223i 0.203221 + 0.351989i
\(156\) 0 0
\(157\) −6.75613 + 11.7020i −0.539198 + 0.933919i 0.459749 + 0.888049i \(0.347939\pi\)
−0.998947 + 0.0458699i \(0.985394\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.86395 −0.225711
\(162\) 0 0
\(163\) −5.22981 −0.409631 −0.204815 0.978801i \(-0.565659\pi\)
−0.204815 + 0.978801i \(0.565659\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.85695 + 8.41248i −0.375842 + 0.650977i −0.990453 0.137853i \(-0.955980\pi\)
0.614611 + 0.788831i \(0.289313\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −12.2600 21.2350i −0.932113 1.61447i −0.779703 0.626149i \(-0.784630\pi\)
−0.152410 0.988317i \(-0.548703\pi\)
\(174\) 0 0
\(175\) −6.13007 + 10.6176i −0.463390 + 0.802615i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 19.4506 1.45381 0.726903 0.686740i \(-0.240959\pi\)
0.726903 + 0.686740i \(0.240959\pi\)
\(180\) 0 0
\(181\) 15.4476 1.14821 0.574104 0.818782i \(-0.305350\pi\)
0.574104 + 0.818782i \(0.305350\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.36125 4.08981i 0.173603 0.300689i
\(186\) 0 0
\(187\) 6.75300 + 11.6965i 0.493828 + 0.855335i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.31759 7.47829i −0.312410 0.541110i 0.666474 0.745529i \(-0.267803\pi\)
−0.978884 + 0.204419i \(0.934470\pi\)
\(192\) 0 0
\(193\) −9.17262 + 15.8874i −0.660260 + 1.14360i 0.320287 + 0.947320i \(0.396220\pi\)
−0.980547 + 0.196283i \(0.937113\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.26698 0.232762 0.116381 0.993205i \(-0.462871\pi\)
0.116381 + 0.993205i \(0.462871\pi\)
\(198\) 0 0
\(199\) 18.4899 1.31071 0.655357 0.755320i \(-0.272518\pi\)
0.655357 + 0.755320i \(0.272518\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.50667 9.53783i 0.386493 0.669425i
\(204\) 0 0
\(205\) −6.14247 10.6391i −0.429009 0.743065i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 15.7293 + 27.2439i 1.08802 + 1.88450i
\(210\) 0 0
\(211\) −1.54759 + 2.68050i −0.106540 + 0.184533i −0.914367 0.404888i \(-0.867311\pi\)
0.807826 + 0.589421i \(0.200644\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 44.8511 3.05882
\(216\) 0 0
\(217\) 1.76674 0.119934
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.53103 + 2.65181i −0.102988 + 0.178380i
\(222\) 0 0
\(223\) −1.28975 2.23391i −0.0863679 0.149594i 0.819605 0.572928i \(-0.194193\pi\)
−0.905973 + 0.423335i \(0.860859\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.97484 8.61667i −0.330192 0.571909i 0.652358 0.757911i \(-0.273780\pi\)
−0.982549 + 0.186003i \(0.940447\pi\)
\(228\) 0 0
\(229\) −2.34074 + 4.05428i −0.154680 + 0.267914i −0.932943 0.360025i \(-0.882768\pi\)
0.778262 + 0.627939i \(0.216101\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 15.8323 1.03721 0.518604 0.855015i \(-0.326452\pi\)
0.518604 + 0.855015i \(0.326452\pi\)
\(234\) 0 0
\(235\) 1.53625 0.100214
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.53305 + 11.3156i −0.422588 + 0.731944i −0.996192 0.0871889i \(-0.972212\pi\)
0.573604 + 0.819133i \(0.305545\pi\)
\(240\) 0 0
\(241\) −8.30511 14.3849i −0.534979 0.926611i −0.999164 0.0408729i \(-0.986986\pi\)
0.464185 0.885738i \(-0.346347\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −9.93810 17.2133i −0.634922 1.09972i
\(246\) 0 0
\(247\) −3.56611 + 6.17669i −0.226906 + 0.393013i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 20.1047 1.26900 0.634500 0.772923i \(-0.281206\pi\)
0.634500 + 0.772923i \(0.281206\pi\)
\(252\) 0 0
\(253\) 9.57122 0.601737
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −8.56913 + 14.8422i −0.534527 + 0.925829i 0.464659 + 0.885490i \(0.346177\pi\)
−0.999186 + 0.0403387i \(0.987156\pi\)
\(258\) 0 0
\(259\) −0.824422 1.42794i −0.0512271 0.0887279i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −10.0441 17.3970i −0.619348 1.07274i −0.989605 0.143813i \(-0.954064\pi\)
0.370256 0.928930i \(-0.379270\pi\)
\(264\) 0 0
\(265\) −4.11255 + 7.12314i −0.252632 + 0.437571i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.10780 0.250457 0.125228 0.992128i \(-0.460034\pi\)
0.125228 + 0.992128i \(0.460034\pi\)
\(270\) 0 0
\(271\) 13.1958 0.801585 0.400793 0.916169i \(-0.368735\pi\)
0.400793 + 0.916169i \(0.368735\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 20.4865 35.4836i 1.23538 2.13974i
\(276\) 0 0
\(277\) 11.3036 + 19.5785i 0.679170 + 1.17636i 0.975231 + 0.221188i \(0.0709935\pi\)
−0.296061 + 0.955169i \(0.595673\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7.61926 + 13.1969i 0.454527 + 0.787263i 0.998661 0.0517348i \(-0.0164750\pi\)
−0.544134 + 0.838998i \(0.683142\pi\)
\(282\) 0 0
\(283\) −4.59195 + 7.95348i −0.272963 + 0.472786i −0.969619 0.244620i \(-0.921337\pi\)
0.696656 + 0.717405i \(0.254670\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.28924 −0.253186
\(288\) 0 0
\(289\) −7.62384 −0.448461
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.232689 + 0.403030i −0.0135939 + 0.0235453i −0.872742 0.488181i \(-0.837661\pi\)
0.859148 + 0.511726i \(0.170994\pi\)
\(294\) 0 0
\(295\) 15.3179 + 26.5314i 0.891842 + 1.54472i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.08498 + 1.87925i 0.0627462 + 0.108680i
\(300\) 0 0
\(301\) 7.82980 13.5616i 0.451302 0.781678i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −33.2551 −1.90418
\(306\) 0 0
\(307\) −13.8035 −0.787810 −0.393905 0.919151i \(-0.628876\pi\)
−0.393905 + 0.919151i \(0.628876\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.59547 6.22754i 0.203880 0.353131i −0.745895 0.666063i \(-0.767978\pi\)
0.949775 + 0.312932i \(0.101311\pi\)
\(312\) 0 0
\(313\) 4.14223 + 7.17456i 0.234133 + 0.405530i 0.959020 0.283337i \(-0.0914416\pi\)
−0.724888 + 0.688867i \(0.758108\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.21178 + 3.83091i 0.124226 + 0.215165i 0.921430 0.388544i \(-0.127022\pi\)
−0.797204 + 0.603710i \(0.793689\pi\)
\(318\) 0 0
\(319\) −18.4031 + 31.8751i −1.03037 + 1.78466i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 21.8392 1.21517
\(324\) 0 0
\(325\) 9.28930 0.515278
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.268188 0.464516i 0.0147857 0.0256096i
\(330\) 0 0
\(331\) 11.7011 + 20.2668i 0.643148 + 1.11397i 0.984726 + 0.174112i \(0.0557055\pi\)
−0.341577 + 0.939854i \(0.610961\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −17.7292 30.7079i −0.968651 1.67775i
\(336\) 0 0
\(337\) 15.8641 27.4774i 0.864171 1.49679i −0.00369700 0.999993i \(-0.501177\pi\)
0.867868 0.496795i \(-0.165490\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −5.90436 −0.319739
\(342\) 0 0
\(343\) −16.1784 −0.873552
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −15.6119 + 27.0407i −0.838092 + 1.45162i 0.0533955 + 0.998573i \(0.482996\pi\)
−0.891488 + 0.453045i \(0.850338\pi\)
\(348\) 0 0
\(349\) −13.8233 23.9426i −0.739944 1.28162i −0.952520 0.304475i \(-0.901519\pi\)
0.212577 0.977144i \(-0.431814\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.49914 + 4.32864i 0.133016 + 0.230390i 0.924838 0.380362i \(-0.124201\pi\)
−0.791822 + 0.610752i \(0.790867\pi\)
\(354\) 0 0
\(355\) 17.8777 30.9650i 0.948848 1.64345i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.1761 0.537075 0.268537 0.963269i \(-0.413460\pi\)
0.268537 + 0.963269i \(0.413460\pi\)
\(360\) 0 0
\(361\) 31.8686 1.67730
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −23.1948 + 40.1746i −1.21407 + 2.10284i
\(366\) 0 0
\(367\) 3.85242 + 6.67258i 0.201094 + 0.348306i 0.948881 0.315633i \(-0.102217\pi\)
−0.747787 + 0.663939i \(0.768884\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.43588 + 2.48702i 0.0745472 + 0.129120i
\(372\) 0 0
\(373\) −14.6275 + 25.3356i −0.757384 + 1.31183i 0.186797 + 0.982399i \(0.440189\pi\)
−0.944180 + 0.329429i \(0.893144\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8.34461 −0.429769
\(378\) 0 0
\(379\) −20.9948 −1.07843 −0.539215 0.842168i \(-0.681279\pi\)
−0.539215 + 0.842168i \(0.681279\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −8.49637 + 14.7161i −0.434144 + 0.751960i −0.997225 0.0744417i \(-0.976283\pi\)
0.563081 + 0.826402i \(0.309616\pi\)
\(384\) 0 0
\(385\) −11.0028 19.0574i −0.560753 0.971253i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 11.5122 + 19.9398i 0.583694 + 1.01099i 0.995037 + 0.0995069i \(0.0317265\pi\)
−0.411343 + 0.911481i \(0.634940\pi\)
\(390\) 0 0
\(391\) 3.32228 5.75435i 0.168015 0.291010i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −27.5218 −1.38477
\(396\) 0 0
\(397\) −10.2161 −0.512731 −0.256365 0.966580i \(-0.582525\pi\)
−0.256365 + 0.966580i \(0.582525\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 17.0998 29.6177i 0.853921 1.47904i −0.0237206 0.999719i \(-0.507551\pi\)
0.877642 0.479317i \(-0.159115\pi\)
\(402\) 0 0
\(403\) −0.669313 1.15928i −0.0333408 0.0577480i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.75518 + 4.77212i 0.136569 + 0.236545i
\(408\) 0 0
\(409\) −14.9088 + 25.8229i −0.737195 + 1.27686i 0.216558 + 0.976270i \(0.430517\pi\)
−0.953754 + 0.300590i \(0.902817\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 10.6964 0.526334
\(414\) 0 0
\(415\) 45.7368 2.24513
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7.45668 12.9153i 0.364283 0.630956i −0.624378 0.781122i \(-0.714648\pi\)
0.988661 + 0.150166i \(0.0479809\pi\)
\(420\) 0 0
\(421\) −6.46463 11.1971i −0.315067 0.545712i 0.664385 0.747391i \(-0.268694\pi\)
−0.979452 + 0.201679i \(0.935360\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −14.2222 24.6335i −0.689876 1.19490i
\(426\) 0 0
\(427\) −5.80545 + 10.0553i −0.280946 + 0.486612i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9.00134 −0.433579 −0.216790 0.976218i \(-0.569559\pi\)
−0.216790 + 0.976218i \(0.569559\pi\)
\(432\) 0 0
\(433\) 11.7638 0.565333 0.282667 0.959218i \(-0.408781\pi\)
0.282667 + 0.959218i \(0.408781\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7.73835 13.4032i 0.370175 0.641163i
\(438\) 0 0
\(439\) −15.8633 27.4760i −0.757114 1.31136i −0.944316 0.329039i \(-0.893275\pi\)
0.187202 0.982321i \(-0.440058\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.83382 3.17626i −0.0871272 0.150909i 0.819168 0.573553i \(-0.194435\pi\)
−0.906296 + 0.422644i \(0.861102\pi\)
\(444\) 0 0
\(445\) 10.3527 17.9314i 0.490766 0.850031i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −39.4850 −1.86341 −0.931706 0.363213i \(-0.881680\pi\)
−0.931706 + 0.363213i \(0.881680\pi\)
\(450\) 0 0
\(451\) 14.3345 0.674984
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.49453 4.32065i 0.116945 0.202555i
\(456\) 0 0
\(457\) −12.1028 20.9626i −0.566144 0.980590i −0.996942 0.0781417i \(-0.975101\pi\)
0.430798 0.902448i \(-0.358232\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4.62828 8.01641i −0.215560 0.373362i 0.737885 0.674926i \(-0.235824\pi\)
−0.953446 + 0.301564i \(0.902491\pi\)
\(462\) 0 0
\(463\) −4.06304 + 7.03739i −0.188826 + 0.327055i −0.944859 0.327478i \(-0.893801\pi\)
0.756033 + 0.654533i \(0.227135\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3.39825 −0.157252 −0.0786261 0.996904i \(-0.525053\pi\)
−0.0786261 + 0.996904i \(0.525053\pi\)
\(468\) 0 0
\(469\) −12.3802 −0.571664
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −26.1669 + 45.3224i −1.20315 + 2.08392i
\(474\) 0 0
\(475\) −33.1267 57.3771i −1.51996 2.63264i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 15.5576 + 26.9466i 0.710847 + 1.23122i 0.964540 + 0.263938i \(0.0850215\pi\)
−0.253693 + 0.967285i \(0.581645\pi\)
\(480\) 0 0
\(481\) −0.624650 + 1.08193i −0.0284816 + 0.0493315i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −50.6672 −2.30068
\(486\) 0 0
\(487\) 5.20054 0.235659 0.117829 0.993034i \(-0.462406\pi\)
0.117829 + 0.993034i \(0.462406\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −17.2623 + 29.8992i −0.779037 + 1.34933i 0.153460 + 0.988155i \(0.450958\pi\)
−0.932497 + 0.361177i \(0.882375\pi\)
\(492\) 0 0
\(493\) 12.7758 + 22.1284i 0.575394 + 0.996611i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.24192 10.8113i −0.279988 0.484954i
\(498\) 0 0
\(499\) −4.65602 + 8.06446i −0.208432 + 0.361015i −0.951221 0.308511i \(-0.900169\pi\)
0.742789 + 0.669526i \(0.233503\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16.3420 0.728656 0.364328 0.931271i \(-0.381299\pi\)
0.364328 + 0.931271i \(0.381299\pi\)
\(504\) 0 0
\(505\) −50.3078 −2.23867
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 19.7266 34.1675i 0.874368 1.51445i 0.0169335 0.999857i \(-0.494610\pi\)
0.857435 0.514593i \(-0.172057\pi\)
\(510\) 0 0
\(511\) 8.09839 + 14.0268i 0.358252 + 0.620510i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.55178 4.41981i −0.112445 0.194760i
\(516\) 0 0
\(517\) −0.896274 + 1.55239i −0.0394181 + 0.0682741i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 24.7139 1.08274 0.541368 0.840786i \(-0.317907\pi\)
0.541368 + 0.840786i \(0.317907\pi\)
\(522\) 0 0
\(523\) 25.3771 1.10966 0.554832 0.831963i \(-0.312783\pi\)
0.554832 + 0.831963i \(0.312783\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.04947 + 3.54978i −0.0892763 + 0.154631i
\(528\) 0 0
\(529\) 9.14562 + 15.8407i 0.397636 + 0.688725i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.62494 + 2.81448i 0.0703840 + 0.121909i
\(534\) 0 0
\(535\) −10.8623 + 18.8140i −0.469616 + 0.813400i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 23.1922 0.998959
\(540\) 0 0
\(541\) −22.0818 −0.949370 −0.474685 0.880156i \(-0.657438\pi\)
−0.474685 + 0.880156i \(0.657438\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −30.5886 + 52.9809i −1.31027 + 2.26945i
\(546\) 0 0
\(547\) −3.02667 5.24235i −0.129411 0.224147i 0.794037 0.607869i \(-0.207975\pi\)
−0.923449 + 0.383722i \(0.874642\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 29.7578 + 51.5421i 1.26773 + 2.19577i
\(552\) 0 0
\(553\) −4.80456 + 8.32174i −0.204311 + 0.353876i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −27.8981 −1.18208 −0.591039 0.806643i \(-0.701282\pi\)
−0.591039 + 0.806643i \(0.701282\pi\)
\(558\) 0 0
\(559\) −11.8650 −0.501836
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −10.9423 + 18.9526i −0.461162 + 0.798755i −0.999019 0.0442804i \(-0.985900\pi\)
0.537858 + 0.843036i \(0.319234\pi\)
\(564\) 0 0
\(565\) 9.66915 + 16.7475i 0.406784 + 0.704571i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −0.0845017 0.146361i −0.00354249 0.00613578i 0.864249 0.503065i \(-0.167794\pi\)
−0.867791 + 0.496929i \(0.834461\pi\)
\(570\) 0 0
\(571\) −12.7297 + 22.0485i −0.532722 + 0.922701i 0.466548 + 0.884496i \(0.345497\pi\)
−0.999270 + 0.0382052i \(0.987836\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −20.1575 −0.840625
\(576\) 0 0
\(577\) −2.82205 −0.117484 −0.0587418 0.998273i \(-0.518709\pi\)
−0.0587418 + 0.998273i \(0.518709\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 7.98442 13.8294i 0.331250 0.573741i
\(582\) 0 0
\(583\) −4.79866 8.31151i −0.198740 0.344228i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −14.4040 24.9485i −0.594518 1.02973i −0.993615 0.112826i \(-0.964010\pi\)
0.399097 0.916909i \(-0.369324\pi\)
\(588\) 0 0
\(589\) −4.77369 + 8.26827i −0.196696 + 0.340688i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −27.6059 −1.13364 −0.566819 0.823842i \(-0.691826\pi\)
−0.566819 + 0.823842i \(0.691826\pi\)
\(594\) 0 0
\(595\) −15.2767 −0.626285
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −20.9533 + 36.2921i −0.856127 + 1.48285i 0.0194691 + 0.999810i \(0.493802\pi\)
−0.875596 + 0.483044i \(0.839531\pi\)
\(600\) 0 0
\(601\) 10.1877 + 17.6457i 0.415566 + 0.719781i 0.995488 0.0948909i \(-0.0302502\pi\)
−0.579922 + 0.814672i \(0.696917\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 15.9802 + 27.6785i 0.649687 + 1.12529i
\(606\) 0 0
\(607\) −21.4089 + 37.0812i −0.868959 + 1.50508i −0.00589722 + 0.999983i \(0.501877\pi\)
−0.863062 + 0.505098i \(0.831456\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.406403 −0.0164413
\(612\) 0 0
\(613\) 26.9648 1.08910 0.544549 0.838729i \(-0.316701\pi\)
0.544549 + 0.838729i \(0.316701\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −12.2801 + 21.2697i −0.494378 + 0.856287i −0.999979 0.00647995i \(-0.997937\pi\)
0.505601 + 0.862767i \(0.331271\pi\)
\(618\) 0 0
\(619\) 8.80180 + 15.2452i 0.353774 + 0.612755i 0.986907 0.161288i \(-0.0515648\pi\)
−0.633133 + 0.774043i \(0.718231\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.61461 6.26069i −0.144816 0.250829i
\(624\) 0 0
\(625\) −7.42228 + 12.8558i −0.296891 + 0.514231i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.82542 0.152529
\(630\) 0 0
\(631\) 11.6431 0.463503 0.231752 0.972775i \(-0.425554\pi\)
0.231752 + 0.972775i \(0.425554\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −32.9852 + 57.1321i −1.30898 + 2.26722i
\(636\) 0 0
\(637\) 2.62905 + 4.55364i 0.104167 + 0.180422i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −16.3997 28.4051i −0.647750 1.12194i −0.983659 0.180041i \(-0.942377\pi\)
0.335909 0.941894i \(-0.390956\pi\)
\(642\) 0 0
\(643\) 3.44097 5.95994i 0.135699 0.235037i −0.790165 0.612894i \(-0.790005\pi\)
0.925864 + 0.377857i \(0.123339\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −8.22182 −0.323233 −0.161617 0.986854i \(-0.551671\pi\)
−0.161617 + 0.986854i \(0.551671\pi\)
\(648\) 0 0
\(649\) −35.7468 −1.40319
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 20.1786 34.9503i 0.789649 1.36771i −0.136533 0.990635i \(-0.543596\pi\)
0.926182 0.377077i \(-0.123071\pi\)
\(654\) 0 0
\(655\) 5.81054 + 10.0641i 0.227037 + 0.393239i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −0.0788685 0.136604i −0.00307228 0.00532135i 0.864485 0.502658i \(-0.167645\pi\)
−0.867557 + 0.497337i \(0.834311\pi\)
\(660\) 0 0
\(661\) 12.8347 22.2304i 0.499214 0.864663i −0.500786 0.865571i \(-0.666956\pi\)
1.00000 0.000907872i \(0.000288985\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −35.5831 −1.37985
\(666\) 0 0
\(667\) 18.1075 0.701127
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 19.4016 33.6045i 0.748990 1.29729i
\(672\) 0 0
\(673\) −8.87413 15.3704i −0.342072 0.592487i 0.642745 0.766080i \(-0.277796\pi\)
−0.984817 + 0.173593i \(0.944462\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18.6184 32.2480i −0.715564 1.23939i −0.962742 0.270422i \(-0.912837\pi\)
0.247178 0.968970i \(-0.420497\pi\)
\(678\) 0 0
\(679\) −8.84514 + 15.3202i −0.339445 + 0.587937i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −13.1276 −0.502315 −0.251158 0.967946i \(-0.580811\pi\)
−0.251158 + 0.967946i \(0.580811\pi\)
\(684\) 0 0
\(685\) 48.4202 1.85004
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.08794 1.88437i 0.0414473 0.0717888i
\(690\) 0 0
\(691\) −2.44120 4.22828i −0.0928676 0.160851i 0.815849 0.578265i \(-0.196270\pi\)
−0.908717 + 0.417414i \(0.862937\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −36.3991 63.0452i −1.38070 2.39144i
\(696\) 0 0
\(697\) 4.97565 8.61808i 0.188466 0.326433i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.88397 0.0711565 0.0355782 0.999367i \(-0.488673\pi\)
0.0355782 + 0.999367i \(0.488673\pi\)
\(702\) 0 0
\(703\) 8.91029 0.336058
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.78239 + 15.2115i −0.330296 + 0.572089i
\(708\) 0 0
\(709\) −10.2918 17.8259i −0.386516 0.669466i 0.605462 0.795874i \(-0.292988\pi\)
−0.991978 + 0.126408i \(0.959655\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.45239 + 2.51561i 0.0543923 + 0.0942102i
\(714\) 0 0
\(715\) −8.33661 + 14.4394i −0.311772 + 0.540004i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −8.09546 −0.301910 −0.150955 0.988541i \(-0.548235\pi\)
−0.150955 + 0.988541i \(0.548235\pi\)
\(720\) 0 0
\(721\) −1.78189 −0.0663610
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 38.7578 67.1305i 1.43943 2.49316i
\(726\) 0 0
\(727\) −16.8348 29.1587i −0.624367 1.08144i −0.988663 0.150152i \(-0.952024\pi\)
0.364296 0.931283i \(-0.381310\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 18.1656 + 31.4638i 0.671880 + 1.16373i
\(732\) 0 0
\(733\) 19.7069 34.1334i 0.727891 1.26074i −0.229882 0.973219i \(-0.573834\pi\)
0.957773 0.287526i \(-0.0928327\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 41.3741 1.52403
\(738\) 0 0
\(739\) 13.3865 0.492429 0.246215 0.969215i \(-0.420813\pi\)
0.246215 + 0.969215i \(0.420813\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −9.03777 + 15.6539i −0.331564 + 0.574285i −0.982819 0.184574i \(-0.940909\pi\)
0.651255 + 0.758859i \(0.274243\pi\)
\(744\) 0 0
\(745\) −20.1628 34.9230i −0.738708 1.27948i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.79252 + 6.56883i 0.138576 + 0.240020i
\(750\) 0 0
\(751\) −10.4782 + 18.1488i −0.382356 + 0.662260i −0.991399 0.130877i \(-0.958221\pi\)
0.609042 + 0.793138i \(0.291554\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −37.7913 −1.37537
\(756\) 0 0
\(757\) 40.0649 1.45618 0.728092 0.685479i \(-0.240407\pi\)
0.728092 + 0.685479i \(0.240407\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.455916 0.789670i 0.0165269 0.0286255i −0.857644 0.514244i \(-0.828072\pi\)
0.874171 + 0.485619i \(0.161406\pi\)
\(762\) 0 0
\(763\) 10.6799 + 18.4981i 0.386638 + 0.669676i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.05223 7.01866i −0.146317 0.253429i
\(768\) 0 0
\(769\) −12.3273 + 21.3514i −0.444532 + 0.769952i −0.998019 0.0629054i \(-0.979963\pi\)
0.553487 + 0.832858i \(0.313297\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 41.8304 1.50454 0.752268 0.658858i \(-0.228960\pi\)
0.752268 + 0.658858i \(0.228960\pi\)
\(774\) 0 0
\(775\) 12.4349 0.446674
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 11.5894 20.0735i 0.415235 0.719208i
\(780\) 0 0
\(781\) 20.8602 + 36.1310i 0.746438 + 1.29287i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 25.5390 + 44.2348i 0.911526 + 1.57881i
\(786\) 0 0
\(787\) 8.80612 15.2526i 0.313904 0.543698i −0.665300 0.746576i \(-0.731696\pi\)
0.979204 + 0.202878i \(0.0650296\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 6.75189 0.240070
\(792\) 0 0
\(793\) 8.79738 0.312404
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.39125 + 2.40971i −0.0492805 + 0.0853563i −0.889613 0.456714i \(-0.849026\pi\)
0.840333 + 0.542071i \(0.182359\pi\)
\(798\) 0 0
\(799\) 0.622213 + 1.07771i 0.0220123 + 0.0381265i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −27.0645 46.8771i −0.955085 1.65426i
\(804\) 0 0
\(805\) −5.41304 + 9.37567i −0.190785 + 0.330449i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −20.0046 −0.703324 −0.351662 0.936127i \(-0.614383\pi\)
−0.351662 + 0.936127i \(0.614383\pi\)
\(810\) 0 0
\(811\) 21.7172 0.762593 0.381297 0.924453i \(-0.375478\pi\)
0.381297 + 0.924453i \(0.375478\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −9.88466 + 17.1207i −0.346244 + 0.599713i
\(816\) 0 0
\(817\) 42.3119 + 73.2864i 1.48031 + 2.56397i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 25.6483 + 44.4242i 0.895133 + 1.55042i 0.833640 + 0.552309i \(0.186253\pi\)
0.0614936 + 0.998107i \(0.480414\pi\)
\(822\) 0 0
\(823\) −7.54360 + 13.0659i −0.262953 + 0.455449i −0.967025 0.254680i \(-0.918030\pi\)
0.704072 + 0.710129i \(0.251363\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −24.8406 −0.863792 −0.431896 0.901923i \(-0.642155\pi\)
−0.431896 + 0.901923i \(0.642155\pi\)
\(828\) 0 0
\(829\) −23.4924 −0.815924 −0.407962 0.912999i \(-0.633760\pi\)
−0.407962 + 0.912999i \(0.633760\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 8.05027 13.9435i 0.278925 0.483113i
\(834\) 0 0
\(835\) 18.3598 + 31.8002i 0.635368 + 1.10049i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −22.7569 39.4161i −0.785656 1.36080i −0.928606 0.371066i \(-0.878992\pi\)
0.142950 0.989730i \(-0.454341\pi\)
\(840\) 0 0
\(841\) −20.3163 + 35.1889i −0.700562 + 1.21341i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3.78012 −0.130040
\(846\) 0 0
\(847\) 11.1588 0.383422
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.35547 2.34774i 0.0464649 0.0804796i
\(852\) 0 0
\(853\) 8.22123 + 14.2396i 0.281489 + 0.487554i 0.971752 0.236005i \(-0.0758382\pi\)
−0.690262 + 0.723559i \(0.742505\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 7.08343 + 12.2689i 0.241965 + 0.419096i 0.961274 0.275594i \(-0.0888747\pi\)
−0.719309 + 0.694690i \(0.755541\pi\)
\(858\) 0 0
\(859\) −26.9365 + 46.6554i −0.919062 + 1.59186i −0.118218 + 0.992988i \(0.537718\pi\)
−0.800844 + 0.598874i \(0.795615\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 23.9687 0.815905 0.407952 0.913003i \(-0.366243\pi\)
0.407952 + 0.913003i \(0.366243\pi\)
\(864\) 0 0
\(865\) −92.6887 −3.15151
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 16.0566 27.8109i 0.544684 0.943421i
\(870\) 0 0
\(871\) 4.69012 + 8.12353i 0.158919 + 0.275255i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 10.6998 + 18.5325i 0.361718 + 0.626514i
\(876\) 0 0
\(877\) 7.89845 13.6805i 0.266712 0.461958i −0.701299 0.712867i \(-0.747396\pi\)
0.968011 + 0.250909i \(0.0807295\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 47.9966 1.61705 0.808523 0.588464i \(-0.200267\pi\)
0.808523 + 0.588464i \(0.200267\pi\)
\(882\) 0 0
\(883\) −30.6008 −1.02980 −0.514899 0.857251i \(-0.672171\pi\)
−0.514899 + 0.857251i \(0.672171\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 17.1661 29.7326i 0.576382 0.998323i −0.419508 0.907752i \(-0.637797\pi\)
0.995890 0.0905710i \(-0.0288692\pi\)
\(888\) 0 0
\(889\) 11.5167 + 19.9475i 0.386257 + 0.669016i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.44928 + 2.51022i 0.0484983 + 0.0840015i
\(894\) 0 0
\(895\) 36.7628 63.6750i 1.22884 2.12842i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −11.1703 −0.372551
\(900\) 0 0
\(901\) −6.66266 −0.221966
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 29.1968 50.5704i 0.970535 1.68102i
\(906\) 0 0
\(907\) −8.32595 14.4210i −0.276459 0.478840i 0.694044 0.719933i \(-0.255828\pi\)
−0.970502 + 0.241093i \(0.922494\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −4.00817 6.94235i −0.132797 0.230010i 0.791957 0.610577i \(-0.209062\pi\)
−0.924754 + 0.380566i \(0.875729\pi\)
\(912\) 0 0
\(913\) −26.6836 + 46.2174i −0.883099 + 1.52957i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.05746 0.133989
\(918\) 0 0
\(919\) 3.98767 0.131541 0.0657705 0.997835i \(-0.479049\pi\)
0.0657705 + 0.997835i \(0.479049\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4.72939 + 8.19155i −0.155670 + 0.269628i
\(924\) 0 0
\(925\) −5.80256 10.0503i −0.190787 0.330453i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −3.22140 5.57962i −0.105691 0.183062i 0.808330 0.588730i \(-0.200372\pi\)
−0.914020 + 0.405669i \(0.867039\pi\)
\(930\) 0 0
\(931\) 18.7509 32.4776i 0.614537 1.06441i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 51.0542 1.66965
\(936\) 0 0
\(937\) 12.2388 0.399824 0.199912 0.979814i \(-0.435934\pi\)
0.199912 + 0.979814i \(0.435934\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 9.99773 17.3166i 0.325917 0.564504i −0.655781 0.754951i \(-0.727660\pi\)
0.981697 + 0.190447i \(0.0609938\pi\)
\(942\) 0 0
\(943\) −3.52607 6.10733i −0.114825 0.198882i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 17.6942 + 30.6472i 0.574983 + 0.995899i 0.996044 + 0.0888669i \(0.0283246\pi\)
−0.421061 + 0.907032i \(0.638342\pi\)
\(948\) 0 0
\(949\) 6.13601 10.6279i 0.199183 0.344996i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −11.3690 −0.368278 −0.184139 0.982900i \(-0.558950\pi\)
−0.184139 + 0.982900i \(0.558950\pi\)
\(954\) 0 0
\(955\) −32.6420 −1.05627
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 8.45286 14.6408i 0.272957 0.472776i
\(960\) 0 0
\(961\) 14.6040 + 25.2949i 0.471098 + 0.815966i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 34.6736 + 60.0564i 1.11618 + 1.93329i
\(966\) 0 0
\(967\) −29.3632 + 50.8586i −0.944258 + 1.63550i −0.187029 + 0.982354i \(0.559886\pi\)
−0.757229 + 0.653149i \(0.773447\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −15.1168 −0.485121 −0.242560 0.970136i \(-0.577987\pi\)
−0.242560 + 0.970136i \(0.577987\pi\)
\(972\) 0 0
\(973\) −25.4172 −0.814839
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 27.1415 47.0105i 0.868335 1.50400i 0.00463697 0.999989i \(-0.498524\pi\)
0.863698 0.504010i \(-0.168143\pi\)
\(978\) 0 0
\(979\) 12.0799 + 20.9230i 0.386075 + 0.668701i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 15.7221 + 27.2316i 0.501459 + 0.868552i 0.999999 + 0.00168512i \(0.000536391\pi\)
−0.498540 + 0.866867i \(0.666130\pi\)
\(984\) 0 0
\(985\) 6.17478 10.6950i 0.196745 0.340772i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 25.7467 0.818697
\(990\) 0 0
\(991\) −42.6265 −1.35408 −0.677038 0.735948i \(-0.736737\pi\)
−0.677038 + 0.735948i \(0.736737\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 34.9470 60.5300i 1.10789 1.91893i
\(996\) 0 0
\(997\) 5.60659 + 9.71091i 0.177563 + 0.307548i 0.941045 0.338281i \(-0.109845\pi\)
−0.763483 + 0.645829i \(0.776512\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.2.q.g.1873.11 22
3.2 odd 2 936.2.q.g.625.4 yes 22
9.2 odd 6 936.2.q.g.313.4 22
9.4 even 3 8424.2.a.be.1.1 11
9.5 odd 6 8424.2.a.bf.1.11 11
9.7 even 3 inner 2808.2.q.g.937.11 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.q.g.313.4 22 9.2 odd 6
936.2.q.g.625.4 yes 22 3.2 odd 2
2808.2.q.g.937.11 22 9.7 even 3 inner
2808.2.q.g.1873.11 22 1.1 even 1 trivial
8424.2.a.be.1.1 11 9.4 even 3
8424.2.a.bf.1.11 11 9.5 odd 6