| L(s) = 1 | + (1.89 − 3.27i)5-s + (−0.659 − 1.14i)7-s + (2.20 + 3.81i)11-s + (−0.5 + 0.866i)13-s + 3.06·17-s + 7.13·19-s + (1.08 − 1.87i)23-s + (−4.64 − 8.04i)25-s + (4.17 + 7.22i)29-s + (−0.669 + 1.15i)31-s − 4.98·35-s + 1.24·37-s + (1.62 − 2.81i)41-s + (5.93 + 10.2i)43-s + (0.203 + 0.351i)47-s + ⋯ |
| L(s) = 1 | + (0.845 − 1.46i)5-s + (−0.249 − 0.432i)7-s + (0.664 + 1.15i)11-s + (−0.138 + 0.240i)13-s + 0.742·17-s + 1.63·19-s + (0.226 − 0.391i)23-s + (−0.928 − 1.60i)25-s + (0.774 + 1.34i)29-s + (−0.120 + 0.208i)31-s − 0.843·35-s + 0.205·37-s + (0.253 − 0.439i)41-s + (0.904 + 1.56i)43-s + (0.0296 + 0.0513i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.711 + 0.702i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.711 + 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.407685961\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.407685961\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (0.5 - 0.866i)T \) |
| good | 5 | \( 1 + (-1.89 + 3.27i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (0.659 + 1.14i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.20 - 3.81i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 - 3.06T + 17T^{2} \) |
| 19 | \( 1 - 7.13T + 19T^{2} \) |
| 23 | \( 1 + (-1.08 + 1.87i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.17 - 7.22i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.669 - 1.15i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 1.24T + 37T^{2} \) |
| 41 | \( 1 + (-1.62 + 2.81i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.93 - 10.2i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.203 - 0.351i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 2.17T + 53T^{2} \) |
| 59 | \( 1 + (4.05 - 7.01i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.39 + 7.61i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.69 + 8.12i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 9.45T + 71T^{2} \) |
| 73 | \( 1 + 12.2T + 73T^{2} \) |
| 79 | \( 1 + (3.64 + 6.30i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.04 - 10.4i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 5.47T + 89T^{2} \) |
| 97 | \( 1 + (6.70 + 11.6i)T + (-48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.949340738358611733172166232901, −7.956647800664982424338454484785, −7.20973465283503544166785630088, −6.40761507091114553403641269643, −5.43094339024917274958189937878, −4.88395378705346989861793372268, −4.14906025448989648251750586433, −2.96924751494402139449153453129, −1.62303129801248721527415485167, −1.01192831721700108739948641318,
1.09681274230208174380322394222, 2.51448736652701510146980998572, 3.07069465818127961707637499625, 3.84631453071304007085289020659, 5.40416888978949093620283180736, 5.86627373625615212104356431450, 6.48992246823765861587641856221, 7.32755589780489879784301135701, 8.003132661605016070527341360875, 9.142799752350380788969020151867