Properties

Label 936.2.j.a.755.40
Level $936$
Weight $2$
Character 936.755
Analytic conductor $7.474$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(755,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.755"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 755.40
Character \(\chi\) \(=\) 936.755
Dual form 936.2.j.a.755.39

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.15766 + 0.812299i) q^{2} +(0.680340 + 1.88073i) q^{4} +3.23777 q^{5} -4.33596i q^{7} +(-0.740114 + 2.72988i) q^{8} +(3.74823 + 2.63004i) q^{10} +1.18715i q^{11} +1.00000i q^{13} +(3.52210 - 5.01956i) q^{14} +(-3.07428 + 2.55907i) q^{16} +0.0944593i q^{17} +2.27921 q^{19} +(2.20279 + 6.08937i) q^{20} +(-0.964320 + 1.37431i) q^{22} +7.64873 q^{23} +5.48318 q^{25} +(-0.812299 + 1.15766i) q^{26} +(8.15477 - 2.94993i) q^{28} -4.80155 q^{29} -7.57575i q^{31} +(-5.63769 + 0.465290i) q^{32} +(-0.0767292 + 0.109351i) q^{34} -14.0389i q^{35} +11.6373i q^{37} +(2.63854 + 1.85140i) q^{38} +(-2.39632 + 8.83872i) q^{40} -3.47950i q^{41} -9.77740 q^{43} +(-2.23270 + 0.807664i) q^{44} +(8.85461 + 6.21306i) q^{46} -1.62643 q^{47} -11.8006 q^{49} +(6.34764 + 4.45398i) q^{50} +(-1.88073 + 0.680340i) q^{52} +10.5857 q^{53} +3.84372i q^{55} +(11.8366 + 3.20911i) q^{56} +(-5.55854 - 3.90029i) q^{58} -5.55495i q^{59} +8.82142i q^{61} +(6.15378 - 8.77013i) q^{62} +(-6.90446 - 4.04084i) q^{64} +3.23777i q^{65} +0.890006 q^{67} +(-0.177652 + 0.0642644i) q^{68} +(11.4038 - 16.2522i) q^{70} -5.75108 q^{71} -13.0699 q^{73} +(-9.45295 + 13.4720i) q^{74} +(1.55063 + 4.28657i) q^{76} +5.14743 q^{77} +15.1770i q^{79} +(-9.95381 + 8.28568i) q^{80} +(2.82640 - 4.02807i) q^{82} -6.08355i q^{83} +0.305838i q^{85} +(-11.3189 - 7.94217i) q^{86} +(-3.24077 - 0.878625i) q^{88} +2.52869i q^{89} +4.33596 q^{91} +(5.20374 + 14.3852i) q^{92} +(-1.88285 - 1.32115i) q^{94} +7.37955 q^{95} -17.4724 q^{97} +(-13.6610 - 9.58559i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 8 q^{4} + 16 q^{10} + 8 q^{16} + 32 q^{19} + 48 q^{25} - 24 q^{28} + 32 q^{34} - 32 q^{40} - 32 q^{43} + 24 q^{46} - 48 q^{49} + 8 q^{52} - 40 q^{58} + 40 q^{64} + 32 q^{67} - 40 q^{70} + 40 q^{76}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.15766 + 0.812299i 0.818587 + 0.574382i
\(3\) 0 0
\(4\) 0.680340 + 1.88073i 0.340170 + 0.940364i
\(5\) 3.23777 1.44798 0.723988 0.689812i \(-0.242307\pi\)
0.723988 + 0.689812i \(0.242307\pi\)
\(6\) 0 0
\(7\) 4.33596i 1.63884i −0.573194 0.819420i \(-0.694296\pi\)
0.573194 0.819420i \(-0.305704\pi\)
\(8\) −0.740114 + 2.72988i −0.261670 + 0.965157i
\(9\) 0 0
\(10\) 3.74823 + 2.63004i 1.18529 + 0.831692i
\(11\) 1.18715i 0.357939i 0.983855 + 0.178969i \(0.0572763\pi\)
−0.983855 + 0.178969i \(0.942724\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 3.52210 5.01956i 0.941321 1.34153i
\(15\) 0 0
\(16\) −3.07428 + 2.55907i −0.768569 + 0.639767i
\(17\) 0.0944593i 0.0229097i 0.999934 + 0.0114549i \(0.00364628\pi\)
−0.999934 + 0.0114549i \(0.996354\pi\)
\(18\) 0 0
\(19\) 2.27921 0.522886 0.261443 0.965219i \(-0.415802\pi\)
0.261443 + 0.965219i \(0.415802\pi\)
\(20\) 2.20279 + 6.08937i 0.492558 + 1.36162i
\(21\) 0 0
\(22\) −0.964320 + 1.37431i −0.205594 + 0.293004i
\(23\) 7.64873 1.59487 0.797436 0.603404i \(-0.206189\pi\)
0.797436 + 0.603404i \(0.206189\pi\)
\(24\) 0 0
\(25\) 5.48318 1.09664
\(26\) −0.812299 + 1.15766i −0.159305 + 0.227035i
\(27\) 0 0
\(28\) 8.15477 2.94993i 1.54111 0.557484i
\(29\) −4.80155 −0.891625 −0.445812 0.895126i \(-0.647085\pi\)
−0.445812 + 0.895126i \(0.647085\pi\)
\(30\) 0 0
\(31\) 7.57575i 1.36065i −0.732913 0.680323i \(-0.761840\pi\)
0.732913 0.680323i \(-0.238160\pi\)
\(32\) −5.63769 + 0.465290i −0.996612 + 0.0822525i
\(33\) 0 0
\(34\) −0.0767292 + 0.109351i −0.0131590 + 0.0187536i
\(35\) 14.0389i 2.37300i
\(36\) 0 0
\(37\) 11.6373i 1.91316i 0.291478 + 0.956578i \(0.405853\pi\)
−0.291478 + 0.956578i \(0.594147\pi\)
\(38\) 2.63854 + 1.85140i 0.428027 + 0.300336i
\(39\) 0 0
\(40\) −2.39632 + 8.83872i −0.378892 + 1.39753i
\(41\) 3.47950i 0.543407i −0.962381 0.271703i \(-0.912413\pi\)
0.962381 0.271703i \(-0.0875870\pi\)
\(42\) 0 0
\(43\) −9.77740 −1.49104 −0.745520 0.666484i \(-0.767799\pi\)
−0.745520 + 0.666484i \(0.767799\pi\)
\(44\) −2.23270 + 0.807664i −0.336593 + 0.121760i
\(45\) 0 0
\(46\) 8.85461 + 6.21306i 1.30554 + 0.916066i
\(47\) −1.62643 −0.237239 −0.118620 0.992940i \(-0.537847\pi\)
−0.118620 + 0.992940i \(0.537847\pi\)
\(48\) 0 0
\(49\) −11.8006 −1.68580
\(50\) 6.34764 + 4.45398i 0.897691 + 0.629888i
\(51\) 0 0
\(52\) −1.88073 + 0.680340i −0.260810 + 0.0943461i
\(53\) 10.5857 1.45406 0.727032 0.686604i \(-0.240899\pi\)
0.727032 + 0.686604i \(0.240899\pi\)
\(54\) 0 0
\(55\) 3.84372i 0.518287i
\(56\) 11.8366 + 3.20911i 1.58174 + 0.428835i
\(57\) 0 0
\(58\) −5.55854 3.90029i −0.729873 0.512134i
\(59\) 5.55495i 0.723193i −0.932335 0.361596i \(-0.882232\pi\)
0.932335 0.361596i \(-0.117768\pi\)
\(60\) 0 0
\(61\) 8.82142i 1.12947i 0.825273 + 0.564734i \(0.191021\pi\)
−0.825273 + 0.564734i \(0.808979\pi\)
\(62\) 6.15378 8.77013i 0.781531 1.11381i
\(63\) 0 0
\(64\) −6.90446 4.04084i −0.863058 0.505105i
\(65\) 3.23777i 0.401596i
\(66\) 0 0
\(67\) 0.890006 0.108732 0.0543658 0.998521i \(-0.482686\pi\)
0.0543658 + 0.998521i \(0.482686\pi\)
\(68\) −0.177652 + 0.0642644i −0.0215435 + 0.00779320i
\(69\) 0 0
\(70\) 11.4038 16.2522i 1.36301 1.94251i
\(71\) −5.75108 −0.682528 −0.341264 0.939968i \(-0.610855\pi\)
−0.341264 + 0.939968i \(0.610855\pi\)
\(72\) 0 0
\(73\) −13.0699 −1.52972 −0.764859 0.644197i \(-0.777191\pi\)
−0.764859 + 0.644197i \(0.777191\pi\)
\(74\) −9.45295 + 13.4720i −1.09888 + 1.56608i
\(75\) 0 0
\(76\) 1.55063 + 4.28657i 0.177870 + 0.491703i
\(77\) 5.14743 0.586604
\(78\) 0 0
\(79\) 15.1770i 1.70754i 0.520646 + 0.853772i \(0.325691\pi\)
−0.520646 + 0.853772i \(0.674309\pi\)
\(80\) −9.95381 + 8.28568i −1.11287 + 0.926367i
\(81\) 0 0
\(82\) 2.82640 4.02807i 0.312123 0.444826i
\(83\) 6.08355i 0.667756i −0.942616 0.333878i \(-0.891643\pi\)
0.942616 0.333878i \(-0.108357\pi\)
\(84\) 0 0
\(85\) 0.305838i 0.0331728i
\(86\) −11.3189 7.94217i −1.22055 0.856427i
\(87\) 0 0
\(88\) −3.24077 0.878625i −0.345467 0.0936617i
\(89\) 2.52869i 0.268041i 0.990979 + 0.134020i \(0.0427887\pi\)
−0.990979 + 0.134020i \(0.957211\pi\)
\(90\) 0 0
\(91\) 4.33596 0.454532
\(92\) 5.20374 + 14.3852i 0.542527 + 1.49976i
\(93\) 0 0
\(94\) −1.88285 1.32115i −0.194201 0.136266i
\(95\) 7.37955 0.757126
\(96\) 0 0
\(97\) −17.4724 −1.77406 −0.887028 0.461716i \(-0.847234\pi\)
−0.887028 + 0.461716i \(0.847234\pi\)
\(98\) −13.6610 9.58559i −1.37997 0.968291i
\(99\) 0 0
\(100\) 3.73042 + 10.3124i 0.373042 + 1.03124i
\(101\) −7.24871 −0.721273 −0.360637 0.932706i \(-0.617441\pi\)
−0.360637 + 0.932706i \(0.617441\pi\)
\(102\) 0 0
\(103\) 0.154510i 0.0152243i 0.999971 + 0.00761215i \(0.00242305\pi\)
−0.999971 + 0.00761215i \(0.997577\pi\)
\(104\) −2.72988 0.740114i −0.267687 0.0725742i
\(105\) 0 0
\(106\) 12.2547 + 8.59879i 1.19028 + 0.835188i
\(107\) 2.14804i 0.207659i 0.994595 + 0.103829i \(0.0331096\pi\)
−0.994595 + 0.103829i \(0.966890\pi\)
\(108\) 0 0
\(109\) 12.8734i 1.23305i −0.787337 0.616523i \(-0.788541\pi\)
0.787337 0.616523i \(-0.211459\pi\)
\(110\) −3.12225 + 4.44971i −0.297695 + 0.424263i
\(111\) 0 0
\(112\) 11.0960 + 13.3299i 1.04848 + 1.25956i
\(113\) 6.38438i 0.600592i −0.953846 0.300296i \(-0.902915\pi\)
0.953846 0.300296i \(-0.0970854\pi\)
\(114\) 0 0
\(115\) 24.7649 2.30934
\(116\) −3.26668 9.03040i −0.303304 0.838452i
\(117\) 0 0
\(118\) 4.51228 6.43073i 0.415389 0.591996i
\(119\) 0.409572 0.0375454
\(120\) 0 0
\(121\) 9.59068 0.871880
\(122\) −7.16563 + 10.2122i −0.648746 + 0.924567i
\(123\) 0 0
\(124\) 14.2479 5.15409i 1.27950 0.462851i
\(125\) 1.56441 0.139925
\(126\) 0 0
\(127\) 8.10854i 0.719517i −0.933045 0.359758i \(-0.882859\pi\)
0.933045 0.359758i \(-0.117141\pi\)
\(128\) −4.71063 10.2864i −0.416364 0.909198i
\(129\) 0 0
\(130\) −2.63004 + 3.74823i −0.230670 + 0.328742i
\(131\) 14.9127i 1.30293i −0.758679 0.651465i \(-0.774155\pi\)
0.758679 0.651465i \(-0.225845\pi\)
\(132\) 0 0
\(133\) 9.88255i 0.856926i
\(134\) 1.03032 + 0.722951i 0.0890063 + 0.0624535i
\(135\) 0 0
\(136\) −0.257862 0.0699107i −0.0221115 0.00599479i
\(137\) 7.27430i 0.621486i 0.950494 + 0.310743i \(0.100578\pi\)
−0.950494 + 0.310743i \(0.899422\pi\)
\(138\) 0 0
\(139\) 0.428209 0.0363202 0.0181601 0.999835i \(-0.494219\pi\)
0.0181601 + 0.999835i \(0.494219\pi\)
\(140\) 26.4033 9.55119i 2.23148 0.807223i
\(141\) 0 0
\(142\) −6.65778 4.67160i −0.558708 0.392032i
\(143\) −1.18715 −0.0992743
\(144\) 0 0
\(145\) −15.5463 −1.29105
\(146\) −15.1305 10.6167i −1.25221 0.878643i
\(147\) 0 0
\(148\) −21.8865 + 7.91730i −1.79906 + 0.650798i
\(149\) 11.5923 0.949682 0.474841 0.880072i \(-0.342506\pi\)
0.474841 + 0.880072i \(0.342506\pi\)
\(150\) 0 0
\(151\) 7.87771i 0.641079i −0.947235 0.320540i \(-0.896136\pi\)
0.947235 0.320540i \(-0.103864\pi\)
\(152\) −1.68687 + 6.22195i −0.136823 + 0.504667i
\(153\) 0 0
\(154\) 5.95896 + 4.18125i 0.480186 + 0.336935i
\(155\) 24.5286i 1.97018i
\(156\) 0 0
\(157\) 3.66776i 0.292719i 0.989231 + 0.146360i \(0.0467557\pi\)
−0.989231 + 0.146360i \(0.953244\pi\)
\(158\) −12.3283 + 17.5698i −0.980784 + 1.39777i
\(159\) 0 0
\(160\) −18.2535 + 1.50650i −1.44307 + 0.119100i
\(161\) 33.1646i 2.61374i
\(162\) 0 0
\(163\) −1.90387 −0.149123 −0.0745614 0.997216i \(-0.523756\pi\)
−0.0745614 + 0.997216i \(0.523756\pi\)
\(164\) 6.54399 2.36724i 0.511000 0.184851i
\(165\) 0 0
\(166\) 4.94166 7.04266i 0.383547 0.546617i
\(167\) −19.6807 −1.52294 −0.761470 0.648200i \(-0.775522\pi\)
−0.761470 + 0.648200i \(0.775522\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) −0.248432 + 0.354055i −0.0190539 + 0.0271548i
\(171\) 0 0
\(172\) −6.65195 18.3886i −0.507206 1.40212i
\(173\) 13.5528 1.03040 0.515202 0.857069i \(-0.327717\pi\)
0.515202 + 0.857069i \(0.327717\pi\)
\(174\) 0 0
\(175\) 23.7748i 1.79721i
\(176\) −3.03799 3.64962i −0.228997 0.275101i
\(177\) 0 0
\(178\) −2.05405 + 2.92736i −0.153958 + 0.219415i
\(179\) 23.1894i 1.73326i 0.498954 + 0.866629i \(0.333718\pi\)
−0.498954 + 0.866629i \(0.666282\pi\)
\(180\) 0 0
\(181\) 8.05640i 0.598827i −0.954123 0.299414i \(-0.903209\pi\)
0.954123 0.299414i \(-0.0967911\pi\)
\(182\) 5.01956 + 3.52210i 0.372074 + 0.261075i
\(183\) 0 0
\(184\) −5.66094 + 20.8801i −0.417330 + 1.53930i
\(185\) 37.6788i 2.77020i
\(186\) 0 0
\(187\) −0.112137 −0.00820028
\(188\) −1.10652 3.05887i −0.0807016 0.223091i
\(189\) 0 0
\(190\) 8.54299 + 5.99440i 0.619774 + 0.434880i
\(191\) −11.0358 −0.798521 −0.399261 0.916838i \(-0.630733\pi\)
−0.399261 + 0.916838i \(0.630733\pi\)
\(192\) 0 0
\(193\) −7.60726 −0.547583 −0.273791 0.961789i \(-0.588278\pi\)
−0.273791 + 0.961789i \(0.588278\pi\)
\(194\) −20.2271 14.1928i −1.45222 1.01899i
\(195\) 0 0
\(196\) −8.02839 22.1937i −0.573457 1.58526i
\(197\) −3.65416 −0.260348 −0.130174 0.991491i \(-0.541554\pi\)
−0.130174 + 0.991491i \(0.541554\pi\)
\(198\) 0 0
\(199\) 5.50005i 0.389888i 0.980814 + 0.194944i \(0.0624525\pi\)
−0.980814 + 0.194944i \(0.937547\pi\)
\(200\) −4.05818 + 14.9684i −0.286956 + 1.05843i
\(201\) 0 0
\(202\) −8.39152 5.88812i −0.590425 0.414287i
\(203\) 20.8193i 1.46123i
\(204\) 0 0
\(205\) 11.2658i 0.786840i
\(206\) −0.125508 + 0.178869i −0.00874457 + 0.0124624i
\(207\) 0 0
\(208\) −2.55907 3.07428i −0.177439 0.213163i
\(209\) 2.70575i 0.187161i
\(210\) 0 0
\(211\) 5.48462 0.377577 0.188788 0.982018i \(-0.439544\pi\)
0.188788 + 0.982018i \(0.439544\pi\)
\(212\) 7.20190 + 19.9089i 0.494628 + 1.36735i
\(213\) 0 0
\(214\) −1.74485 + 2.48669i −0.119276 + 0.169987i
\(215\) −31.6570 −2.15899
\(216\) 0 0
\(217\) −32.8482 −2.22988
\(218\) 10.4570 14.9030i 0.708240 1.00936i
\(219\) 0 0
\(220\) −7.22898 + 2.61503i −0.487378 + 0.176305i
\(221\) −0.0944593 −0.00635402
\(222\) 0 0
\(223\) 23.2910i 1.55968i −0.625979 0.779840i \(-0.715301\pi\)
0.625979 0.779840i \(-0.284699\pi\)
\(224\) 2.01748 + 24.4448i 0.134799 + 1.63329i
\(225\) 0 0
\(226\) 5.18603 7.39092i 0.344969 0.491637i
\(227\) 9.24360i 0.613519i −0.951787 0.306760i \(-0.900755\pi\)
0.951787 0.306760i \(-0.0992448\pi\)
\(228\) 0 0
\(229\) 4.11450i 0.271894i 0.990716 + 0.135947i \(0.0434077\pi\)
−0.990716 + 0.135947i \(0.956592\pi\)
\(230\) 28.6692 + 20.1165i 1.89039 + 1.32644i
\(231\) 0 0
\(232\) 3.55369 13.1076i 0.233311 0.860558i
\(233\) 0.938538i 0.0614857i 0.999527 + 0.0307428i \(0.00978729\pi\)
−0.999527 + 0.0307428i \(0.990213\pi\)
\(234\) 0 0
\(235\) −5.26601 −0.343517
\(236\) 10.4473 3.77925i 0.680065 0.246008i
\(237\) 0 0
\(238\) 0.474144 + 0.332695i 0.0307342 + 0.0215654i
\(239\) 23.8576 1.54322 0.771609 0.636098i \(-0.219452\pi\)
0.771609 + 0.636098i \(0.219452\pi\)
\(240\) 0 0
\(241\) −6.67466 −0.429953 −0.214976 0.976619i \(-0.568967\pi\)
−0.214976 + 0.976619i \(0.568967\pi\)
\(242\) 11.1027 + 7.79050i 0.713710 + 0.500792i
\(243\) 0 0
\(244\) −16.5907 + 6.00156i −1.06211 + 0.384211i
\(245\) −38.2076 −2.44099
\(246\) 0 0
\(247\) 2.27921i 0.145022i
\(248\) 20.6809 + 5.60692i 1.31324 + 0.356040i
\(249\) 0 0
\(250\) 1.81105 + 1.27077i 0.114541 + 0.0803706i
\(251\) 6.56246i 0.414219i 0.978318 + 0.207109i \(0.0664056\pi\)
−0.978318 + 0.207109i \(0.933594\pi\)
\(252\) 0 0
\(253\) 9.08018i 0.570866i
\(254\) 6.58656 9.38691i 0.413278 0.588987i
\(255\) 0 0
\(256\) 2.90235 15.7346i 0.181397 0.983410i
\(257\) 19.2751i 1.20235i −0.799117 0.601175i \(-0.794699\pi\)
0.799117 0.601175i \(-0.205301\pi\)
\(258\) 0 0
\(259\) 50.4588 3.13535
\(260\) −6.08937 + 2.20279i −0.377647 + 0.136611i
\(261\) 0 0
\(262\) 12.1136 17.2638i 0.748379 1.06656i
\(263\) −27.6440 −1.70460 −0.852302 0.523050i \(-0.824794\pi\)
−0.852302 + 0.523050i \(0.824794\pi\)
\(264\) 0 0
\(265\) 34.2742 2.10545
\(266\) 8.02759 11.4406i 0.492203 0.701468i
\(267\) 0 0
\(268\) 0.605507 + 1.67386i 0.0369872 + 0.102247i
\(269\) 24.3377 1.48390 0.741948 0.670457i \(-0.233902\pi\)
0.741948 + 0.670457i \(0.233902\pi\)
\(270\) 0 0
\(271\) 0.648615i 0.0394006i 0.999806 + 0.0197003i \(0.00627120\pi\)
−0.999806 + 0.0197003i \(0.993729\pi\)
\(272\) −0.241728 0.290394i −0.0146569 0.0176077i
\(273\) 0 0
\(274\) −5.90891 + 8.42115i −0.356970 + 0.508740i
\(275\) 6.50934i 0.392528i
\(276\) 0 0
\(277\) 2.48540i 0.149333i −0.997209 0.0746665i \(-0.976211\pi\)
0.997209 0.0746665i \(-0.0237892\pi\)
\(278\) 0.495719 + 0.347834i 0.0297313 + 0.0208617i
\(279\) 0 0
\(280\) 38.3244 + 10.3904i 2.29032 + 0.620943i
\(281\) 26.7449i 1.59547i 0.603011 + 0.797733i \(0.293968\pi\)
−0.603011 + 0.797733i \(0.706032\pi\)
\(282\) 0 0
\(283\) −23.1975 −1.37895 −0.689474 0.724310i \(-0.742158\pi\)
−0.689474 + 0.724310i \(0.742158\pi\)
\(284\) −3.91269 10.8162i −0.232175 0.641824i
\(285\) 0 0
\(286\) −1.37431 0.964320i −0.0812647 0.0570214i
\(287\) −15.0870 −0.890556
\(288\) 0 0
\(289\) 16.9911 0.999475
\(290\) −17.9973 12.6283i −1.05684 0.741557i
\(291\) 0 0
\(292\) −8.89198 24.5810i −0.520364 1.43849i
\(293\) 27.7476 1.62103 0.810516 0.585716i \(-0.199187\pi\)
0.810516 + 0.585716i \(0.199187\pi\)
\(294\) 0 0
\(295\) 17.9857i 1.04717i
\(296\) −31.7683 8.61291i −1.84650 0.500615i
\(297\) 0 0
\(298\) 13.4200 + 9.41645i 0.777397 + 0.545480i
\(299\) 7.64873i 0.442338i
\(300\) 0 0
\(301\) 42.3944i 2.44357i
\(302\) 6.39906 9.11969i 0.368225 0.524779i
\(303\) 0 0
\(304\) −7.00691 + 5.83264i −0.401874 + 0.334525i
\(305\) 28.5618i 1.63544i
\(306\) 0 0
\(307\) −4.23451 −0.241676 −0.120838 0.992672i \(-0.538558\pi\)
−0.120838 + 0.992672i \(0.538558\pi\)
\(308\) 3.50200 + 9.68091i 0.199545 + 0.551621i
\(309\) 0 0
\(310\) 19.9245 28.3957i 1.13164 1.61277i
\(311\) 29.1156 1.65099 0.825496 0.564408i \(-0.190896\pi\)
0.825496 + 0.564408i \(0.190896\pi\)
\(312\) 0 0
\(313\) 23.2500 1.31417 0.657083 0.753818i \(-0.271790\pi\)
0.657083 + 0.753818i \(0.271790\pi\)
\(314\) −2.97932 + 4.24601i −0.168133 + 0.239616i
\(315\) 0 0
\(316\) −28.5438 + 10.3255i −1.60571 + 0.580855i
\(317\) −6.81779 −0.382925 −0.191463 0.981500i \(-0.561323\pi\)
−0.191463 + 0.981500i \(0.561323\pi\)
\(318\) 0 0
\(319\) 5.70015i 0.319147i
\(320\) −22.3551 13.0833i −1.24969 0.731380i
\(321\) 0 0
\(322\) 26.9396 38.3933i 1.50129 2.13957i
\(323\) 0.215292i 0.0119792i
\(324\) 0 0
\(325\) 5.48318i 0.304152i
\(326\) −2.20403 1.54651i −0.122070 0.0856535i
\(327\) 0 0
\(328\) 9.49861 + 2.57523i 0.524473 + 0.142193i
\(329\) 7.05214i 0.388797i
\(330\) 0 0
\(331\) −9.11133 −0.500804 −0.250402 0.968142i \(-0.580563\pi\)
−0.250402 + 0.968142i \(0.580563\pi\)
\(332\) 11.4415 4.13888i 0.627934 0.227151i
\(333\) 0 0
\(334\) −22.7835 15.9866i −1.24666 0.874750i
\(335\) 2.88164 0.157441
\(336\) 0 0
\(337\) 22.2228 1.21055 0.605276 0.796016i \(-0.293063\pi\)
0.605276 + 0.796016i \(0.293063\pi\)
\(338\) −1.15766 0.812299i −0.0629682 0.0441833i
\(339\) 0 0
\(340\) −0.575198 + 0.208074i −0.0311945 + 0.0112844i
\(341\) 8.99354 0.487028
\(342\) 0 0
\(343\) 20.8151i 1.12391i
\(344\) 7.23639 26.6911i 0.390160 1.43909i
\(345\) 0 0
\(346\) 15.6895 + 11.0090i 0.843475 + 0.591845i
\(347\) 1.21378i 0.0651593i 0.999469 + 0.0325796i \(0.0103723\pi\)
−0.999469 + 0.0325796i \(0.989628\pi\)
\(348\) 0 0
\(349\) 3.97729i 0.212899i −0.994318 0.106450i \(-0.966052\pi\)
0.994318 0.106450i \(-0.0339483\pi\)
\(350\) 19.3123 27.5231i 1.03229 1.47117i
\(351\) 0 0
\(352\) −0.552369 6.69277i −0.0294413 0.356726i
\(353\) 7.75251i 0.412625i 0.978486 + 0.206312i \(0.0661463\pi\)
−0.978486 + 0.206312i \(0.933854\pi\)
\(354\) 0 0
\(355\) −18.6207 −0.988284
\(356\) −4.75578 + 1.72037i −0.252056 + 0.0911793i
\(357\) 0 0
\(358\) −18.8367 + 26.8454i −0.995552 + 1.41882i
\(359\) 22.3649 1.18037 0.590187 0.807267i \(-0.299054\pi\)
0.590187 + 0.807267i \(0.299054\pi\)
\(360\) 0 0
\(361\) −13.8052 −0.726591
\(362\) 6.54421 9.32655i 0.343956 0.490192i
\(363\) 0 0
\(364\) 2.94993 + 8.15477i 0.154618 + 0.427426i
\(365\) −42.3174 −2.21500
\(366\) 0 0
\(367\) 14.6130i 0.762793i 0.924411 + 0.381397i \(0.124557\pi\)
−0.924411 + 0.381397i \(0.875443\pi\)
\(368\) −23.5143 + 19.5736i −1.22577 + 1.02035i
\(369\) 0 0
\(370\) −30.6065 + 43.6192i −1.59116 + 2.26765i
\(371\) 45.8994i 2.38298i
\(372\) 0 0
\(373\) 35.5065i 1.83846i 0.393722 + 0.919229i \(0.371187\pi\)
−0.393722 + 0.919229i \(0.628813\pi\)
\(374\) −0.129816 0.0910889i −0.00671265 0.00471010i
\(375\) 0 0
\(376\) 1.20374 4.43995i 0.0620783 0.228973i
\(377\) 4.80155i 0.247292i
\(378\) 0 0
\(379\) −2.22424 −0.114251 −0.0571257 0.998367i \(-0.518194\pi\)
−0.0571257 + 0.998367i \(0.518194\pi\)
\(380\) 5.02060 + 13.8789i 0.257551 + 0.711974i
\(381\) 0 0
\(382\) −12.7756 8.96436i −0.653659 0.458656i
\(383\) 37.1436 1.89795 0.948976 0.315349i \(-0.102121\pi\)
0.948976 + 0.315349i \(0.102121\pi\)
\(384\) 0 0
\(385\) 16.6662 0.849389
\(386\) −8.80660 6.17937i −0.448244 0.314522i
\(387\) 0 0
\(388\) −11.8872 32.8609i −0.603480 1.66826i
\(389\) 12.1794 0.617519 0.308760 0.951140i \(-0.400086\pi\)
0.308760 + 0.951140i \(0.400086\pi\)
\(390\) 0 0
\(391\) 0.722494i 0.0365381i
\(392\) 8.73377 32.2141i 0.441122 1.62706i
\(393\) 0 0
\(394\) −4.23026 2.96827i −0.213117 0.149539i
\(395\) 49.1397i 2.47248i
\(396\) 0 0
\(397\) 20.5977i 1.03377i −0.856054 0.516886i \(-0.827091\pi\)
0.856054 0.516886i \(-0.172909\pi\)
\(398\) −4.46768 + 6.36717i −0.223945 + 0.319157i
\(399\) 0 0
\(400\) −16.8568 + 14.0318i −0.842840 + 0.701591i
\(401\) 11.1123i 0.554923i −0.960737 0.277462i \(-0.910507\pi\)
0.960737 0.277462i \(-0.0894931\pi\)
\(402\) 0 0
\(403\) 7.57575 0.377375
\(404\) −4.93158 13.6328i −0.245355 0.678259i
\(405\) 0 0
\(406\) −16.9115 + 24.1016i −0.839305 + 1.19614i
\(407\) −13.8152 −0.684792
\(408\) 0 0
\(409\) −30.0867 −1.48769 −0.743846 0.668351i \(-0.767000\pi\)
−0.743846 + 0.668351i \(0.767000\pi\)
\(410\) 9.15123 13.0420i 0.451947 0.644097i
\(411\) 0 0
\(412\) −0.290591 + 0.105119i −0.0143164 + 0.00517885i
\(413\) −24.0861 −1.18520
\(414\) 0 0
\(415\) 19.6972i 0.966895i
\(416\) −0.465290 5.63769i −0.0228127 0.276410i
\(417\) 0 0
\(418\) −2.19788 + 3.13234i −0.107502 + 0.153208i
\(419\) 16.9123i 0.826219i −0.910681 0.413109i \(-0.864443\pi\)
0.910681 0.413109i \(-0.135557\pi\)
\(420\) 0 0
\(421\) 22.0720i 1.07572i 0.843033 + 0.537862i \(0.180768\pi\)
−0.843033 + 0.537862i \(0.819232\pi\)
\(422\) 6.34931 + 4.45515i 0.309079 + 0.216873i
\(423\) 0 0
\(424\) −7.83466 + 28.8978i −0.380485 + 1.40340i
\(425\) 0.517937i 0.0251236i
\(426\) 0 0
\(427\) 38.2494 1.85102
\(428\) −4.03988 + 1.46140i −0.195275 + 0.0706393i
\(429\) 0 0
\(430\) −36.6479 25.7150i −1.76732 1.24009i
\(431\) −12.8351 −0.618247 −0.309123 0.951022i \(-0.600036\pi\)
−0.309123 + 0.951022i \(0.600036\pi\)
\(432\) 0 0
\(433\) −22.3461 −1.07389 −0.536943 0.843618i \(-0.680421\pi\)
−0.536943 + 0.843618i \(0.680421\pi\)
\(434\) −38.0269 26.6826i −1.82535 1.28080i
\(435\) 0 0
\(436\) 24.2113 8.75828i 1.15951 0.419445i
\(437\) 17.4330 0.833935
\(438\) 0 0
\(439\) 30.4945i 1.45542i 0.685884 + 0.727711i \(0.259416\pi\)
−0.685884 + 0.727711i \(0.740584\pi\)
\(440\) −10.4929 2.84479i −0.500228 0.135620i
\(441\) 0 0
\(442\) −0.109351 0.0767292i −0.00520132 0.00364964i
\(443\) 2.66810i 0.126765i 0.997989 + 0.0633826i \(0.0201888\pi\)
−0.997989 + 0.0633826i \(0.979811\pi\)
\(444\) 0 0
\(445\) 8.18733i 0.388116i
\(446\) 18.9192 26.9630i 0.895852 1.27673i
\(447\) 0 0
\(448\) −17.5209 + 29.9375i −0.827786 + 1.41441i
\(449\) 38.8868i 1.83518i 0.397526 + 0.917591i \(0.369869\pi\)
−0.397526 + 0.917591i \(0.630131\pi\)
\(450\) 0 0
\(451\) 4.13068 0.194506
\(452\) 12.0073 4.34355i 0.564775 0.204303i
\(453\) 0 0
\(454\) 7.50857 10.7009i 0.352395 0.502219i
\(455\) 14.0389 0.658152
\(456\) 0 0
\(457\) 31.8203 1.48849 0.744246 0.667905i \(-0.232809\pi\)
0.744246 + 0.667905i \(0.232809\pi\)
\(458\) −3.34221 + 4.76319i −0.156171 + 0.222569i
\(459\) 0 0
\(460\) 16.8485 + 46.5760i 0.785566 + 2.17162i
\(461\) 25.9499 1.20861 0.604303 0.796755i \(-0.293452\pi\)
0.604303 + 0.796755i \(0.293452\pi\)
\(462\) 0 0
\(463\) 2.03696i 0.0946657i 0.998879 + 0.0473329i \(0.0150721\pi\)
−0.998879 + 0.0473329i \(0.984928\pi\)
\(464\) 14.7613 12.2875i 0.685275 0.570432i
\(465\) 0 0
\(466\) −0.762374 + 1.08651i −0.0353163 + 0.0503314i
\(467\) 3.91994i 0.181393i 0.995879 + 0.0906967i \(0.0289094\pi\)
−0.995879 + 0.0906967i \(0.971091\pi\)
\(468\) 0 0
\(469\) 3.85903i 0.178194i
\(470\) −6.09623 4.27758i −0.281198 0.197310i
\(471\) 0 0
\(472\) 15.1643 + 4.11130i 0.697995 + 0.189238i
\(473\) 11.6072i 0.533700i
\(474\) 0 0
\(475\) 12.4973 0.573415
\(476\) 0.278648 + 0.770293i 0.0127718 + 0.0353063i
\(477\) 0 0
\(478\) 27.6189 + 19.3795i 1.26326 + 0.886397i
\(479\) 22.5822 1.03181 0.515904 0.856646i \(-0.327456\pi\)
0.515904 + 0.856646i \(0.327456\pi\)
\(480\) 0 0
\(481\) −11.6373 −0.530614
\(482\) −7.72696 5.42182i −0.351954 0.246957i
\(483\) 0 0
\(484\) 6.52492 + 18.0375i 0.296587 + 0.819885i
\(485\) −56.5717 −2.56879
\(486\) 0 0
\(487\) 10.9764i 0.497386i 0.968582 + 0.248693i \(0.0800011\pi\)
−0.968582 + 0.248693i \(0.919999\pi\)
\(488\) −24.0814 6.52886i −1.09011 0.295548i
\(489\) 0 0
\(490\) −44.2313 31.0360i −1.99816 1.40206i
\(491\) 2.57966i 0.116419i 0.998304 + 0.0582093i \(0.0185391\pi\)
−0.998304 + 0.0582093i \(0.981461\pi\)
\(492\) 0 0
\(493\) 0.453551i 0.0204269i
\(494\) −1.85140 + 2.63854i −0.0832983 + 0.118713i
\(495\) 0 0
\(496\) 19.3869 + 23.2900i 0.870496 + 1.04575i
\(497\) 24.9365i 1.11855i
\(498\) 0 0
\(499\) 5.21886 0.233628 0.116814 0.993154i \(-0.462732\pi\)
0.116814 + 0.993154i \(0.462732\pi\)
\(500\) 1.06433 + 2.94224i 0.0475984 + 0.131581i
\(501\) 0 0
\(502\) −5.33068 + 7.59708i −0.237920 + 0.339074i
\(503\) −28.0588 −1.25108 −0.625539 0.780193i \(-0.715121\pi\)
−0.625539 + 0.780193i \(0.715121\pi\)
\(504\) 0 0
\(505\) −23.4697 −1.04439
\(506\) −7.37582 + 10.5117i −0.327895 + 0.467304i
\(507\) 0 0
\(508\) 15.2500 5.51656i 0.676608 0.244758i
\(509\) −9.51782 −0.421870 −0.210935 0.977500i \(-0.567651\pi\)
−0.210935 + 0.977500i \(0.567651\pi\)
\(510\) 0 0
\(511\) 56.6707i 2.50696i
\(512\) 16.1411 15.8577i 0.713342 0.700816i
\(513\) 0 0
\(514\) 15.6572 22.3140i 0.690609 0.984229i
\(515\) 0.500268i 0.0220444i
\(516\) 0 0
\(517\) 1.93081i 0.0849171i
\(518\) 58.4139 + 40.9876i 2.56656 + 1.80089i
\(519\) 0 0
\(520\) −8.83872 2.39632i −0.387604 0.105086i
\(521\) 3.21823i 0.140993i −0.997512 0.0704966i \(-0.977542\pi\)
0.997512 0.0704966i \(-0.0224584\pi\)
\(522\) 0 0
\(523\) −23.4163 −1.02392 −0.511962 0.859008i \(-0.671081\pi\)
−0.511962 + 0.859008i \(0.671081\pi\)
\(524\) 28.0467 10.1457i 1.22523 0.443217i
\(525\) 0 0
\(526\) −32.0023 22.4552i −1.39537 0.979094i
\(527\) 0.715600 0.0311720
\(528\) 0 0
\(529\) 35.5031 1.54362
\(530\) 39.6778 + 27.8409i 1.72349 + 1.20933i
\(531\) 0 0
\(532\) 18.5864 6.72349i 0.805822 0.291500i
\(533\) 3.47950 0.150714
\(534\) 0 0
\(535\) 6.95487i 0.300685i
\(536\) −0.658706 + 2.42961i −0.0284518 + 0.104943i
\(537\) 0 0
\(538\) 28.1747 + 19.7695i 1.21470 + 0.852324i
\(539\) 14.0090i 0.603411i
\(540\) 0 0
\(541\) 31.3574i 1.34816i −0.738659 0.674079i \(-0.764541\pi\)
0.738659 0.674079i \(-0.235459\pi\)
\(542\) −0.526870 + 0.750874i −0.0226310 + 0.0322528i
\(543\) 0 0
\(544\) −0.0439510 0.532532i −0.00188438 0.0228321i
\(545\) 41.6811i 1.78542i
\(546\) 0 0
\(547\) −20.2955 −0.867774 −0.433887 0.900967i \(-0.642858\pi\)
−0.433887 + 0.900967i \(0.642858\pi\)
\(548\) −13.6810 + 4.94900i −0.584423 + 0.211411i
\(549\) 0 0
\(550\) −5.28753 + 7.53558i −0.225461 + 0.321318i
\(551\) −10.9437 −0.466218
\(552\) 0 0
\(553\) 65.8069 2.79839
\(554\) 2.01889 2.87724i 0.0857743 0.122242i
\(555\) 0 0
\(556\) 0.291328 + 0.805345i 0.0123550 + 0.0341542i
\(557\) −28.5330 −1.20898 −0.604492 0.796611i \(-0.706624\pi\)
−0.604492 + 0.796611i \(0.706624\pi\)
\(558\) 0 0
\(559\) 9.77740i 0.413540i
\(560\) 35.9264 + 43.1593i 1.51817 + 1.82381i
\(561\) 0 0
\(562\) −21.7249 + 30.9614i −0.916408 + 1.30603i
\(563\) 22.5762i 0.951474i 0.879588 + 0.475737i \(0.157819\pi\)
−0.879588 + 0.475737i \(0.842181\pi\)
\(564\) 0 0
\(565\) 20.6712i 0.869643i
\(566\) −26.8547 18.8433i −1.12879 0.792043i
\(567\) 0 0
\(568\) 4.25646 15.6997i 0.178597 0.658747i
\(569\) 2.31847i 0.0971951i 0.998818 + 0.0485976i \(0.0154752\pi\)
−0.998818 + 0.0485976i \(0.984525\pi\)
\(570\) 0 0
\(571\) −8.29865 −0.347288 −0.173644 0.984809i \(-0.555554\pi\)
−0.173644 + 0.984809i \(0.555554\pi\)
\(572\) −0.807664 2.23270i −0.0337701 0.0933540i
\(573\) 0 0
\(574\) −17.4656 12.2551i −0.728998 0.511520i
\(575\) 41.9394 1.74899
\(576\) 0 0
\(577\) 24.1082 1.00364 0.501818 0.864973i \(-0.332665\pi\)
0.501818 + 0.864973i \(0.332665\pi\)
\(578\) 19.6698 + 13.8018i 0.818157 + 0.574081i
\(579\) 0 0
\(580\) −10.5768 29.2384i −0.439177 1.21406i
\(581\) −26.3780 −1.09435
\(582\) 0 0
\(583\) 12.5668i 0.520465i
\(584\) 9.67323 35.6793i 0.400281 1.47642i
\(585\) 0 0
\(586\) 32.1222 + 22.5394i 1.32696 + 0.931092i
\(587\) 40.7910i 1.68362i 0.539771 + 0.841812i \(0.318511\pi\)
−0.539771 + 0.841812i \(0.681489\pi\)
\(588\) 0 0
\(589\) 17.2667i 0.711462i
\(590\) 14.6097 20.8212i 0.601474 0.857197i
\(591\) 0 0
\(592\) −29.7806 35.7762i −1.22397 1.47039i
\(593\) 9.44136i 0.387710i −0.981030 0.193855i \(-0.937901\pi\)
0.981030 0.193855i \(-0.0620992\pi\)
\(594\) 0 0
\(595\) 1.32610 0.0543648
\(596\) 7.88673 + 21.8020i 0.323053 + 0.893046i
\(597\) 0 0
\(598\) −6.21306 + 8.85461i −0.254071 + 0.362092i
\(599\) −41.8793 −1.71114 −0.855572 0.517684i \(-0.826794\pi\)
−0.855572 + 0.517684i \(0.826794\pi\)
\(600\) 0 0
\(601\) −39.8407 −1.62514 −0.812568 0.582866i \(-0.801931\pi\)
−0.812568 + 0.582866i \(0.801931\pi\)
\(602\) −34.4370 + 49.0782i −1.40355 + 2.00028i
\(603\) 0 0
\(604\) 14.8158 5.35952i 0.602848 0.218076i
\(605\) 31.0524 1.26246
\(606\) 0 0
\(607\) 19.3389i 0.784944i −0.919764 0.392472i \(-0.871620\pi\)
0.919764 0.392472i \(-0.128380\pi\)
\(608\) −12.8494 + 1.06049i −0.521114 + 0.0430086i
\(609\) 0 0
\(610\) −23.2007 + 33.0647i −0.939369 + 1.33875i
\(611\) 1.62643i 0.0657983i
\(612\) 0 0
\(613\) 42.2369i 1.70593i −0.521967 0.852966i \(-0.674801\pi\)
0.521967 0.852966i \(-0.325199\pi\)
\(614\) −4.90211 3.43969i −0.197833 0.138814i
\(615\) 0 0
\(616\) −3.80969 + 14.0519i −0.153497 + 0.566165i
\(617\) 17.7584i 0.714927i −0.933927 0.357464i \(-0.883642\pi\)
0.933927 0.357464i \(-0.116358\pi\)
\(618\) 0 0
\(619\) 24.6547 0.990956 0.495478 0.868620i \(-0.334993\pi\)
0.495478 + 0.868620i \(0.334993\pi\)
\(620\) 46.1316 16.6878i 1.85269 0.670197i
\(621\) 0 0
\(622\) 33.7058 + 23.6505i 1.35148 + 0.948300i
\(623\) 10.9643 0.439276
\(624\) 0 0
\(625\) −22.3507 −0.894027
\(626\) 26.9155 + 18.8859i 1.07576 + 0.754833i
\(627\) 0 0
\(628\) −6.89806 + 2.49532i −0.275263 + 0.0995742i
\(629\) −1.09925 −0.0438299
\(630\) 0 0
\(631\) 7.10652i 0.282906i 0.989945 + 0.141453i \(0.0451774\pi\)
−0.989945 + 0.141453i \(0.954823\pi\)
\(632\) −41.4313 11.2327i −1.64805 0.446813i
\(633\) 0 0
\(634\) −7.89266 5.53808i −0.313457 0.219945i
\(635\) 26.2536i 1.04184i
\(636\) 0 0
\(637\) 11.8006i 0.467555i
\(638\) 4.63023 6.59882i 0.183312 0.261250i
\(639\) 0 0
\(640\) −15.2519 33.3050i −0.602886 1.31650i
\(641\) 26.3422i 1.04046i 0.854028 + 0.520228i \(0.174153\pi\)
−0.854028 + 0.520228i \(0.825847\pi\)
\(642\) 0 0
\(643\) 15.8987 0.626983 0.313491 0.949591i \(-0.398501\pi\)
0.313491 + 0.949591i \(0.398501\pi\)
\(644\) 62.3736 22.5632i 2.45787 0.889115i
\(645\) 0 0
\(646\) −0.174882 + 0.249234i −0.00688063 + 0.00980600i
\(647\) 9.85006 0.387246 0.193623 0.981076i \(-0.437976\pi\)
0.193623 + 0.981076i \(0.437976\pi\)
\(648\) 0 0
\(649\) 6.59455 0.258859
\(650\) −4.45398 + 6.34764i −0.174699 + 0.248975i
\(651\) 0 0
\(652\) −1.29528 3.58067i −0.0507271 0.140230i
\(653\) 14.8492 0.581094 0.290547 0.956861i \(-0.406163\pi\)
0.290547 + 0.956861i \(0.406163\pi\)
\(654\) 0 0
\(655\) 48.2840i 1.88661i
\(656\) 8.90428 + 10.6969i 0.347654 + 0.417646i
\(657\) 0 0
\(658\) −5.72845 + 8.16396i −0.223318 + 0.318264i
\(659\) 42.2506i 1.64585i 0.568149 + 0.822925i \(0.307660\pi\)
−0.568149 + 0.822925i \(0.692340\pi\)
\(660\) 0 0
\(661\) 20.8921i 0.812608i 0.913738 + 0.406304i \(0.133183\pi\)
−0.913738 + 0.406304i \(0.866817\pi\)
\(662\) −10.5478 7.40112i −0.409952 0.287653i
\(663\) 0 0
\(664\) 16.6073 + 4.50252i 0.644490 + 0.174732i
\(665\) 31.9974i 1.24081i
\(666\) 0 0
\(667\) −36.7258 −1.42203
\(668\) −13.3896 37.0141i −0.518058 1.43212i
\(669\) 0 0
\(670\) 3.33595 + 2.34075i 0.128879 + 0.0904312i
\(671\) −10.4723 −0.404280
\(672\) 0 0
\(673\) 4.04031 0.155742 0.0778712 0.996963i \(-0.475188\pi\)
0.0778712 + 0.996963i \(0.475188\pi\)
\(674\) 25.7264 + 18.0516i 0.990942 + 0.695320i
\(675\) 0 0
\(676\) −0.680340 1.88073i −0.0261669 0.0723357i
\(677\) 25.6247 0.984836 0.492418 0.870359i \(-0.336113\pi\)
0.492418 + 0.870359i \(0.336113\pi\)
\(678\) 0 0
\(679\) 75.7597i 2.90739i
\(680\) −0.834900 0.226355i −0.0320169 0.00868031i
\(681\) 0 0
\(682\) 10.4114 + 7.30545i 0.398675 + 0.279740i
\(683\) 3.10338i 0.118747i −0.998236 0.0593737i \(-0.981090\pi\)
0.998236 0.0593737i \(-0.0189104\pi\)
\(684\) 0 0
\(685\) 23.5525i 0.899896i
\(686\) −16.9081 + 24.0967i −0.645553 + 0.920017i
\(687\) 0 0
\(688\) 30.0584 25.0210i 1.14597 0.953917i
\(689\) 10.5857i 0.403285i
\(690\) 0 0
\(691\) 15.5146 0.590202 0.295101 0.955466i \(-0.404647\pi\)
0.295101 + 0.955466i \(0.404647\pi\)
\(692\) 9.22053 + 25.4892i 0.350512 + 0.968954i
\(693\) 0 0
\(694\) −0.985955 + 1.40514i −0.0374263 + 0.0533385i
\(695\) 1.38644 0.0525908
\(696\) 0 0
\(697\) 0.328671 0.0124493
\(698\) 3.23075 4.60433i 0.122286 0.174277i
\(699\) 0 0
\(700\) 44.7140 16.1750i 1.69003 0.611356i
\(701\) 9.73072 0.367524 0.183762 0.982971i \(-0.441172\pi\)
0.183762 + 0.982971i \(0.441172\pi\)
\(702\) 0 0
\(703\) 26.5237i 1.00036i
\(704\) 4.79708 8.19662i 0.180797 0.308922i
\(705\) 0 0
\(706\) −6.29736 + 8.97475i −0.237004 + 0.337769i
\(707\) 31.4301i 1.18205i
\(708\) 0 0
\(709\) 24.9061i 0.935367i 0.883896 + 0.467684i \(0.154911\pi\)
−0.883896 + 0.467684i \(0.845089\pi\)
\(710\) −21.5564 15.1256i −0.808996 0.567653i
\(711\) 0 0
\(712\) −6.90301 1.87152i −0.258701 0.0701382i
\(713\) 57.9449i 2.17006i
\(714\) 0 0
\(715\) −3.84372 −0.143747
\(716\) −43.6130 + 15.7767i −1.62989 + 0.589602i
\(717\) 0 0
\(718\) 25.8909 + 18.1670i 0.966239 + 0.677986i
\(719\) 19.8333 0.739658 0.369829 0.929100i \(-0.379416\pi\)
0.369829 + 0.929100i \(0.379416\pi\)
\(720\) 0 0
\(721\) 0.669949 0.0249502
\(722\) −15.9817 11.2140i −0.594778 0.417341i
\(723\) 0 0
\(724\) 15.1519 5.48109i 0.563116 0.203703i
\(725\) −26.3277 −0.977787
\(726\) 0 0
\(727\) 0.331359i 0.0122894i 0.999981 + 0.00614472i \(0.00195594\pi\)
−0.999981 + 0.00614472i \(0.998044\pi\)
\(728\) −3.20911 + 11.8366i −0.118937 + 0.438695i
\(729\) 0 0
\(730\) −48.9891 34.3744i −1.81317 1.27225i
\(731\) 0.923566i 0.0341593i
\(732\) 0 0
\(733\) 9.92295i 0.366512i 0.983065 + 0.183256i \(0.0586638\pi\)
−0.983065 + 0.183256i \(0.941336\pi\)
\(734\) −11.8701 + 16.9169i −0.438135 + 0.624413i
\(735\) 0 0
\(736\) −43.1212 + 3.55888i −1.58947 + 0.131182i
\(737\) 1.05657i 0.0389192i
\(738\) 0 0
\(739\) −11.4372 −0.420724 −0.210362 0.977624i \(-0.567464\pi\)
−0.210362 + 0.977624i \(0.567464\pi\)
\(740\) −70.8636 + 25.6344i −2.60500 + 0.942340i
\(741\) 0 0
\(742\) 37.2840 53.1357i 1.36874 1.95067i
\(743\) −18.1594 −0.666204 −0.333102 0.942891i \(-0.608095\pi\)
−0.333102 + 0.942891i \(0.608095\pi\)
\(744\) 0 0
\(745\) 37.5334 1.37512
\(746\) −28.8419 + 41.1044i −1.05598 + 1.50494i
\(747\) 0 0
\(748\) −0.0762914 0.210900i −0.00278949 0.00771125i
\(749\) 9.31382 0.340320
\(750\) 0 0
\(751\) 5.84293i 0.213211i −0.994301 0.106606i \(-0.966002\pi\)
0.994301 0.106606i \(-0.0339983\pi\)
\(752\) 5.00009 4.16214i 0.182335 0.151778i
\(753\) 0 0
\(754\) 3.90029 5.55854i 0.142040 0.202430i
\(755\) 25.5063i 0.928268i
\(756\) 0 0
\(757\) 41.0906i 1.49346i −0.665126 0.746731i \(-0.731622\pi\)
0.665126 0.746731i \(-0.268378\pi\)
\(758\) −2.57491 1.80675i −0.0935248 0.0656240i
\(759\) 0 0
\(760\) −5.46171 + 20.1453i −0.198117 + 0.730746i
\(761\) 30.0805i 1.09042i −0.838301 0.545208i \(-0.816451\pi\)
0.838301 0.545208i \(-0.183549\pi\)
\(762\) 0 0
\(763\) −55.8185 −2.02077
\(764\) −7.50808 20.7553i −0.271633 0.750900i
\(765\) 0 0
\(766\) 42.9996 + 30.1718i 1.55364 + 1.09015i
\(767\) 5.55495 0.200578
\(768\) 0 0
\(769\) 27.7812 1.00182 0.500908 0.865501i \(-0.333000\pi\)
0.500908 + 0.865501i \(0.333000\pi\)
\(770\) 19.2938 + 13.5379i 0.695299 + 0.487874i
\(771\) 0 0
\(772\) −5.17552 14.3072i −0.186271 0.514927i
\(773\) 50.7995 1.82713 0.913566 0.406691i \(-0.133317\pi\)
0.913566 + 0.406691i \(0.133317\pi\)
\(774\) 0 0
\(775\) 41.5392i 1.49213i
\(776\) 12.9316 47.6976i 0.464217 1.71224i
\(777\) 0 0
\(778\) 14.0996 + 9.89331i 0.505493 + 0.354692i
\(779\) 7.93050i 0.284140i
\(780\) 0 0
\(781\) 6.82738i 0.244303i
\(782\) −0.586881 + 0.836400i −0.0209868 + 0.0299096i
\(783\) 0 0
\(784\) 36.2782 30.1984i 1.29565 1.07852i
\(785\) 11.8754i 0.423850i
\(786\) 0 0
\(787\) −13.8683 −0.494352 −0.247176 0.968971i \(-0.579503\pi\)
−0.247176 + 0.968971i \(0.579503\pi\)
\(788\) −2.48607 6.87247i −0.0885625 0.244822i
\(789\) 0 0
\(790\) −39.9161 + 56.8869i −1.42015 + 2.02394i
\(791\) −27.6824 −0.984274
\(792\) 0 0
\(793\) −8.82142 −0.313258
\(794\) 16.7315 23.8451i 0.593780 0.846232i
\(795\) 0 0
\(796\) −10.3441 + 3.74190i −0.366637 + 0.132628i
\(797\) 44.5890 1.57942 0.789712 0.613478i \(-0.210230\pi\)
0.789712 + 0.613478i \(0.210230\pi\)
\(798\) 0 0
\(799\) 0.153631i 0.00543509i
\(800\) −30.9124 + 2.55127i −1.09292 + 0.0902010i
\(801\) 0 0
\(802\) 9.02654 12.8643i 0.318738 0.454253i
\(803\) 15.5159i 0.547545i
\(804\) 0 0
\(805\) 107.380i 3.78463i
\(806\) 8.77013 + 6.15378i 0.308915 + 0.216758i
\(807\) 0 0
\(808\) 5.36487 19.7881i 0.188735 0.696142i
\(809\) 36.1233i 1.27003i −0.772501 0.635014i \(-0.780994\pi\)
0.772501 0.635014i \(-0.219006\pi\)
\(810\) 0 0
\(811\) 5.44424 0.191173 0.0955865 0.995421i \(-0.469527\pi\)
0.0955865 + 0.995421i \(0.469527\pi\)
\(812\) −39.1555 + 14.1642i −1.37409 + 0.497066i
\(813\) 0 0
\(814\) −15.9932 11.2220i −0.560562 0.393333i
\(815\) −6.16431 −0.215926
\(816\) 0 0
\(817\) −22.2847 −0.779643
\(818\) −34.8301 24.4394i −1.21781 0.854504i
\(819\) 0 0
\(820\) 21.1880 7.66459i 0.739916 0.267659i
\(821\) 41.7998 1.45882 0.729412 0.684075i \(-0.239794\pi\)
0.729412 + 0.684075i \(0.239794\pi\)
\(822\) 0 0
\(823\) 40.2621i 1.40345i −0.712448 0.701725i \(-0.752414\pi\)
0.712448 0.701725i \(-0.247586\pi\)
\(824\) −0.421793 0.114355i −0.0146938 0.00398374i
\(825\) 0 0
\(826\) −27.8834 19.5651i −0.970187 0.680756i
\(827\) 0.370314i 0.0128771i −0.999979 0.00643854i \(-0.997951\pi\)
0.999979 0.00643854i \(-0.00204947\pi\)
\(828\) 0 0
\(829\) 24.4071i 0.847695i 0.905733 + 0.423848i \(0.139321\pi\)
−0.905733 + 0.423848i \(0.860679\pi\)
\(830\) 16.0000 22.8025i 0.555368 0.791488i
\(831\) 0 0
\(832\) 4.04084 6.90446i 0.140091 0.239369i
\(833\) 1.11467i 0.0386211i
\(834\) 0 0
\(835\) −63.7217 −2.20518
\(836\) −5.08879 + 1.84083i −0.175999 + 0.0636665i
\(837\) 0 0
\(838\) 13.7378 19.5786i 0.474565 0.676332i
\(839\) 6.88667 0.237754 0.118877 0.992909i \(-0.462071\pi\)
0.118877 + 0.992909i \(0.462071\pi\)
\(840\) 0 0
\(841\) −5.94515 −0.205005
\(842\) −17.9291 + 25.5518i −0.617877 + 0.880574i
\(843\) 0 0
\(844\) 3.73140 + 10.3151i 0.128440 + 0.355059i
\(845\) −3.23777 −0.111383
\(846\) 0 0
\(847\) 41.5848i 1.42887i
\(848\) −32.5435 + 27.0896i −1.11755 + 0.930261i
\(849\) 0 0
\(850\) −0.420720 + 0.599593i −0.0144306 + 0.0205659i
\(851\) 89.0104i 3.05124i
\(852\) 0 0
\(853\) 1.95999i 0.0671087i −0.999437 0.0335544i \(-0.989317\pi\)
0.999437 0.0335544i \(-0.0106827\pi\)
\(854\) 44.2796 + 31.0699i 1.51522 + 1.06319i
\(855\) 0 0
\(856\) −5.86389 1.58979i −0.200423 0.0543381i
\(857\) 24.2994i 0.830050i 0.909810 + 0.415025i \(0.136227\pi\)
−0.909810 + 0.415025i \(0.863773\pi\)
\(858\) 0 0
\(859\) −14.9524 −0.510171 −0.255085 0.966919i \(-0.582104\pi\)
−0.255085 + 0.966919i \(0.582104\pi\)
\(860\) −21.5375 59.5382i −0.734423 2.03024i
\(861\) 0 0
\(862\) −14.8587 10.4260i −0.506089 0.355110i
\(863\) 12.3312 0.419760 0.209880 0.977727i \(-0.432693\pi\)
0.209880 + 0.977727i \(0.432693\pi\)
\(864\) 0 0
\(865\) 43.8810 1.49200
\(866\) −25.8691 18.1517i −0.879069 0.616821i
\(867\) 0 0
\(868\) −22.3479 61.7785i −0.758538 2.09690i
\(869\) −18.0173 −0.611196
\(870\) 0 0
\(871\) 0.890006i 0.0301567i
\(872\) 35.1428 + 9.52778i 1.19008 + 0.322651i
\(873\) 0 0
\(874\) 20.1815 + 14.1608i 0.682649 + 0.478998i
\(875\) 6.78323i 0.229315i
\(876\) 0 0
\(877\) 18.4786i 0.623980i −0.950085 0.311990i \(-0.899005\pi\)
0.950085 0.311990i \(-0.100995\pi\)
\(878\) −24.7706 + 35.3021i −0.835968 + 1.19139i
\(879\) 0 0
\(880\) −9.83633 11.8166i −0.331583 0.398339i
\(881\) 28.9527i 0.975440i −0.873000 0.487720i \(-0.837829\pi\)
0.873000 0.487720i \(-0.162171\pi\)
\(882\) 0 0
\(883\) −33.0699 −1.11289 −0.556445 0.830884i \(-0.687835\pi\)
−0.556445 + 0.830884i \(0.687835\pi\)
\(884\) −0.0642644 0.177652i −0.00216145 0.00597509i
\(885\) 0 0
\(886\) −2.16729 + 3.08874i −0.0728117 + 0.103768i
\(887\) 25.3010 0.849523 0.424762 0.905305i \(-0.360358\pi\)
0.424762 + 0.905305i \(0.360358\pi\)
\(888\) 0 0
\(889\) −35.1583 −1.17917
\(890\) −6.65056 + 9.47812i −0.222927 + 0.317707i
\(891\) 0 0
\(892\) 43.8040 15.8458i 1.46667 0.530556i
\(893\) −3.70697 −0.124049
\(894\) 0 0
\(895\) 75.0820i 2.50971i
\(896\) −44.6014 + 20.4251i −1.49003 + 0.682355i
\(897\) 0 0
\(898\) −31.5877 + 45.0176i −1.05410 + 1.50226i
\(899\) 36.3753i 1.21319i
\(900\) 0 0
\(901\) 0.999922i 0.0333122i
\(902\) 4.78191 + 3.35535i 0.159220 + 0.111721i
\(903\) 0 0
\(904\) 17.4286 + 4.72517i 0.579666 + 0.157157i
\(905\) 26.0848i 0.867088i
\(906\) 0 0
\(907\) 45.0830 1.49696 0.748478 0.663160i \(-0.230785\pi\)
0.748478 + 0.663160i \(0.230785\pi\)
\(908\) 17.3847 6.28879i 0.576931 0.208701i
\(909\) 0 0
\(910\) 16.2522 + 11.4038i 0.538755 + 0.378031i
\(911\) −18.9238 −0.626973 −0.313486 0.949593i \(-0.601497\pi\)
−0.313486 + 0.949593i \(0.601497\pi\)
\(912\) 0 0
\(913\) 7.22207 0.239016
\(914\) 36.8370 + 25.8476i 1.21846 + 0.854964i
\(915\) 0 0
\(916\) −7.73826 + 2.79926i −0.255679 + 0.0924902i
\(917\) −64.6609 −2.13529
\(918\) 0 0
\(919\) 16.4591i 0.542937i 0.962447 + 0.271468i \(0.0875092\pi\)
−0.962447 + 0.271468i \(0.912491\pi\)
\(920\) −18.3288 + 67.6051i −0.604284 + 2.22887i
\(921\) 0 0
\(922\) 30.0411 + 21.0791i 0.989349 + 0.694202i
\(923\) 5.75108i 0.189299i
\(924\) 0 0
\(925\) 63.8092i 2.09803i
\(926\) −1.65462 + 2.35810i −0.0543743 + 0.0774921i
\(927\) 0 0
\(928\) 27.0696 2.23411i 0.888604 0.0733384i
\(929\) 30.3566i 0.995966i 0.867187 + 0.497983i \(0.165926\pi\)
−0.867187 + 0.497983i \(0.834074\pi\)
\(930\) 0 0
\(931\) −26.8959 −0.881478
\(932\) −1.76513 + 0.638525i −0.0578189 + 0.0209156i
\(933\) 0 0
\(934\) −3.18417 + 4.53795i −0.104189 + 0.148486i
\(935\) −0.363075 −0.0118738
\(936\) 0 0
\(937\) −9.81295 −0.320575 −0.160288 0.987070i \(-0.551242\pi\)
−0.160288 + 0.987070i \(0.551242\pi\)
\(938\) 3.13469 4.46744i 0.102351 0.145867i
\(939\) 0 0
\(940\) −3.58268 9.90394i −0.116854 0.323031i
\(941\) 9.31708 0.303728 0.151864 0.988401i \(-0.451472\pi\)
0.151864 + 0.988401i \(0.451472\pi\)
\(942\) 0 0
\(943\) 26.6138i 0.866664i
\(944\) 14.2155 + 17.0774i 0.462675 + 0.555824i
\(945\) 0 0
\(946\) 9.42854 13.4372i 0.306548 0.436880i
\(947\) 56.9545i 1.85077i −0.379025 0.925386i \(-0.623741\pi\)
0.379025 0.925386i \(-0.376259\pi\)
\(948\) 0 0
\(949\) 13.0699i 0.424268i
\(950\) 14.4676 + 10.1515i 0.469390 + 0.329359i
\(951\) 0 0
\(952\) −0.303130 + 1.11808i −0.00982450 + 0.0362372i
\(953\) 30.0413i 0.973133i −0.873643 0.486567i \(-0.838249\pi\)
0.873643 0.486567i \(-0.161751\pi\)
\(954\) 0 0
\(955\) −35.7314 −1.15624
\(956\) 16.2312 + 44.8696i 0.524956 + 1.45119i
\(957\) 0 0
\(958\) 26.1425 + 18.3435i 0.844625 + 0.592652i
\(959\) 31.5411 1.01852
\(960\) 0 0
\(961\) −26.3921 −0.851357
\(962\) −13.4720 9.45295i −0.434354 0.304775i
\(963\) 0 0
\(964\) −4.54103 12.5532i −0.146257 0.404312i
\(965\) −24.6306 −0.792887
\(966\) 0 0
\(967\) 25.3713i 0.815885i −0.913008 0.407942i \(-0.866246\pi\)
0.913008 0.407942i \(-0.133754\pi\)
\(968\) −7.09820 + 26.1814i −0.228145 + 0.841501i
\(969\) 0 0
\(970\) −65.4907 45.9532i −2.10278 1.47547i
\(971\) 14.4712i 0.464404i 0.972668 + 0.232202i \(0.0745931\pi\)
−0.972668 + 0.232202i \(0.925407\pi\)
\(972\) 0 0
\(973\) 1.85670i 0.0595230i
\(974\) −8.91609 + 12.7069i −0.285690 + 0.407154i
\(975\) 0 0
\(976\) −22.5746 27.1195i −0.722596 0.868074i
\(977\) 16.5139i 0.528325i −0.964478 0.264163i \(-0.914904\pi\)
0.964478 0.264163i \(-0.0850955\pi\)
\(978\) 0 0
\(979\) −3.00193 −0.0959421
\(980\) −25.9941 71.8580i −0.830352 2.29542i
\(981\) 0 0
\(982\) −2.09546 + 2.98637i −0.0668688 + 0.0952988i
\(983\) 4.69363 0.149703 0.0748517 0.997195i \(-0.476152\pi\)
0.0748517 + 0.997195i \(0.476152\pi\)
\(984\) 0 0
\(985\) −11.8313 −0.376977
\(986\) 0.368419 0.525056i 0.0117329 0.0167212i
\(987\) 0 0
\(988\) −4.28657 + 1.55063i −0.136374 + 0.0493322i
\(989\) −74.7847 −2.37802
\(990\) 0 0
\(991\) 49.9083i 1.58539i −0.609618 0.792695i \(-0.708677\pi\)
0.609618 0.792695i \(-0.291323\pi\)
\(992\) 3.52493 + 42.7097i 0.111916 + 1.35604i
\(993\) 0 0
\(994\) −20.2559 + 28.8679i −0.642477 + 0.915633i
\(995\) 17.8079i 0.564548i
\(996\) 0 0
\(997\) 47.8441i 1.51524i 0.652697 + 0.757619i \(0.273637\pi\)
−0.652697 + 0.757619i \(0.726363\pi\)
\(998\) 6.04166 + 4.23928i 0.191245 + 0.134192i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.j.a.755.40 yes 48
3.2 odd 2 inner 936.2.j.a.755.9 48
4.3 odd 2 3744.2.j.a.2159.42 48
8.3 odd 2 inner 936.2.j.a.755.10 yes 48
8.5 even 2 3744.2.j.a.2159.7 48
12.11 even 2 3744.2.j.a.2159.8 48
24.5 odd 2 3744.2.j.a.2159.41 48
24.11 even 2 inner 936.2.j.a.755.39 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.j.a.755.9 48 3.2 odd 2 inner
936.2.j.a.755.10 yes 48 8.3 odd 2 inner
936.2.j.a.755.39 yes 48 24.11 even 2 inner
936.2.j.a.755.40 yes 48 1.1 even 1 trivial
3744.2.j.a.2159.7 48 8.5 even 2
3744.2.j.a.2159.8 48 12.11 even 2
3744.2.j.a.2159.41 48 24.5 odd 2
3744.2.j.a.2159.42 48 4.3 odd 2