Properties

Label 3744.2.j.a.2159.41
Level $3744$
Weight $2$
Character 3744.2159
Analytic conductor $29.896$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3744,2,Mod(2159,3744)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3744, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3744.2159"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3744 = 2^{5} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3744.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.8959905168\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2159.41
Character \(\chi\) \(=\) 3744.2159
Dual form 3744.2.j.a.2159.42

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.23777 q^{5} -4.33596i q^{7} +1.18715i q^{11} -1.00000i q^{13} -0.0944593i q^{17} -2.27921 q^{19} -7.64873 q^{23} +5.48318 q^{25} -4.80155 q^{29} -7.57575i q^{31} -14.0389i q^{35} -11.6373i q^{37} +3.47950i q^{41} +9.77740 q^{43} +1.62643 q^{47} -11.8006 q^{49} +10.5857 q^{53} +3.84372i q^{55} -5.55495i q^{59} -8.82142i q^{61} -3.23777i q^{65} -0.890006 q^{67} +5.75108 q^{71} -13.0699 q^{73} +5.14743 q^{77} +15.1770i q^{79} -6.08355i q^{83} -0.305838i q^{85} -2.52869i q^{89} -4.33596 q^{91} -7.37955 q^{95} -17.4724 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 32 q^{19} + 48 q^{25} + 32 q^{43} - 48 q^{49} - 32 q^{67} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3744\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(2017\) \(2081\) \(2341\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.23777 1.44798 0.723988 0.689812i \(-0.242307\pi\)
0.723988 + 0.689812i \(0.242307\pi\)
\(6\) 0 0
\(7\) − 4.33596i − 1.63884i −0.573194 0.819420i \(-0.694296\pi\)
0.573194 0.819420i \(-0.305704\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.18715i 0.357939i 0.983855 + 0.178969i \(0.0572763\pi\)
−0.983855 + 0.178969i \(0.942724\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 0.0944593i − 0.0229097i −0.999934 0.0114549i \(-0.996354\pi\)
0.999934 0.0114549i \(-0.00364628\pi\)
\(18\) 0 0
\(19\) −2.27921 −0.522886 −0.261443 0.965219i \(-0.584198\pi\)
−0.261443 + 0.965219i \(0.584198\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.64873 −1.59487 −0.797436 0.603404i \(-0.793811\pi\)
−0.797436 + 0.603404i \(0.793811\pi\)
\(24\) 0 0
\(25\) 5.48318 1.09664
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.80155 −0.891625 −0.445812 0.895126i \(-0.647085\pi\)
−0.445812 + 0.895126i \(0.647085\pi\)
\(30\) 0 0
\(31\) − 7.57575i − 1.36065i −0.732913 0.680323i \(-0.761840\pi\)
0.732913 0.680323i \(-0.238160\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 14.0389i − 2.37300i
\(36\) 0 0
\(37\) − 11.6373i − 1.91316i −0.291478 0.956578i \(-0.594147\pi\)
0.291478 0.956578i \(-0.405853\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.47950i 0.543407i 0.962381 + 0.271703i \(0.0875870\pi\)
−0.962381 + 0.271703i \(0.912413\pi\)
\(42\) 0 0
\(43\) 9.77740 1.49104 0.745520 0.666484i \(-0.232201\pi\)
0.745520 + 0.666484i \(0.232201\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.62643 0.237239 0.118620 0.992940i \(-0.462153\pi\)
0.118620 + 0.992940i \(0.462153\pi\)
\(48\) 0 0
\(49\) −11.8006 −1.68580
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.5857 1.45406 0.727032 0.686604i \(-0.240899\pi\)
0.727032 + 0.686604i \(0.240899\pi\)
\(54\) 0 0
\(55\) 3.84372i 0.518287i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 5.55495i − 0.723193i −0.932335 0.361596i \(-0.882232\pi\)
0.932335 0.361596i \(-0.117768\pi\)
\(60\) 0 0
\(61\) − 8.82142i − 1.12947i −0.825273 0.564734i \(-0.808979\pi\)
0.825273 0.564734i \(-0.191021\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 3.23777i − 0.401596i
\(66\) 0 0
\(67\) −0.890006 −0.108732 −0.0543658 0.998521i \(-0.517314\pi\)
−0.0543658 + 0.998521i \(0.517314\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.75108 0.682528 0.341264 0.939968i \(-0.389145\pi\)
0.341264 + 0.939968i \(0.389145\pi\)
\(72\) 0 0
\(73\) −13.0699 −1.52972 −0.764859 0.644197i \(-0.777191\pi\)
−0.764859 + 0.644197i \(0.777191\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.14743 0.586604
\(78\) 0 0
\(79\) 15.1770i 1.70754i 0.520646 + 0.853772i \(0.325691\pi\)
−0.520646 + 0.853772i \(0.674309\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 6.08355i − 0.667756i −0.942616 0.333878i \(-0.891643\pi\)
0.942616 0.333878i \(-0.108357\pi\)
\(84\) 0 0
\(85\) − 0.305838i − 0.0331728i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 2.52869i − 0.268041i −0.990979 0.134020i \(-0.957211\pi\)
0.990979 0.134020i \(-0.0427887\pi\)
\(90\) 0 0
\(91\) −4.33596 −0.454532
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.37955 −0.757126
\(96\) 0 0
\(97\) −17.4724 −1.77406 −0.887028 0.461716i \(-0.847234\pi\)
−0.887028 + 0.461716i \(0.847234\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.24871 −0.721273 −0.360637 0.932706i \(-0.617441\pi\)
−0.360637 + 0.932706i \(0.617441\pi\)
\(102\) 0 0
\(103\) 0.154510i 0.0152243i 0.999971 + 0.00761215i \(0.00242305\pi\)
−0.999971 + 0.00761215i \(0.997577\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.14804i 0.207659i 0.994595 + 0.103829i \(0.0331096\pi\)
−0.994595 + 0.103829i \(0.966890\pi\)
\(108\) 0 0
\(109\) 12.8734i 1.23305i 0.787337 + 0.616523i \(0.211459\pi\)
−0.787337 + 0.616523i \(0.788541\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.38438i 0.600592i 0.953846 + 0.300296i \(0.0970854\pi\)
−0.953846 + 0.300296i \(0.902915\pi\)
\(114\) 0 0
\(115\) −24.7649 −2.30934
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.409572 −0.0375454
\(120\) 0 0
\(121\) 9.59068 0.871880
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.56441 0.139925
\(126\) 0 0
\(127\) − 8.10854i − 0.719517i −0.933045 0.359758i \(-0.882859\pi\)
0.933045 0.359758i \(-0.117141\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 14.9127i − 1.30293i −0.758679 0.651465i \(-0.774155\pi\)
0.758679 0.651465i \(-0.225845\pi\)
\(132\) 0 0
\(133\) 9.88255i 0.856926i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 7.27430i − 0.621486i −0.950494 0.310743i \(-0.899422\pi\)
0.950494 0.310743i \(-0.100578\pi\)
\(138\) 0 0
\(139\) −0.428209 −0.0363202 −0.0181601 0.999835i \(-0.505781\pi\)
−0.0181601 + 0.999835i \(0.505781\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.18715 0.0992743
\(144\) 0 0
\(145\) −15.5463 −1.29105
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.5923 0.949682 0.474841 0.880072i \(-0.342506\pi\)
0.474841 + 0.880072i \(0.342506\pi\)
\(150\) 0 0
\(151\) − 7.87771i − 0.641079i −0.947235 0.320540i \(-0.896136\pi\)
0.947235 0.320540i \(-0.103864\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 24.5286i − 1.97018i
\(156\) 0 0
\(157\) − 3.66776i − 0.292719i −0.989231 0.146360i \(-0.953244\pi\)
0.989231 0.146360i \(-0.0467557\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 33.1646i 2.61374i
\(162\) 0 0
\(163\) 1.90387 0.149123 0.0745614 0.997216i \(-0.476244\pi\)
0.0745614 + 0.997216i \(0.476244\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 19.6807 1.52294 0.761470 0.648200i \(-0.224478\pi\)
0.761470 + 0.648200i \(0.224478\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 13.5528 1.03040 0.515202 0.857069i \(-0.327717\pi\)
0.515202 + 0.857069i \(0.327717\pi\)
\(174\) 0 0
\(175\) − 23.7748i − 1.79721i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 23.1894i 1.73326i 0.498954 + 0.866629i \(0.333718\pi\)
−0.498954 + 0.866629i \(0.666282\pi\)
\(180\) 0 0
\(181\) 8.05640i 0.598827i 0.954123 + 0.299414i \(0.0967911\pi\)
−0.954123 + 0.299414i \(0.903209\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 37.6788i − 2.77020i
\(186\) 0 0
\(187\) 0.112137 0.00820028
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.0358 0.798521 0.399261 0.916838i \(-0.369267\pi\)
0.399261 + 0.916838i \(0.369267\pi\)
\(192\) 0 0
\(193\) −7.60726 −0.547583 −0.273791 0.961789i \(-0.588278\pi\)
−0.273791 + 0.961789i \(0.588278\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.65416 −0.260348 −0.130174 0.991491i \(-0.541554\pi\)
−0.130174 + 0.991491i \(0.541554\pi\)
\(198\) 0 0
\(199\) 5.50005i 0.389888i 0.980814 + 0.194944i \(0.0624525\pi\)
−0.980814 + 0.194944i \(0.937547\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 20.8193i 1.46123i
\(204\) 0 0
\(205\) 11.2658i 0.786840i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 2.70575i − 0.187161i
\(210\) 0 0
\(211\) −5.48462 −0.377577 −0.188788 0.982018i \(-0.560456\pi\)
−0.188788 + 0.982018i \(0.560456\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 31.6570 2.15899
\(216\) 0 0
\(217\) −32.8482 −2.22988
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.0944593 −0.00635402
\(222\) 0 0
\(223\) − 23.2910i − 1.55968i −0.625979 0.779840i \(-0.715301\pi\)
0.625979 0.779840i \(-0.284699\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 9.24360i − 0.613519i −0.951787 0.306760i \(-0.900755\pi\)
0.951787 0.306760i \(-0.0992448\pi\)
\(228\) 0 0
\(229\) − 4.11450i − 0.271894i −0.990716 0.135947i \(-0.956592\pi\)
0.990716 0.135947i \(-0.0434077\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 0.938538i − 0.0614857i −0.999527 0.0307428i \(-0.990213\pi\)
0.999527 0.0307428i \(-0.00978729\pi\)
\(234\) 0 0
\(235\) 5.26601 0.343517
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −23.8576 −1.54322 −0.771609 0.636098i \(-0.780548\pi\)
−0.771609 + 0.636098i \(0.780548\pi\)
\(240\) 0 0
\(241\) −6.67466 −0.429953 −0.214976 0.976619i \(-0.568967\pi\)
−0.214976 + 0.976619i \(0.568967\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −38.2076 −2.44099
\(246\) 0 0
\(247\) 2.27921i 0.145022i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.56246i 0.414219i 0.978318 + 0.207109i \(0.0664056\pi\)
−0.978318 + 0.207109i \(0.933594\pi\)
\(252\) 0 0
\(253\) − 9.08018i − 0.570866i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 19.2751i 1.20235i 0.799117 + 0.601175i \(0.205301\pi\)
−0.799117 + 0.601175i \(0.794699\pi\)
\(258\) 0 0
\(259\) −50.4588 −3.13535
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 27.6440 1.70460 0.852302 0.523050i \(-0.175206\pi\)
0.852302 + 0.523050i \(0.175206\pi\)
\(264\) 0 0
\(265\) 34.2742 2.10545
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 24.3377 1.48390 0.741948 0.670457i \(-0.233902\pi\)
0.741948 + 0.670457i \(0.233902\pi\)
\(270\) 0 0
\(271\) 0.648615i 0.0394006i 0.999806 + 0.0197003i \(0.00627120\pi\)
−0.999806 + 0.0197003i \(0.993729\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.50934i 0.392528i
\(276\) 0 0
\(277\) 2.48540i 0.149333i 0.997209 + 0.0746665i \(0.0237892\pi\)
−0.997209 + 0.0746665i \(0.976211\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 26.7449i − 1.59547i −0.603011 0.797733i \(-0.706032\pi\)
0.603011 0.797733i \(-0.293968\pi\)
\(282\) 0 0
\(283\) 23.1975 1.37895 0.689474 0.724310i \(-0.257842\pi\)
0.689474 + 0.724310i \(0.257842\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 15.0870 0.890556
\(288\) 0 0
\(289\) 16.9911 0.999475
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 27.7476 1.62103 0.810516 0.585716i \(-0.199187\pi\)
0.810516 + 0.585716i \(0.199187\pi\)
\(294\) 0 0
\(295\) − 17.9857i − 1.04717i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 7.64873i 0.442338i
\(300\) 0 0
\(301\) − 42.3944i − 2.44357i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 28.5618i − 1.63544i
\(306\) 0 0
\(307\) 4.23451 0.241676 0.120838 0.992672i \(-0.461442\pi\)
0.120838 + 0.992672i \(0.461442\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −29.1156 −1.65099 −0.825496 0.564408i \(-0.809104\pi\)
−0.825496 + 0.564408i \(0.809104\pi\)
\(312\) 0 0
\(313\) 23.2500 1.31417 0.657083 0.753818i \(-0.271790\pi\)
0.657083 + 0.753818i \(0.271790\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.81779 −0.382925 −0.191463 0.981500i \(-0.561323\pi\)
−0.191463 + 0.981500i \(0.561323\pi\)
\(318\) 0 0
\(319\) − 5.70015i − 0.319147i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.215292i 0.0119792i
\(324\) 0 0
\(325\) − 5.48318i − 0.304152i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 7.05214i − 0.388797i
\(330\) 0 0
\(331\) 9.11133 0.500804 0.250402 0.968142i \(-0.419437\pi\)
0.250402 + 0.968142i \(0.419437\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.88164 −0.157441
\(336\) 0 0
\(337\) 22.2228 1.21055 0.605276 0.796016i \(-0.293063\pi\)
0.605276 + 0.796016i \(0.293063\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.99354 0.487028
\(342\) 0 0
\(343\) 20.8151i 1.12391i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.21378i 0.0651593i 0.999469 + 0.0325796i \(0.0103723\pi\)
−0.999469 + 0.0325796i \(0.989628\pi\)
\(348\) 0 0
\(349\) 3.97729i 0.212899i 0.994318 + 0.106450i \(0.0339483\pi\)
−0.994318 + 0.106450i \(0.966052\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 7.75251i − 0.412625i −0.978486 0.206312i \(-0.933854\pi\)
0.978486 0.206312i \(-0.0661463\pi\)
\(354\) 0 0
\(355\) 18.6207 0.988284
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −22.3649 −1.18037 −0.590187 0.807267i \(-0.700946\pi\)
−0.590187 + 0.807267i \(0.700946\pi\)
\(360\) 0 0
\(361\) −13.8052 −0.726591
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −42.3174 −2.21500
\(366\) 0 0
\(367\) 14.6130i 0.762793i 0.924411 + 0.381397i \(0.124557\pi\)
−0.924411 + 0.381397i \(0.875443\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 45.8994i − 2.38298i
\(372\) 0 0
\(373\) − 35.5065i − 1.83846i −0.393722 0.919229i \(-0.628813\pi\)
0.393722 0.919229i \(-0.371187\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.80155i 0.247292i
\(378\) 0 0
\(379\) 2.22424 0.114251 0.0571257 0.998367i \(-0.481806\pi\)
0.0571257 + 0.998367i \(0.481806\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −37.1436 −1.89795 −0.948976 0.315349i \(-0.897879\pi\)
−0.948976 + 0.315349i \(0.897879\pi\)
\(384\) 0 0
\(385\) 16.6662 0.849389
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 12.1794 0.617519 0.308760 0.951140i \(-0.400086\pi\)
0.308760 + 0.951140i \(0.400086\pi\)
\(390\) 0 0
\(391\) 0.722494i 0.0365381i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 49.1397i 2.47248i
\(396\) 0 0
\(397\) 20.5977i 1.03377i 0.856054 + 0.516886i \(0.172909\pi\)
−0.856054 + 0.516886i \(0.827091\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 11.1123i 0.554923i 0.960737 + 0.277462i \(0.0894931\pi\)
−0.960737 + 0.277462i \(0.910507\pi\)
\(402\) 0 0
\(403\) −7.57575 −0.377375
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 13.8152 0.684792
\(408\) 0 0
\(409\) −30.0867 −1.48769 −0.743846 0.668351i \(-0.767000\pi\)
−0.743846 + 0.668351i \(0.767000\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −24.0861 −1.18520
\(414\) 0 0
\(415\) − 19.6972i − 0.966895i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 16.9123i − 0.826219i −0.910681 0.413109i \(-0.864443\pi\)
0.910681 0.413109i \(-0.135557\pi\)
\(420\) 0 0
\(421\) − 22.0720i − 1.07572i −0.843033 0.537862i \(-0.819232\pi\)
0.843033 0.537862i \(-0.180768\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 0.517937i − 0.0251236i
\(426\) 0 0
\(427\) −38.2494 −1.85102
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.8351 0.618247 0.309123 0.951022i \(-0.399964\pi\)
0.309123 + 0.951022i \(0.399964\pi\)
\(432\) 0 0
\(433\) −22.3461 −1.07389 −0.536943 0.843618i \(-0.680421\pi\)
−0.536943 + 0.843618i \(0.680421\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 17.4330 0.833935
\(438\) 0 0
\(439\) 30.4945i 1.45542i 0.685884 + 0.727711i \(0.259416\pi\)
−0.685884 + 0.727711i \(0.740584\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.66810i 0.126765i 0.997989 + 0.0633826i \(0.0201888\pi\)
−0.997989 + 0.0633826i \(0.979811\pi\)
\(444\) 0 0
\(445\) − 8.18733i − 0.388116i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 38.8868i − 1.83518i −0.397526 0.917591i \(-0.630131\pi\)
0.397526 0.917591i \(-0.369869\pi\)
\(450\) 0 0
\(451\) −4.13068 −0.194506
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −14.0389 −0.658152
\(456\) 0 0
\(457\) 31.8203 1.48849 0.744246 0.667905i \(-0.232809\pi\)
0.744246 + 0.667905i \(0.232809\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 25.9499 1.20861 0.604303 0.796755i \(-0.293452\pi\)
0.604303 + 0.796755i \(0.293452\pi\)
\(462\) 0 0
\(463\) 2.03696i 0.0946657i 0.998879 + 0.0473329i \(0.0150721\pi\)
−0.998879 + 0.0473329i \(0.984928\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.91994i 0.181393i 0.995879 + 0.0906967i \(0.0289094\pi\)
−0.995879 + 0.0906967i \(0.971091\pi\)
\(468\) 0 0
\(469\) 3.85903i 0.178194i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11.6072i 0.533700i
\(474\) 0 0
\(475\) −12.4973 −0.573415
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −22.5822 −1.03181 −0.515904 0.856646i \(-0.672544\pi\)
−0.515904 + 0.856646i \(0.672544\pi\)
\(480\) 0 0
\(481\) −11.6373 −0.530614
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −56.5717 −2.56879
\(486\) 0 0
\(487\) 10.9764i 0.497386i 0.968582 + 0.248693i \(0.0800011\pi\)
−0.968582 + 0.248693i \(0.919999\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.57966i 0.116419i 0.998304 + 0.0582093i \(0.0185391\pi\)
−0.998304 + 0.0582093i \(0.981461\pi\)
\(492\) 0 0
\(493\) 0.453551i 0.0204269i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 24.9365i − 1.11855i
\(498\) 0 0
\(499\) −5.21886 −0.233628 −0.116814 0.993154i \(-0.537268\pi\)
−0.116814 + 0.993154i \(0.537268\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 28.0588 1.25108 0.625539 0.780193i \(-0.284879\pi\)
0.625539 + 0.780193i \(0.284879\pi\)
\(504\) 0 0
\(505\) −23.4697 −1.04439
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −9.51782 −0.421870 −0.210935 0.977500i \(-0.567651\pi\)
−0.210935 + 0.977500i \(0.567651\pi\)
\(510\) 0 0
\(511\) 56.6707i 2.50696i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.500268i 0.0220444i
\(516\) 0 0
\(517\) 1.93081i 0.0849171i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.21823i 0.140993i 0.997512 + 0.0704966i \(0.0224584\pi\)
−0.997512 + 0.0704966i \(0.977542\pi\)
\(522\) 0 0
\(523\) 23.4163 1.02392 0.511962 0.859008i \(-0.328919\pi\)
0.511962 + 0.859008i \(0.328919\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.715600 −0.0311720
\(528\) 0 0
\(529\) 35.5031 1.54362
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.47950 0.150714
\(534\) 0 0
\(535\) 6.95487i 0.300685i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 14.0090i − 0.603411i
\(540\) 0 0
\(541\) 31.3574i 1.34816i 0.738659 + 0.674079i \(0.235459\pi\)
−0.738659 + 0.674079i \(0.764541\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 41.6811i 1.78542i
\(546\) 0 0
\(547\) 20.2955 0.867774 0.433887 0.900967i \(-0.357142\pi\)
0.433887 + 0.900967i \(0.357142\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 10.9437 0.466218
\(552\) 0 0
\(553\) 65.8069 2.79839
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −28.5330 −1.20898 −0.604492 0.796611i \(-0.706624\pi\)
−0.604492 + 0.796611i \(0.706624\pi\)
\(558\) 0 0
\(559\) − 9.77740i − 0.413540i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 22.5762i 0.951474i 0.879588 + 0.475737i \(0.157819\pi\)
−0.879588 + 0.475737i \(0.842181\pi\)
\(564\) 0 0
\(565\) 20.6712i 0.869643i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 2.31847i − 0.0971951i −0.998818 0.0485976i \(-0.984525\pi\)
0.998818 0.0485976i \(-0.0154752\pi\)
\(570\) 0 0
\(571\) 8.29865 0.347288 0.173644 0.984809i \(-0.444446\pi\)
0.173644 + 0.984809i \(0.444446\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −41.9394 −1.74899
\(576\) 0 0
\(577\) 24.1082 1.00364 0.501818 0.864973i \(-0.332665\pi\)
0.501818 + 0.864973i \(0.332665\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −26.3780 −1.09435
\(582\) 0 0
\(583\) 12.5668i 0.520465i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 40.7910i 1.68362i 0.539771 + 0.841812i \(0.318511\pi\)
−0.539771 + 0.841812i \(0.681489\pi\)
\(588\) 0 0
\(589\) 17.2667i 0.711462i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.44136i 0.387710i 0.981030 + 0.193855i \(0.0620992\pi\)
−0.981030 + 0.193855i \(0.937901\pi\)
\(594\) 0 0
\(595\) −1.32610 −0.0543648
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 41.8793 1.71114 0.855572 0.517684i \(-0.173206\pi\)
0.855572 + 0.517684i \(0.173206\pi\)
\(600\) 0 0
\(601\) −39.8407 −1.62514 −0.812568 0.582866i \(-0.801931\pi\)
−0.812568 + 0.582866i \(0.801931\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 31.0524 1.26246
\(606\) 0 0
\(607\) − 19.3389i − 0.784944i −0.919764 0.392472i \(-0.871620\pi\)
0.919764 0.392472i \(-0.128380\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 1.62643i − 0.0657983i
\(612\) 0 0
\(613\) 42.2369i 1.70593i 0.521967 + 0.852966i \(0.325199\pi\)
−0.521967 + 0.852966i \(0.674801\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17.7584i 0.714927i 0.933927 + 0.357464i \(0.116358\pi\)
−0.933927 + 0.357464i \(0.883642\pi\)
\(618\) 0 0
\(619\) −24.6547 −0.990956 −0.495478 0.868620i \(-0.665007\pi\)
−0.495478 + 0.868620i \(0.665007\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −10.9643 −0.439276
\(624\) 0 0
\(625\) −22.3507 −0.894027
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.09925 −0.0438299
\(630\) 0 0
\(631\) 7.10652i 0.282906i 0.989945 + 0.141453i \(0.0451774\pi\)
−0.989945 + 0.141453i \(0.954823\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 26.2536i − 1.04184i
\(636\) 0 0
\(637\) 11.8006i 0.467555i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 26.3422i − 1.04046i −0.854028 0.520228i \(-0.825847\pi\)
0.854028 0.520228i \(-0.174153\pi\)
\(642\) 0 0
\(643\) −15.8987 −0.626983 −0.313491 0.949591i \(-0.601499\pi\)
−0.313491 + 0.949591i \(0.601499\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.85006 −0.387246 −0.193623 0.981076i \(-0.562024\pi\)
−0.193623 + 0.981076i \(0.562024\pi\)
\(648\) 0 0
\(649\) 6.59455 0.258859
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14.8492 0.581094 0.290547 0.956861i \(-0.406163\pi\)
0.290547 + 0.956861i \(0.406163\pi\)
\(654\) 0 0
\(655\) − 48.2840i − 1.88661i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 42.2506i 1.64585i 0.568149 + 0.822925i \(0.307660\pi\)
−0.568149 + 0.822925i \(0.692340\pi\)
\(660\) 0 0
\(661\) − 20.8921i − 0.812608i −0.913738 0.406304i \(-0.866817\pi\)
0.913738 0.406304i \(-0.133183\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 31.9974i 1.24081i
\(666\) 0 0
\(667\) 36.7258 1.42203
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 10.4723 0.404280
\(672\) 0 0
\(673\) 4.04031 0.155742 0.0778712 0.996963i \(-0.475188\pi\)
0.0778712 + 0.996963i \(0.475188\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 25.6247 0.984836 0.492418 0.870359i \(-0.336113\pi\)
0.492418 + 0.870359i \(0.336113\pi\)
\(678\) 0 0
\(679\) 75.7597i 2.90739i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 3.10338i − 0.118747i −0.998236 0.0593737i \(-0.981090\pi\)
0.998236 0.0593737i \(-0.0189104\pi\)
\(684\) 0 0
\(685\) − 23.5525i − 0.899896i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 10.5857i − 0.403285i
\(690\) 0 0
\(691\) −15.5146 −0.590202 −0.295101 0.955466i \(-0.595353\pi\)
−0.295101 + 0.955466i \(0.595353\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.38644 −0.0525908
\(696\) 0 0
\(697\) 0.328671 0.0124493
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 9.73072 0.367524 0.183762 0.982971i \(-0.441172\pi\)
0.183762 + 0.982971i \(0.441172\pi\)
\(702\) 0 0
\(703\) 26.5237i 1.00036i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 31.4301i 1.18205i
\(708\) 0 0
\(709\) − 24.9061i − 0.935367i −0.883896 0.467684i \(-0.845089\pi\)
0.883896 0.467684i \(-0.154911\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 57.9449i 2.17006i
\(714\) 0 0
\(715\) 3.84372 0.143747
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −19.8333 −0.739658 −0.369829 0.929100i \(-0.620584\pi\)
−0.369829 + 0.929100i \(0.620584\pi\)
\(720\) 0 0
\(721\) 0.669949 0.0249502
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −26.3277 −0.977787
\(726\) 0 0
\(727\) 0.331359i 0.0122894i 0.999981 + 0.00614472i \(0.00195594\pi\)
−0.999981 + 0.00614472i \(0.998044\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 0.923566i − 0.0341593i
\(732\) 0 0
\(733\) − 9.92295i − 0.366512i −0.983065 0.183256i \(-0.941336\pi\)
0.983065 0.183256i \(-0.0586638\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 1.05657i − 0.0389192i
\(738\) 0 0
\(739\) 11.4372 0.420724 0.210362 0.977624i \(-0.432536\pi\)
0.210362 + 0.977624i \(0.432536\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.1594 0.666204 0.333102 0.942891i \(-0.391905\pi\)
0.333102 + 0.942891i \(0.391905\pi\)
\(744\) 0 0
\(745\) 37.5334 1.37512
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9.31382 0.340320
\(750\) 0 0
\(751\) − 5.84293i − 0.213211i −0.994301 0.106606i \(-0.966002\pi\)
0.994301 0.106606i \(-0.0339983\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 25.5063i − 0.928268i
\(756\) 0 0
\(757\) 41.0906i 1.49346i 0.665126 + 0.746731i \(0.268378\pi\)
−0.665126 + 0.746731i \(0.731622\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 30.0805i 1.09042i 0.838301 + 0.545208i \(0.183549\pi\)
−0.838301 + 0.545208i \(0.816451\pi\)
\(762\) 0 0
\(763\) 55.8185 2.02077
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −5.55495 −0.200578
\(768\) 0 0
\(769\) 27.7812 1.00182 0.500908 0.865501i \(-0.333000\pi\)
0.500908 + 0.865501i \(0.333000\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 50.7995 1.82713 0.913566 0.406691i \(-0.133317\pi\)
0.913566 + 0.406691i \(0.133317\pi\)
\(774\) 0 0
\(775\) − 41.5392i − 1.49213i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 7.93050i − 0.284140i
\(780\) 0 0
\(781\) 6.82738i 0.244303i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 11.8754i − 0.423850i
\(786\) 0 0
\(787\) 13.8683 0.494352 0.247176 0.968971i \(-0.420497\pi\)
0.247176 + 0.968971i \(0.420497\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 27.6824 0.984274
\(792\) 0 0
\(793\) −8.82142 −0.313258
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 44.5890 1.57942 0.789712 0.613478i \(-0.210230\pi\)
0.789712 + 0.613478i \(0.210230\pi\)
\(798\) 0 0
\(799\) − 0.153631i − 0.00543509i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 15.5159i − 0.547545i
\(804\) 0 0
\(805\) 107.380i 3.78463i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 36.1233i 1.27003i 0.772501 + 0.635014i \(0.219006\pi\)
−0.772501 + 0.635014i \(0.780994\pi\)
\(810\) 0 0
\(811\) −5.44424 −0.191173 −0.0955865 0.995421i \(-0.530473\pi\)
−0.0955865 + 0.995421i \(0.530473\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.16431 0.215926
\(816\) 0 0
\(817\) −22.2847 −0.779643
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 41.7998 1.45882 0.729412 0.684075i \(-0.239794\pi\)
0.729412 + 0.684075i \(0.239794\pi\)
\(822\) 0 0
\(823\) − 40.2621i − 1.40345i −0.712448 0.701725i \(-0.752414\pi\)
0.712448 0.701725i \(-0.247586\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 0.370314i − 0.0128771i −0.999979 0.00643854i \(-0.997951\pi\)
0.999979 0.00643854i \(-0.00204947\pi\)
\(828\) 0 0
\(829\) − 24.4071i − 0.847695i −0.905733 0.423848i \(-0.860679\pi\)
0.905733 0.423848i \(-0.139321\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.11467i 0.0386211i
\(834\) 0 0
\(835\) 63.7217 2.20518
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −6.88667 −0.237754 −0.118877 0.992909i \(-0.537929\pi\)
−0.118877 + 0.992909i \(0.537929\pi\)
\(840\) 0 0
\(841\) −5.94515 −0.205005
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3.23777 −0.111383
\(846\) 0 0
\(847\) − 41.5848i − 1.42887i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 89.0104i 3.05124i
\(852\) 0 0
\(853\) 1.95999i 0.0671087i 0.999437 + 0.0335544i \(0.0106827\pi\)
−0.999437 + 0.0335544i \(0.989317\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 24.2994i − 0.830050i −0.909810 0.415025i \(-0.863773\pi\)
0.909810 0.415025i \(-0.136227\pi\)
\(858\) 0 0
\(859\) 14.9524 0.510171 0.255085 0.966919i \(-0.417896\pi\)
0.255085 + 0.966919i \(0.417896\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −12.3312 −0.419760 −0.209880 0.977727i \(-0.567307\pi\)
−0.209880 + 0.977727i \(0.567307\pi\)
\(864\) 0 0
\(865\) 43.8810 1.49200
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −18.0173 −0.611196
\(870\) 0 0
\(871\) 0.890006i 0.0301567i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 6.78323i − 0.229315i
\(876\) 0 0
\(877\) 18.4786i 0.623980i 0.950085 + 0.311990i \(0.100995\pi\)
−0.950085 + 0.311990i \(0.899005\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 28.9527i 0.975440i 0.873000 + 0.487720i \(0.162171\pi\)
−0.873000 + 0.487720i \(0.837829\pi\)
\(882\) 0 0
\(883\) 33.0699 1.11289 0.556445 0.830884i \(-0.312165\pi\)
0.556445 + 0.830884i \(0.312165\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −25.3010 −0.849523 −0.424762 0.905305i \(-0.639642\pi\)
−0.424762 + 0.905305i \(0.639642\pi\)
\(888\) 0 0
\(889\) −35.1583 −1.17917
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −3.70697 −0.124049
\(894\) 0 0
\(895\) 75.0820i 2.50971i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 36.3753i 1.21319i
\(900\) 0 0
\(901\) − 0.999922i − 0.0333122i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 26.0848i 0.867088i
\(906\) 0 0
\(907\) −45.0830 −1.49696 −0.748478 0.663160i \(-0.769215\pi\)
−0.748478 + 0.663160i \(0.769215\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 18.9238 0.626973 0.313486 0.949593i \(-0.398503\pi\)
0.313486 + 0.949593i \(0.398503\pi\)
\(912\) 0 0
\(913\) 7.22207 0.239016
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −64.6609 −2.13529
\(918\) 0 0
\(919\) 16.4591i 0.542937i 0.962447 + 0.271468i \(0.0875092\pi\)
−0.962447 + 0.271468i \(0.912491\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 5.75108i − 0.189299i
\(924\) 0 0
\(925\) − 63.8092i − 2.09803i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 30.3566i − 0.995966i −0.867187 0.497983i \(-0.834074\pi\)
0.867187 0.497983i \(-0.165926\pi\)
\(930\) 0 0
\(931\) 26.8959 0.881478
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.363075 0.0118738
\(936\) 0 0
\(937\) −9.81295 −0.320575 −0.160288 0.987070i \(-0.551242\pi\)
−0.160288 + 0.987070i \(0.551242\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 9.31708 0.303728 0.151864 0.988401i \(-0.451472\pi\)
0.151864 + 0.988401i \(0.451472\pi\)
\(942\) 0 0
\(943\) − 26.6138i − 0.866664i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 56.9545i − 1.85077i −0.379025 0.925386i \(-0.623741\pi\)
0.379025 0.925386i \(-0.376259\pi\)
\(948\) 0 0
\(949\) 13.0699i 0.424268i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 30.0413i 0.973133i 0.873643 + 0.486567i \(0.161751\pi\)
−0.873643 + 0.486567i \(0.838249\pi\)
\(954\) 0 0
\(955\) 35.7314 1.15624
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −31.5411 −1.01852
\(960\) 0 0
\(961\) −26.3921 −0.851357
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −24.6306 −0.792887
\(966\) 0 0
\(967\) − 25.3713i − 0.815885i −0.913008 0.407942i \(-0.866246\pi\)
0.913008 0.407942i \(-0.133754\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 14.4712i 0.464404i 0.972668 + 0.232202i \(0.0745931\pi\)
−0.972668 + 0.232202i \(0.925407\pi\)
\(972\) 0 0
\(973\) 1.85670i 0.0595230i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 16.5139i 0.528325i 0.964478 + 0.264163i \(0.0850955\pi\)
−0.964478 + 0.264163i \(0.914904\pi\)
\(978\) 0 0
\(979\) 3.00193 0.0959421
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −4.69363 −0.149703 −0.0748517 0.997195i \(-0.523848\pi\)
−0.0748517 + 0.997195i \(0.523848\pi\)
\(984\) 0 0
\(985\) −11.8313 −0.376977
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −74.7847 −2.37802
\(990\) 0 0
\(991\) − 49.9083i − 1.58539i −0.609618 0.792695i \(-0.708677\pi\)
0.609618 0.792695i \(-0.291323\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 17.8079i 0.564548i
\(996\) 0 0
\(997\) − 47.8441i − 1.51524i −0.652697 0.757619i \(-0.726363\pi\)
0.652697 0.757619i \(-0.273637\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3744.2.j.a.2159.41 48
3.2 odd 2 inner 3744.2.j.a.2159.7 48
4.3 odd 2 936.2.j.a.755.39 yes 48
8.3 odd 2 inner 3744.2.j.a.2159.8 48
8.5 even 2 936.2.j.a.755.9 48
12.11 even 2 936.2.j.a.755.10 yes 48
24.5 odd 2 936.2.j.a.755.40 yes 48
24.11 even 2 inner 3744.2.j.a.2159.42 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.j.a.755.9 48 8.5 even 2
936.2.j.a.755.10 yes 48 12.11 even 2
936.2.j.a.755.39 yes 48 4.3 odd 2
936.2.j.a.755.40 yes 48 24.5 odd 2
3744.2.j.a.2159.7 48 3.2 odd 2 inner
3744.2.j.a.2159.8 48 8.3 odd 2 inner
3744.2.j.a.2159.41 48 1.1 even 1 trivial
3744.2.j.a.2159.42 48 24.11 even 2 inner