L(s) = 1 | + (1.15 + 0.812i)2-s + (0.680 + 1.88i)4-s + 3.23·5-s − 4.33i·7-s + (−0.740 + 2.72i)8-s + (3.74 + 2.63i)10-s + 1.18i·11-s + i·13-s + (3.52 − 5.01i)14-s + (−3.07 + 2.55i)16-s + 0.0944i·17-s + 2.27·19-s + (2.20 + 6.08i)20-s + (−0.964 + 1.37i)22-s + 7.64·23-s + ⋯ |
L(s) = 1 | + (0.818 + 0.574i)2-s + (0.340 + 0.940i)4-s + 1.44·5-s − 1.63i·7-s + (−0.261 + 0.965i)8-s + (1.18 + 0.831i)10-s + 0.357i·11-s + 0.277i·13-s + (0.941 − 1.34i)14-s + (−0.768 + 0.639i)16-s + 0.0229i·17-s + 0.522·19-s + (0.492 + 1.36i)20-s + (−0.205 + 0.293i)22-s + 1.59·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.770 - 0.636i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.770 - 0.636i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.02313 + 1.08739i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.02313 + 1.08739i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.15 - 0.812i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 - iT \) |
good | 5 | \( 1 - 3.23T + 5T^{2} \) |
| 7 | \( 1 + 4.33iT - 7T^{2} \) |
| 11 | \( 1 - 1.18iT - 11T^{2} \) |
| 17 | \( 1 - 0.0944iT - 17T^{2} \) |
| 19 | \( 1 - 2.27T + 19T^{2} \) |
| 23 | \( 1 - 7.64T + 23T^{2} \) |
| 29 | \( 1 + 4.80T + 29T^{2} \) |
| 31 | \( 1 + 7.57iT - 31T^{2} \) |
| 37 | \( 1 - 11.6iT - 37T^{2} \) |
| 41 | \( 1 + 3.47iT - 41T^{2} \) |
| 43 | \( 1 + 9.77T + 43T^{2} \) |
| 47 | \( 1 + 1.62T + 47T^{2} \) |
| 53 | \( 1 - 10.5T + 53T^{2} \) |
| 59 | \( 1 + 5.55iT - 59T^{2} \) |
| 61 | \( 1 - 8.82iT - 61T^{2} \) |
| 67 | \( 1 - 0.890T + 67T^{2} \) |
| 71 | \( 1 + 5.75T + 71T^{2} \) |
| 73 | \( 1 + 13.0T + 73T^{2} \) |
| 79 | \( 1 - 15.1iT - 79T^{2} \) |
| 83 | \( 1 + 6.08iT - 83T^{2} \) |
| 89 | \( 1 - 2.52iT - 89T^{2} \) |
| 97 | \( 1 + 17.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09493482604654319256974134503, −9.445619634313664306576142609073, −8.306655493337440271907124250743, −7.15723377599716207280188192754, −6.85493134157527746026566215605, −5.78312452603069307344386642405, −4.95235372823759069643410294517, −4.04846925805491635378313566992, −2.90241228809172212133042890780, −1.52605856208847477862760747193,
1.54804298045178591064348966127, 2.50605146911857183269759466728, 3.27662512702410584493897774934, 5.02839473476696773854926206458, 5.49660701205750622842535713408, 6.09728116151117573255515981516, 7.08489801063922487601677496416, 8.780053584663579824855770121368, 9.201875795024369539423040243672, 10.01581126534278122684653350080