Properties

Label 936.2.ed.e.739.5
Level $936$
Weight $2$
Character 936.739
Analytic conductor $7.474$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(19,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.ed (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 739.5
Character \(\chi\) \(=\) 936.739
Dual form 936.2.ed.e.19.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.764112 - 1.19001i) q^{2} +(-0.832266 + 1.81861i) q^{4} +(0.513065 - 0.513065i) q^{5} +(-1.43100 + 0.383434i) q^{7} +(2.80011 - 0.399211i) q^{8} +(-1.00259 - 0.218515i) q^{10} +(-1.43129 - 0.383513i) q^{11} +(-0.967164 + 3.47341i) q^{13} +(1.54973 + 1.40992i) q^{14} +(-2.61467 - 3.02713i) q^{16} +(-1.08804 - 0.628178i) q^{17} +(6.19113 - 1.65891i) q^{19} +(0.506057 + 1.36007i) q^{20} +(0.637280 + 1.99630i) q^{22} +(1.68941 + 2.92615i) q^{23} +4.47353i q^{25} +(4.87243 - 1.50314i) q^{26} +(0.493654 - 2.92154i) q^{28} +(-5.98829 + 3.45734i) q^{29} +(1.65000 - 1.65000i) q^{31} +(-1.60443 + 5.42455i) q^{32} +(0.0838407 + 1.77478i) q^{34} +(-0.537467 + 0.930920i) q^{35} +(-0.944898 + 3.52641i) q^{37} +(-6.70484 - 6.09994i) q^{38} +(1.23182 - 1.64146i) q^{40} +(-0.503062 + 1.87745i) q^{41} +(7.93214 + 4.57963i) q^{43} +(1.88867 - 2.28377i) q^{44} +(2.19126 - 4.24633i) q^{46} +(2.96711 + 2.96711i) q^{47} +(-4.16145 + 2.40261i) q^{49} +(5.32356 - 3.41828i) q^{50} +(-5.51184 - 4.64970i) q^{52} -0.513310i q^{53} +(-0.931112 + 0.537578i) q^{55} +(-3.85388 + 1.64493i) q^{56} +(8.69000 + 4.48435i) q^{58} +(3.60773 + 13.4642i) q^{59} +(12.2267 + 7.05906i) q^{61} +(-3.22431 - 0.702740i) q^{62} +(7.68126 - 2.23567i) q^{64} +(1.28587 + 2.27830i) q^{65} +(1.88176 - 7.02284i) q^{67} +(2.04795 - 1.45590i) q^{68} +(1.51849 - 0.0717338i) q^{70} +(-0.979852 - 3.65686i) q^{71} +(-4.42114 + 4.42114i) q^{73} +(4.91848 - 1.57013i) q^{74} +(-2.13577 + 12.6399i) q^{76} +2.19522 q^{77} -3.24902i q^{79} +(-2.89461 - 0.211622i) q^{80} +(2.61859 - 0.835933i) q^{82} +(2.89926 + 2.89926i) q^{83} +(-0.880529 + 0.235937i) q^{85} +(-0.611226 - 12.9387i) q^{86} +(-4.16088 - 0.502494i) q^{88} +(2.05252 + 0.549972i) q^{89} +(0.0521823 - 5.34128i) q^{91} +(-6.72756 + 0.637043i) q^{92} +(1.26370 - 5.79811i) q^{94} +(2.32532 - 4.02758i) q^{95} +(1.09430 - 0.293217i) q^{97} +(6.03896 + 3.11632i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 12 q^{8} + 28 q^{14} + 12 q^{16} - 8 q^{19} + 4 q^{20} + 10 q^{22} - 34 q^{26} - 14 q^{28} + 30 q^{32} + 56 q^{34} - 28 q^{40} - 40 q^{41} + 44 q^{44} - 18 q^{46} + 24 q^{49} + 72 q^{50} + 32 q^{52}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.764112 1.19001i −0.540309 0.841467i
\(3\) 0 0
\(4\) −0.832266 + 1.81861i −0.416133 + 0.909304i
\(5\) 0.513065 0.513065i 0.229449 0.229449i −0.583013 0.812463i \(-0.698126\pi\)
0.812463 + 0.583013i \(0.198126\pi\)
\(6\) 0 0
\(7\) −1.43100 + 0.383434i −0.540866 + 0.144925i −0.518901 0.854834i \(-0.673659\pi\)
−0.0219645 + 0.999759i \(0.506992\pi\)
\(8\) 2.80011 0.399211i 0.989989 0.141142i
\(9\) 0 0
\(10\) −1.00259 0.218515i −0.317048 0.0691006i
\(11\) −1.43129 0.383513i −0.431550 0.115634i 0.0365035 0.999334i \(-0.488378\pi\)
−0.468054 + 0.883700i \(0.655045\pi\)
\(12\) 0 0
\(13\) −0.967164 + 3.47341i −0.268243 + 0.963351i
\(14\) 1.54973 + 1.40992i 0.414184 + 0.376817i
\(15\) 0 0
\(16\) −2.61467 3.02713i −0.653666 0.756783i
\(17\) −1.08804 0.628178i −0.263888 0.152356i 0.362219 0.932093i \(-0.382019\pi\)
−0.626107 + 0.779737i \(0.715353\pi\)
\(18\) 0 0
\(19\) 6.19113 1.65891i 1.42034 0.380580i 0.534737 0.845018i \(-0.320411\pi\)
0.885605 + 0.464439i \(0.153744\pi\)
\(20\) 0.506057 + 1.36007i 0.113158 + 0.304121i
\(21\) 0 0
\(22\) 0.637280 + 1.99630i 0.135869 + 0.425613i
\(23\) 1.68941 + 2.92615i 0.352267 + 0.610144i 0.986646 0.162878i \(-0.0520776\pi\)
−0.634379 + 0.773022i \(0.718744\pi\)
\(24\) 0 0
\(25\) 4.47353i 0.894706i
\(26\) 4.87243 1.50314i 0.955562 0.294789i
\(27\) 0 0
\(28\) 0.493654 2.92154i 0.0932918 0.552119i
\(29\) −5.98829 + 3.45734i −1.11200 + 0.642012i −0.939346 0.342971i \(-0.888567\pi\)
−0.172651 + 0.984983i \(0.555233\pi\)
\(30\) 0 0
\(31\) 1.65000 1.65000i 0.296349 0.296349i −0.543233 0.839582i \(-0.682800\pi\)
0.839582 + 0.543233i \(0.182800\pi\)
\(32\) −1.60443 + 5.42455i −0.283626 + 0.958935i
\(33\) 0 0
\(34\) 0.0838407 + 1.77478i 0.0143786 + 0.304372i
\(35\) −0.537467 + 0.930920i −0.0908485 + 0.157354i
\(36\) 0 0
\(37\) −0.944898 + 3.52641i −0.155340 + 0.579738i 0.843736 + 0.536759i \(0.180351\pi\)
−0.999076 + 0.0429788i \(0.986315\pi\)
\(38\) −6.70484 6.09994i −1.08767 0.989541i
\(39\) 0 0
\(40\) 1.23182 1.64146i 0.194768 0.259538i
\(41\) −0.503062 + 1.87745i −0.0785651 + 0.293209i −0.994018 0.109216i \(-0.965166\pi\)
0.915453 + 0.402425i \(0.131833\pi\)
\(42\) 0 0
\(43\) 7.93214 + 4.57963i 1.20964 + 0.698386i 0.962681 0.270639i \(-0.0872351\pi\)
0.246960 + 0.969026i \(0.420568\pi\)
\(44\) 1.88867 2.28377i 0.284728 0.344291i
\(45\) 0 0
\(46\) 2.19126 4.24633i 0.323083 0.626087i
\(47\) 2.96711 + 2.96711i 0.432797 + 0.432797i 0.889579 0.456781i \(-0.150998\pi\)
−0.456781 + 0.889579i \(0.650998\pi\)
\(48\) 0 0
\(49\) −4.16145 + 2.40261i −0.594493 + 0.343231i
\(50\) 5.32356 3.41828i 0.752865 0.483417i
\(51\) 0 0
\(52\) −5.51184 4.64970i −0.764354 0.644797i
\(53\) 0.513310i 0.0705086i −0.999378 0.0352543i \(-0.988776\pi\)
0.999378 0.0352543i \(-0.0112241\pi\)
\(54\) 0 0
\(55\) −0.931112 + 0.537578i −0.125551 + 0.0724869i
\(56\) −3.85388 + 1.64493i −0.514996 + 0.219813i
\(57\) 0 0
\(58\) 8.69000 + 4.48435i 1.14105 + 0.588824i
\(59\) 3.60773 + 13.4642i 0.469687 + 1.75290i 0.640863 + 0.767655i \(0.278577\pi\)
−0.171176 + 0.985241i \(0.554757\pi\)
\(60\) 0 0
\(61\) 12.2267 + 7.05906i 1.56546 + 0.903820i 0.996687 + 0.0813276i \(0.0259160\pi\)
0.568775 + 0.822493i \(0.307417\pi\)
\(62\) −3.22431 0.702740i −0.409488 0.0892481i
\(63\) 0 0
\(64\) 7.68126 2.23567i 0.960158 0.279459i
\(65\) 1.28587 + 2.27830i 0.159492 + 0.282589i
\(66\) 0 0
\(67\) 1.88176 7.02284i 0.229894 0.857977i −0.750490 0.660881i \(-0.770183\pi\)
0.980384 0.197095i \(-0.0631507\pi\)
\(68\) 2.04795 1.45590i 0.248350 0.176554i
\(69\) 0 0
\(70\) 1.51849 0.0717338i 0.181495 0.00857383i
\(71\) −0.979852 3.65686i −0.116287 0.433989i 0.883093 0.469198i \(-0.155457\pi\)
−0.999380 + 0.0352090i \(0.988790\pi\)
\(72\) 0 0
\(73\) −4.42114 + 4.42114i −0.517455 + 0.517455i −0.916801 0.399345i \(-0.869237\pi\)
0.399345 + 0.916801i \(0.369237\pi\)
\(74\) 4.91848 1.57013i 0.571762 0.182524i
\(75\) 0 0
\(76\) −2.13577 + 12.6399i −0.244989 + 1.44989i
\(77\) 2.19522 0.250169
\(78\) 0 0
\(79\) 3.24902i 0.365543i −0.983155 0.182771i \(-0.941493\pi\)
0.983155 0.182771i \(-0.0585068\pi\)
\(80\) −2.89461 0.211622i −0.323627 0.0236600i
\(81\) 0 0
\(82\) 2.61859 0.835933i 0.289175 0.0923134i
\(83\) 2.89926 + 2.89926i 0.318235 + 0.318235i 0.848089 0.529854i \(-0.177753\pi\)
−0.529854 + 0.848089i \(0.677753\pi\)
\(84\) 0 0
\(85\) −0.880529 + 0.235937i −0.0955068 + 0.0255910i
\(86\) −0.611226 12.9387i −0.0659102 1.39522i
\(87\) 0 0
\(88\) −4.16088 0.502494i −0.443551 0.0535660i
\(89\) 2.05252 + 0.549972i 0.217567 + 0.0582969i 0.365956 0.930632i \(-0.380742\pi\)
−0.148389 + 0.988929i \(0.547409\pi\)
\(90\) 0 0
\(91\) 0.0521823 5.34128i 0.00547019 0.559919i
\(92\) −6.72756 + 0.637043i −0.701396 + 0.0664163i
\(93\) 0 0
\(94\) 1.26370 5.79811i 0.130341 0.598029i
\(95\) 2.32532 4.02758i 0.238573 0.413221i
\(96\) 0 0
\(97\) 1.09430 0.293217i 0.111109 0.0297716i −0.202836 0.979213i \(-0.565016\pi\)
0.313945 + 0.949441i \(0.398349\pi\)
\(98\) 6.03896 + 3.11632i 0.610027 + 0.314796i
\(99\) 0 0
\(100\) −8.13559 3.72317i −0.813559 0.372317i
\(101\) −5.72724 9.91986i −0.569881 0.987063i −0.996577 0.0826680i \(-0.973656\pi\)
0.426696 0.904395i \(-0.359677\pi\)
\(102\) 0 0
\(103\) 2.48901 0.245249 0.122625 0.992453i \(-0.460869\pi\)
0.122625 + 0.992453i \(0.460869\pi\)
\(104\) −1.32154 + 10.1120i −0.129588 + 0.991568i
\(105\) 0 0
\(106\) −0.610846 + 0.392226i −0.0593307 + 0.0380964i
\(107\) 5.13018 + 8.88572i 0.495953 + 0.859015i 0.999989 0.00466706i \(-0.00148558\pi\)
−0.504036 + 0.863682i \(0.668152\pi\)
\(108\) 0 0
\(109\) 7.21056 7.21056i 0.690646 0.690646i −0.271728 0.962374i \(-0.587595\pi\)
0.962374 + 0.271728i \(0.0875951\pi\)
\(110\) 1.35120 + 0.697266i 0.128832 + 0.0664817i
\(111\) 0 0
\(112\) 4.90228 + 3.32926i 0.463222 + 0.314586i
\(113\) 2.37145 4.10748i 0.223088 0.386399i −0.732656 0.680599i \(-0.761720\pi\)
0.955744 + 0.294200i \(0.0950531\pi\)
\(114\) 0 0
\(115\) 2.36808 + 0.634526i 0.220825 + 0.0591698i
\(116\) −1.30369 13.7678i −0.121045 1.27831i
\(117\) 0 0
\(118\) 13.2659 14.5814i 1.22123 1.34233i
\(119\) 1.79784 + 0.481730i 0.164808 + 0.0441601i
\(120\) 0 0
\(121\) −7.62477 4.40216i −0.693161 0.400197i
\(122\) −0.942148 19.9438i −0.0852981 1.80563i
\(123\) 0 0
\(124\) 1.62747 + 4.37395i 0.146151 + 0.392792i
\(125\) 4.86053 + 4.86053i 0.434739 + 0.434739i
\(126\) 0 0
\(127\) −9.40686 16.2932i −0.834724 1.44578i −0.894255 0.447558i \(-0.852294\pi\)
0.0595311 0.998226i \(-0.481039\pi\)
\(128\) −8.52982 7.43251i −0.753937 0.656947i
\(129\) 0 0
\(130\) 1.72867 3.27108i 0.151614 0.286893i
\(131\) 1.40105 0.122410 0.0612050 0.998125i \(-0.480506\pi\)
0.0612050 + 0.998125i \(0.480506\pi\)
\(132\) 0 0
\(133\) −8.22340 + 4.74778i −0.713059 + 0.411685i
\(134\) −9.79516 + 3.12691i −0.846173 + 0.270124i
\(135\) 0 0
\(136\) −3.29740 1.32461i −0.282750 0.113585i
\(137\) 4.33906 + 16.1936i 0.370711 + 1.38351i 0.859511 + 0.511117i \(0.170768\pi\)
−0.488800 + 0.872396i \(0.662565\pi\)
\(138\) 0 0
\(139\) −7.57593 + 13.1219i −0.642582 + 1.11298i 0.342273 + 0.939601i \(0.388803\pi\)
−0.984854 + 0.173384i \(0.944530\pi\)
\(140\) −1.24566 1.75221i −0.105278 0.148089i
\(141\) 0 0
\(142\) −3.60299 + 3.96028i −0.302357 + 0.332340i
\(143\) 2.71639 4.60054i 0.227156 0.384717i
\(144\) 0 0
\(145\) −1.29854 + 4.84622i −0.107838 + 0.402456i
\(146\) 8.63946 + 1.88297i 0.715007 + 0.155836i
\(147\) 0 0
\(148\) −5.62674 4.65331i −0.462515 0.382499i
\(149\) 2.01396 + 7.51621i 0.164990 + 0.615752i 0.998041 + 0.0625561i \(0.0199252\pi\)
−0.833051 + 0.553196i \(0.813408\pi\)
\(150\) 0 0
\(151\) −6.96070 6.96070i −0.566453 0.566453i 0.364680 0.931133i \(-0.381178\pi\)
−0.931133 + 0.364680i \(0.881178\pi\)
\(152\) 16.6736 7.11669i 1.35241 0.577240i
\(153\) 0 0
\(154\) −1.67740 2.61235i −0.135168 0.210509i
\(155\) 1.69312i 0.135994i
\(156\) 0 0
\(157\) 10.6185i 0.847450i 0.905791 + 0.423725i \(0.139278\pi\)
−0.905791 + 0.423725i \(0.860722\pi\)
\(158\) −3.86637 + 2.48261i −0.307592 + 0.197506i
\(159\) 0 0
\(160\) 1.95997 + 3.60632i 0.154949 + 0.285105i
\(161\) −3.53953 3.53953i −0.278954 0.278954i
\(162\) 0 0
\(163\) 2.99986 + 11.1956i 0.234967 + 0.876908i 0.978164 + 0.207835i \(0.0666418\pi\)
−0.743197 + 0.669073i \(0.766692\pi\)
\(164\) −2.99567 2.47741i −0.233922 0.193453i
\(165\) 0 0
\(166\) 1.23480 5.66552i 0.0958391 0.439729i
\(167\) 2.32855 8.69026i 0.180189 0.672473i −0.815421 0.578868i \(-0.803494\pi\)
0.995609 0.0936043i \(-0.0298389\pi\)
\(168\) 0 0
\(169\) −11.1292 6.71872i −0.856091 0.516824i
\(170\) 0.953591 + 0.867560i 0.0731371 + 0.0665388i
\(171\) 0 0
\(172\) −14.9302 + 10.6140i −1.13842 + 0.809309i
\(173\) −6.97351 + 12.0785i −0.530186 + 0.918309i 0.469194 + 0.883095i \(0.344545\pi\)
−0.999380 + 0.0352137i \(0.988789\pi\)
\(174\) 0 0
\(175\) −1.71530 6.40160i −0.129665 0.483916i
\(176\) 2.58140 + 5.33546i 0.194580 + 0.402176i
\(177\) 0 0
\(178\) −0.913883 2.86277i −0.0684984 0.214574i
\(179\) 8.03592 4.63954i 0.600633 0.346776i −0.168658 0.985675i \(-0.553943\pi\)
0.769291 + 0.638899i \(0.220610\pi\)
\(180\) 0 0
\(181\) −20.7868 −1.54507 −0.772535 0.634973i \(-0.781011\pi\)
−0.772535 + 0.634973i \(0.781011\pi\)
\(182\) −6.39607 + 4.01924i −0.474109 + 0.297926i
\(183\) 0 0
\(184\) 5.89870 + 7.51912i 0.434858 + 0.554317i
\(185\) 1.32448 + 2.29407i 0.0973778 + 0.168663i
\(186\) 0 0
\(187\) 1.31638 + 1.31638i 0.0962634 + 0.0962634i
\(188\) −7.86543 + 2.92658i −0.573646 + 0.213443i
\(189\) 0 0
\(190\) −6.56968 + 0.310353i −0.476615 + 0.0225153i
\(191\) −22.5621 13.0262i −1.63254 0.942545i −0.983307 0.181952i \(-0.941759\pi\)
−0.649228 0.760593i \(-0.724908\pi\)
\(192\) 0 0
\(193\) −14.5165 3.88969i −1.04492 0.279986i −0.304771 0.952426i \(-0.598580\pi\)
−0.740152 + 0.672439i \(0.765247\pi\)
\(194\) −1.18510 1.07818i −0.0850851 0.0774089i
\(195\) 0 0
\(196\) −0.905977 9.56766i −0.0647126 0.683404i
\(197\) 19.2785 + 5.16566i 1.37354 + 0.368038i 0.868769 0.495217i \(-0.164912\pi\)
0.504767 + 0.863255i \(0.331578\pi\)
\(198\) 0 0
\(199\) 5.62998 9.75141i 0.399098 0.691259i −0.594516 0.804083i \(-0.702656\pi\)
0.993615 + 0.112825i \(0.0359898\pi\)
\(200\) 1.78588 + 12.5264i 0.126281 + 0.885749i
\(201\) 0 0
\(202\) −7.42853 + 14.3954i −0.522669 + 1.01285i
\(203\) 7.24355 7.24355i 0.508398 0.508398i
\(204\) 0 0
\(205\) 0.705151 + 1.22136i 0.0492499 + 0.0853033i
\(206\) −1.90188 2.96196i −0.132510 0.206369i
\(207\) 0 0
\(208\) 13.0433 6.15408i 0.904389 0.426709i
\(209\) −9.49752 −0.656957
\(210\) 0 0
\(211\) 0.571787 + 0.990365i 0.0393635 + 0.0681795i 0.885036 0.465523i \(-0.154134\pi\)
−0.845672 + 0.533702i \(0.820800\pi\)
\(212\) 0.933510 + 0.427211i 0.0641137 + 0.0293410i
\(213\) 0 0
\(214\) 6.65411 12.8947i 0.454865 0.881461i
\(215\) 6.41935 1.72006i 0.437796 0.117307i
\(216\) 0 0
\(217\) −1.72848 + 2.99382i −0.117337 + 0.203233i
\(218\) −14.0903 3.07099i −0.954318 0.207994i
\(219\) 0 0
\(220\) −0.202710 2.14073i −0.0136667 0.144328i
\(221\) 3.23423 3.17165i 0.217558 0.213348i
\(222\) 0 0
\(223\) 14.1824 + 3.80017i 0.949726 + 0.254478i 0.700246 0.713902i \(-0.253074\pi\)
0.249480 + 0.968380i \(0.419740\pi\)
\(224\) 0.215976 8.37771i 0.0144305 0.559759i
\(225\) 0 0
\(226\) −6.70001 + 0.316509i −0.445678 + 0.0210539i
\(227\) 8.65489 2.31907i 0.574445 0.153922i 0.0401107 0.999195i \(-0.487229\pi\)
0.534334 + 0.845273i \(0.320562\pi\)
\(228\) 0 0
\(229\) 1.63656 + 1.63656i 0.108147 + 0.108147i 0.759110 0.650963i \(-0.225635\pi\)
−0.650963 + 0.759110i \(0.725635\pi\)
\(230\) −1.05438 3.30290i −0.0695241 0.217787i
\(231\) 0 0
\(232\) −15.3877 + 12.0715i −1.01025 + 0.792534i
\(233\) 15.2245i 0.997391i −0.866777 0.498695i \(-0.833813\pi\)
0.866777 0.498695i \(-0.166187\pi\)
\(234\) 0 0
\(235\) 3.04464 0.198610
\(236\) −27.4888 4.64479i −1.78937 0.302350i
\(237\) 0 0
\(238\) −0.800486 2.50755i −0.0518878 0.162540i
\(239\) −20.1260 + 20.1260i −1.30184 + 1.30184i −0.374693 + 0.927149i \(0.622252\pi\)
−0.927149 + 0.374693i \(0.877748\pi\)
\(240\) 0 0
\(241\) 0.968043 + 3.61278i 0.0623571 + 0.232720i 0.990070 0.140574i \(-0.0448949\pi\)
−0.927713 + 0.373294i \(0.878228\pi\)
\(242\) 0.587541 + 12.4373i 0.0377686 + 0.799502i
\(243\) 0 0
\(244\) −23.0135 + 16.3605i −1.47329 + 1.04737i
\(245\) −0.902396 + 3.36779i −0.0576520 + 0.215160i
\(246\) 0 0
\(247\) −0.225764 + 23.1088i −0.0143650 + 1.47038i
\(248\) 3.96150 5.27889i 0.251555 0.335210i
\(249\) 0 0
\(250\) 2.07011 9.49809i 0.130925 0.600712i
\(251\) −19.4389 11.2231i −1.22697 0.708393i −0.260577 0.965453i \(-0.583913\pi\)
−0.966395 + 0.257060i \(0.917246\pi\)
\(252\) 0 0
\(253\) −1.29582 4.83608i −0.0814678 0.304042i
\(254\) −12.2012 + 23.6441i −0.765571 + 1.48356i
\(255\) 0 0
\(256\) −2.32705 + 15.8299i −0.145441 + 0.989367i
\(257\) −25.8091 + 14.9009i −1.60993 + 0.929494i −0.620546 + 0.784170i \(0.713089\pi\)
−0.989384 + 0.145324i \(0.953578\pi\)
\(258\) 0 0
\(259\) 5.40858i 0.336073i
\(260\) −5.21352 + 0.442333i −0.323329 + 0.0274324i
\(261\) 0 0
\(262\) −1.07056 1.66727i −0.0661392 0.103004i
\(263\) 2.11644 1.22193i 0.130506 0.0753474i −0.433326 0.901237i \(-0.642660\pi\)
0.563831 + 0.825890i \(0.309327\pi\)
\(264\) 0 0
\(265\) −0.263361 0.263361i −0.0161782 0.0161782i
\(266\) 11.9335 + 6.15812i 0.731691 + 0.377579i
\(267\) 0 0
\(268\) 11.2057 + 9.26706i 0.684495 + 0.566076i
\(269\) −22.9614 13.2568i −1.39998 0.808280i −0.405592 0.914054i \(-0.632935\pi\)
−0.994390 + 0.105774i \(0.966268\pi\)
\(270\) 0 0
\(271\) 1.72024 6.42004i 0.104497 0.389990i −0.893790 0.448485i \(-0.851964\pi\)
0.998288 + 0.0584956i \(0.0186304\pi\)
\(272\) 0.943273 + 4.93610i 0.0571943 + 0.299295i
\(273\) 0 0
\(274\) 15.9551 17.5373i 0.963882 1.05946i
\(275\) 1.71566 6.40292i 0.103458 0.386111i
\(276\) 0 0
\(277\) −0.878646 + 1.52186i −0.0527927 + 0.0914397i −0.891214 0.453583i \(-0.850146\pi\)
0.838421 + 0.545023i \(0.183479\pi\)
\(278\) 21.4041 1.01113i 1.28373 0.0606437i
\(279\) 0 0
\(280\) −1.13333 + 2.82124i −0.0677297 + 0.168602i
\(281\) −17.3570 + 17.3570i −1.03543 + 1.03543i −0.0360826 + 0.999349i \(0.511488\pi\)
−0.999349 + 0.0360826i \(0.988512\pi\)
\(282\) 0 0
\(283\) −3.46233 + 1.99897i −0.205814 + 0.118827i −0.599364 0.800476i \(-0.704580\pi\)
0.393551 + 0.919303i \(0.371247\pi\)
\(284\) 7.46588 + 1.26151i 0.443019 + 0.0748570i
\(285\) 0 0
\(286\) −7.55034 + 0.282785i −0.446461 + 0.0167214i
\(287\) 2.87952i 0.169973i
\(288\) 0 0
\(289\) −7.71078 13.3555i −0.453576 0.785616i
\(290\) 6.75929 2.15777i 0.396919 0.126709i
\(291\) 0 0
\(292\) −4.36075 11.7199i −0.255194 0.685854i
\(293\) 20.3123 5.44266i 1.18666 0.317963i 0.389093 0.921199i \(-0.372789\pi\)
0.797563 + 0.603235i \(0.206122\pi\)
\(294\) 0 0
\(295\) 8.75903 + 5.05703i 0.509971 + 0.294432i
\(296\) −1.23804 + 10.2515i −0.0719597 + 0.595859i
\(297\) 0 0
\(298\) 7.40550 8.13987i 0.428989 0.471530i
\(299\) −11.7977 + 3.03796i −0.682276 + 0.175690i
\(300\) 0 0
\(301\) −13.1069 3.51197i −0.755466 0.202427i
\(302\) −2.96458 + 13.6021i −0.170592 + 0.782711i
\(303\) 0 0
\(304\) −21.2095 14.4039i −1.21645 0.826119i
\(305\) 9.89482 2.65131i 0.566576 0.151814i
\(306\) 0 0
\(307\) −1.73231 + 1.73231i −0.0988683 + 0.0988683i −0.754811 0.655943i \(-0.772271\pi\)
0.655943 + 0.754811i \(0.272271\pi\)
\(308\) −1.82701 + 3.99225i −0.104104 + 0.227479i
\(309\) 0 0
\(310\) −2.01483 + 1.29373i −0.114435 + 0.0734790i
\(311\) −2.28061 −0.129321 −0.0646606 0.997907i \(-0.520596\pi\)
−0.0646606 + 0.997907i \(0.520596\pi\)
\(312\) 0 0
\(313\) 32.2565 1.82325 0.911623 0.411028i \(-0.134830\pi\)
0.911623 + 0.411028i \(0.134830\pi\)
\(314\) 12.6362 8.11373i 0.713101 0.457884i
\(315\) 0 0
\(316\) 5.90868 + 2.70405i 0.332389 + 0.152115i
\(317\) −17.9781 + 17.9781i −1.00975 + 1.00975i −0.00979695 + 0.999952i \(0.503119\pi\)
−0.999952 + 0.00979695i \(0.996881\pi\)
\(318\) 0 0
\(319\) 9.89691 2.65187i 0.554121 0.148476i
\(320\) 2.79394 5.08803i 0.156186 0.284429i
\(321\) 0 0
\(322\) −1.50749 + 6.91668i −0.0840093 + 0.385452i
\(323\) −7.77826 2.08418i −0.432794 0.115967i
\(324\) 0 0
\(325\) −15.5384 4.32664i −0.861916 0.239999i
\(326\) 11.0307 12.1246i 0.610934 0.671518i
\(327\) 0 0
\(328\) −0.659131 + 5.45791i −0.0363944 + 0.301362i
\(329\) −5.38361 3.10823i −0.296808 0.171362i
\(330\) 0 0
\(331\) 28.0985 7.52896i 1.54443 0.413829i 0.616736 0.787170i \(-0.288454\pi\)
0.927694 + 0.373341i \(0.121788\pi\)
\(332\) −7.68557 + 2.85966i −0.421800 + 0.156944i
\(333\) 0 0
\(334\) −12.1208 + 3.86933i −0.663221 + 0.211720i
\(335\) −2.63770 4.56864i −0.144113 0.249611i
\(336\) 0 0
\(337\) 13.9376i 0.759229i −0.925145 0.379615i \(-0.876057\pi\)
0.925145 0.379615i \(-0.123943\pi\)
\(338\) 0.508576 + 18.3777i 0.0276629 + 0.999617i
\(339\) 0 0
\(340\) 0.303758 1.79770i 0.0164736 0.0974939i
\(341\) −2.99443 + 1.72884i −0.162158 + 0.0936217i
\(342\) 0 0
\(343\) 12.3667 12.3667i 0.667739 0.667739i
\(344\) 24.0391 + 9.65687i 1.29610 + 0.520664i
\(345\) 0 0
\(346\) 19.7021 0.930729i 1.05919 0.0500363i
\(347\) 14.4501 25.0283i 0.775720 1.34359i −0.158668 0.987332i \(-0.550720\pi\)
0.934389 0.356255i \(-0.115947\pi\)
\(348\) 0 0
\(349\) 5.08095 18.9624i 0.271977 1.01503i −0.685863 0.727731i \(-0.740575\pi\)
0.957840 0.287302i \(-0.0927583\pi\)
\(350\) −6.30731 + 6.93278i −0.337140 + 0.370572i
\(351\) 0 0
\(352\) 4.37680 7.14879i 0.233284 0.381032i
\(353\) 4.83344 18.0387i 0.257258 0.960101i −0.709562 0.704643i \(-0.751107\pi\)
0.966820 0.255458i \(-0.0822262\pi\)
\(354\) 0 0
\(355\) −2.37893 1.37348i −0.126261 0.0728966i
\(356\) −2.70843 + 3.27501i −0.143546 + 0.173575i
\(357\) 0 0
\(358\) −11.6615 6.01773i −0.616327 0.318047i
\(359\) 16.3844 + 16.3844i 0.864734 + 0.864734i 0.991884 0.127149i \(-0.0405827\pi\)
−0.127149 + 0.991884i \(0.540583\pi\)
\(360\) 0 0
\(361\) 19.1236 11.0410i 1.00651 0.581107i
\(362\) 15.8834 + 24.7366i 0.834814 + 1.30012i
\(363\) 0 0
\(364\) 9.67027 + 4.54027i 0.506860 + 0.237975i
\(365\) 4.53666i 0.237460i
\(366\) 0 0
\(367\) −25.4992 + 14.7220i −1.33105 + 0.768480i −0.985460 0.169907i \(-0.945653\pi\)
−0.345587 + 0.938387i \(0.612320\pi\)
\(368\) 4.44059 12.7650i 0.231482 0.665420i
\(369\) 0 0
\(370\) 1.71792 3.32907i 0.0893105 0.173070i
\(371\) 0.196821 + 0.734545i 0.0102184 + 0.0381357i
\(372\) 0 0
\(373\) 20.6658 + 11.9314i 1.07003 + 0.617785i 0.928191 0.372104i \(-0.121364\pi\)
0.141844 + 0.989889i \(0.454697\pi\)
\(374\) 0.560650 2.57238i 0.0289905 0.133014i
\(375\) 0 0
\(376\) 9.49274 + 7.12374i 0.489551 + 0.367379i
\(377\) −6.21711 24.1436i −0.320197 1.24346i
\(378\) 0 0
\(379\) 3.24058 12.0940i 0.166457 0.621227i −0.831393 0.555686i \(-0.812456\pi\)
0.997850 0.0655416i \(-0.0208775\pi\)
\(380\) 5.38929 + 7.58087i 0.276465 + 0.388890i
\(381\) 0 0
\(382\) 1.73856 + 36.8027i 0.0889527 + 1.88299i
\(383\) −8.74431 32.6342i −0.446814 1.66753i −0.711103 0.703088i \(-0.751804\pi\)
0.264290 0.964443i \(-0.414862\pi\)
\(384\) 0 0
\(385\) 1.12629 1.12629i 0.0574011 0.0574011i
\(386\) 6.46347 + 20.2470i 0.328982 + 1.03055i
\(387\) 0 0
\(388\) −0.377503 + 2.23414i −0.0191648 + 0.113421i
\(389\) 29.5448 1.49798 0.748990 0.662581i \(-0.230539\pi\)
0.748990 + 0.662581i \(0.230539\pi\)
\(390\) 0 0
\(391\) 4.24501i 0.214679i
\(392\) −10.6934 + 8.38889i −0.540097 + 0.423703i
\(393\) 0 0
\(394\) −8.58372 26.8888i −0.432442 1.35464i
\(395\) −1.66696 1.66696i −0.0838736 0.0838736i
\(396\) 0 0
\(397\) 28.0508 7.51619i 1.40783 0.377227i 0.526679 0.850064i \(-0.323437\pi\)
0.881150 + 0.472838i \(0.156770\pi\)
\(398\) −15.9062 + 0.751413i −0.797308 + 0.0376649i
\(399\) 0 0
\(400\) 13.5420 11.6968i 0.677098 0.584839i
\(401\) 5.34143 + 1.43123i 0.266738 + 0.0714723i 0.389709 0.920938i \(-0.372576\pi\)
−0.122971 + 0.992410i \(0.539242\pi\)
\(402\) 0 0
\(403\) 4.13532 + 7.32697i 0.205995 + 0.364982i
\(404\) 22.8069 2.15962i 1.13469 0.107445i
\(405\) 0 0
\(406\) −14.1548 3.08504i −0.702491 0.153108i
\(407\) 2.70485 4.68493i 0.134074 0.232223i
\(408\) 0 0
\(409\) −17.8385 + 4.77981i −0.882056 + 0.236346i −0.671294 0.741191i \(-0.734261\pi\)
−0.210762 + 0.977537i \(0.567595\pi\)
\(410\) 0.914619 1.77239i 0.0451698 0.0875323i
\(411\) 0 0
\(412\) −2.07152 + 4.52653i −0.102056 + 0.223006i
\(413\) −10.3253 17.8840i −0.508075 0.880012i
\(414\) 0 0
\(415\) 2.97501 0.146038
\(416\) −17.2900 10.8193i −0.847710 0.530459i
\(417\) 0 0
\(418\) 7.25716 + 11.3022i 0.354960 + 0.552808i
\(419\) −14.1415 24.4939i −0.690859 1.19660i −0.971557 0.236807i \(-0.923899\pi\)
0.280698 0.959796i \(-0.409434\pi\)
\(420\) 0 0
\(421\) −19.6915 + 19.6915i −0.959704 + 0.959704i −0.999219 0.0395149i \(-0.987419\pi\)
0.0395149 + 0.999219i \(0.487419\pi\)
\(422\) 0.741639 1.43718i 0.0361024 0.0699611i
\(423\) 0 0
\(424\) −0.204919 1.43733i −0.00995174 0.0698028i
\(425\) 2.81017 4.86736i 0.136313 0.236102i
\(426\) 0 0
\(427\) −20.2030 5.41337i −0.977691 0.261971i
\(428\) −20.4293 + 1.93448i −0.987488 + 0.0935068i
\(429\) 0 0
\(430\) −6.95199 6.32479i −0.335255 0.305009i
\(431\) 30.7854 + 8.24891i 1.48288 + 0.397336i 0.907326 0.420428i \(-0.138120\pi\)
0.575553 + 0.817764i \(0.304787\pi\)
\(432\) 0 0
\(433\) 13.1701 + 7.60376i 0.632915 + 0.365414i 0.781880 0.623429i \(-0.214261\pi\)
−0.148965 + 0.988842i \(0.547594\pi\)
\(434\) 4.88344 0.230694i 0.234412 0.0110737i
\(435\) 0 0
\(436\) 7.11207 + 19.1143i 0.340606 + 0.915408i
\(437\) 15.3136 + 15.3136i 0.732548 + 0.732548i
\(438\) 0 0
\(439\) −1.65131 2.86016i −0.0788129 0.136508i 0.823925 0.566699i \(-0.191780\pi\)
−0.902738 + 0.430191i \(0.858446\pi\)
\(440\) −2.39261 + 1.87699i −0.114063 + 0.0894819i
\(441\) 0 0
\(442\) −6.24562 1.42529i −0.297074 0.0677940i
\(443\) 12.1161 0.575654 0.287827 0.957682i \(-0.407067\pi\)
0.287827 + 0.957682i \(0.407067\pi\)
\(444\) 0 0
\(445\) 1.33525 0.770906i 0.0632968 0.0365444i
\(446\) −6.31471 19.7810i −0.299010 0.936660i
\(447\) 0 0
\(448\) −10.1346 + 6.14449i −0.478816 + 0.290300i
\(449\) −2.46287 9.19155i −0.116230 0.433776i 0.883146 0.469098i \(-0.155421\pi\)
−0.999376 + 0.0353221i \(0.988754\pi\)
\(450\) 0 0
\(451\) 1.44006 2.49425i 0.0678096 0.117450i
\(452\) 5.49621 + 7.73126i 0.258520 + 0.363648i
\(453\) 0 0
\(454\) −9.37303 8.52741i −0.439898 0.400211i
\(455\) −2.71365 2.76720i −0.127218 0.129728i
\(456\) 0 0
\(457\) −3.13824 + 11.7121i −0.146800 + 0.547867i 0.852868 + 0.522126i \(0.174861\pi\)
−0.999669 + 0.0257405i \(0.991806\pi\)
\(458\) 0.697013 3.19804i 0.0325693 0.149434i
\(459\) 0 0
\(460\) −3.12483 + 3.77852i −0.145696 + 0.176174i
\(461\) −6.26259 23.3723i −0.291678 1.08856i −0.943820 0.330460i \(-0.892796\pi\)
0.652142 0.758097i \(-0.273871\pi\)
\(462\) 0 0
\(463\) −12.7547 12.7547i −0.592763 0.592763i 0.345614 0.938377i \(-0.387671\pi\)
−0.938377 + 0.345614i \(0.887671\pi\)
\(464\) 26.1232 + 9.08755i 1.21274 + 0.421879i
\(465\) 0 0
\(466\) −18.1174 + 11.6332i −0.839271 + 0.538899i
\(467\) 18.1587i 0.840286i 0.907458 + 0.420143i \(0.138020\pi\)
−0.907458 + 0.420143i \(0.861980\pi\)
\(468\) 0 0
\(469\) 10.7712i 0.497367i
\(470\) −2.32644 3.62316i −0.107311 0.167124i
\(471\) 0 0
\(472\) 15.4771 + 36.2612i 0.712393 + 1.66906i
\(473\) −9.59686 9.59686i −0.441264 0.441264i
\(474\) 0 0
\(475\) 7.42117 + 27.6962i 0.340507 + 1.27079i
\(476\) −2.37236 + 2.86864i −0.108737 + 0.131484i
\(477\) 0 0
\(478\) 39.3287 + 8.57170i 1.79885 + 0.392061i
\(479\) 4.24253 15.8334i 0.193846 0.723444i −0.798716 0.601708i \(-0.794487\pi\)
0.992562 0.121736i \(-0.0388463\pi\)
\(480\) 0 0
\(481\) −11.3348 6.69263i −0.516822 0.305158i
\(482\) 3.55957 3.91256i 0.162134 0.178212i
\(483\) 0 0
\(484\) 14.3516 10.2027i 0.652347 0.463759i
\(485\) 0.411007 0.711885i 0.0186629 0.0323251i
\(486\) 0 0
\(487\) 9.33917 + 34.8542i 0.423198 + 1.57940i 0.767827 + 0.640658i \(0.221338\pi\)
−0.344629 + 0.938739i \(0.611995\pi\)
\(488\) 37.0541 + 14.8852i 1.67736 + 0.673820i
\(489\) 0 0
\(490\) 4.69725 1.49950i 0.212200 0.0677406i
\(491\) 12.9846 7.49664i 0.585985 0.338319i −0.177523 0.984117i \(-0.556808\pi\)
0.763508 + 0.645798i \(0.223475\pi\)
\(492\) 0 0
\(493\) 8.68730 0.391256
\(494\) 27.6723 17.3890i 1.24503 0.782369i
\(495\) 0 0
\(496\) −9.30899 0.680571i −0.417986 0.0305585i
\(497\) 2.80433 + 4.85724i 0.125791 + 0.217877i
\(498\) 0 0
\(499\) −30.5157 30.5157i −1.36607 1.36607i −0.865965 0.500105i \(-0.833295\pi\)
−0.500105 0.865965i \(-0.666705\pi\)
\(500\) −12.8847 + 4.79414i −0.576219 + 0.214401i
\(501\) 0 0
\(502\) 1.49790 + 31.7082i 0.0668546 + 1.41521i
\(503\) 30.7732 + 17.7669i 1.37211 + 0.792187i 0.991193 0.132424i \(-0.0422760\pi\)
0.380914 + 0.924610i \(0.375609\pi\)
\(504\) 0 0
\(505\) −8.02797 2.15109i −0.357240 0.0957222i
\(506\) −4.76485 + 5.23736i −0.211823 + 0.232829i
\(507\) 0 0
\(508\) 37.4599 3.54714i 1.66201 0.157379i
\(509\) 17.3479 + 4.64835i 0.768931 + 0.206034i 0.621899 0.783097i \(-0.286361\pi\)
0.147032 + 0.989132i \(0.453028\pi\)
\(510\) 0 0
\(511\) 4.63141 8.02185i 0.204882 0.354866i
\(512\) 20.6159 9.32657i 0.911102 0.412180i
\(513\) 0 0
\(514\) 37.4534 + 19.3273i 1.65200 + 0.852490i
\(515\) 1.27702 1.27702i 0.0562724 0.0562724i
\(516\) 0 0
\(517\) −3.10887 5.38472i −0.136728 0.236820i
\(518\) −6.43628 + 4.13276i −0.282794 + 0.181583i
\(519\) 0 0
\(520\) 4.51010 + 5.86617i 0.197781 + 0.257249i
\(521\) 33.0188 1.44658 0.723289 0.690545i \(-0.242629\pi\)
0.723289 + 0.690545i \(0.242629\pi\)
\(522\) 0 0
\(523\) 0.905353 + 1.56812i 0.0395883 + 0.0685690i 0.885141 0.465324i \(-0.154062\pi\)
−0.845552 + 0.533893i \(0.820729\pi\)
\(524\) −1.16604 + 2.54796i −0.0509389 + 0.111308i
\(525\) 0 0
\(526\) −3.07131 1.58491i −0.133916 0.0691053i
\(527\) −2.83176 + 0.758768i −0.123353 + 0.0330524i
\(528\) 0 0
\(529\) 5.79177 10.0316i 0.251816 0.436158i
\(530\) −0.112166 + 0.514641i −0.00487219 + 0.0223546i
\(531\) 0 0
\(532\) −1.79029 18.9066i −0.0776190 0.819703i
\(533\) −6.03462 3.56315i −0.261389 0.154337i
\(534\) 0 0
\(535\) 7.19106 + 1.92684i 0.310897 + 0.0833045i
\(536\) 2.46556 20.4160i 0.106496 0.881835i
\(537\) 0 0
\(538\) 1.76934 + 37.4541i 0.0762815 + 1.61476i
\(539\) 6.87768 1.84287i 0.296243 0.0793780i
\(540\) 0 0
\(541\) 27.7884 + 27.7884i 1.19472 + 1.19472i 0.975727 + 0.218990i \(0.0702761\pi\)
0.218990 + 0.975727i \(0.429724\pi\)
\(542\) −8.95439 + 2.85851i −0.384624 + 0.122784i
\(543\) 0 0
\(544\) 5.15327 4.89424i 0.220945 0.209839i
\(545\) 7.39896i 0.316937i
\(546\) 0 0
\(547\) 6.37762 0.272687 0.136344 0.990662i \(-0.456465\pi\)
0.136344 + 0.990662i \(0.456465\pi\)
\(548\) −33.0611 5.58634i −1.41230 0.238637i
\(549\) 0 0
\(550\) −8.93052 + 2.85089i −0.380799 + 0.121562i
\(551\) −31.3388 + 31.3388i −1.33508 + 1.33508i
\(552\) 0 0
\(553\) 1.24578 + 4.64933i 0.0529761 + 0.197710i
\(554\) 2.48242 0.117270i 0.105468 0.00498231i
\(555\) 0 0
\(556\) −17.5584 24.6985i −0.744641 1.04745i
\(557\) −1.53541 + 5.73023i −0.0650574 + 0.242798i −0.990795 0.135368i \(-0.956778\pi\)
0.925738 + 0.378166i \(0.123445\pi\)
\(558\) 0 0
\(559\) −23.5786 + 23.1224i −0.997269 + 0.977972i
\(560\) 4.22331 0.807061i 0.178468 0.0341046i
\(561\) 0 0
\(562\) 33.9177 + 7.39238i 1.43073 + 0.311829i
\(563\) −5.39506 3.11484i −0.227375 0.131275i 0.381986 0.924168i \(-0.375240\pi\)
−0.609360 + 0.792893i \(0.708574\pi\)
\(564\) 0 0
\(565\) −0.890693 3.32411i −0.0374717 0.139846i
\(566\) 5.02441 + 2.59278i 0.211192 + 0.108982i
\(567\) 0 0
\(568\) −4.20355 9.84844i −0.176377 0.413232i
\(569\) 1.68213 0.971181i 0.0705187 0.0407140i −0.464326 0.885664i \(-0.653703\pi\)
0.534845 + 0.844950i \(0.320370\pi\)
\(570\) 0 0
\(571\) 31.5350i 1.31970i −0.751398 0.659850i \(-0.770620\pi\)
0.751398 0.659850i \(-0.229380\pi\)
\(572\) 6.10582 + 8.76893i 0.255297 + 0.366647i
\(573\) 0 0
\(574\) −3.42667 + 2.20027i −0.143026 + 0.0918377i
\(575\) −13.0902 + 7.55764i −0.545900 + 0.315175i
\(576\) 0 0
\(577\) 17.6927 + 17.6927i 0.736558 + 0.736558i 0.971910 0.235352i \(-0.0756242\pi\)
−0.235352 + 0.971910i \(0.575624\pi\)
\(578\) −10.0013 + 19.3810i −0.415999 + 0.806144i
\(579\) 0 0
\(580\) −7.73263 6.39488i −0.321080 0.265533i
\(581\) −5.26050 3.03715i −0.218242 0.126002i
\(582\) 0 0
\(583\) −0.196861 + 0.734696i −0.00815316 + 0.0304280i
\(584\) −10.6147 + 14.1446i −0.439240 + 0.585310i
\(585\) 0 0
\(586\) −21.9977 20.0131i −0.908716 0.826733i
\(587\) −7.64218 + 28.5210i −0.315427 + 1.17719i 0.608165 + 0.793810i \(0.291906\pi\)
−0.923592 + 0.383377i \(0.874761\pi\)
\(588\) 0 0
\(589\) 7.47818 12.9526i 0.308133 0.533702i
\(590\) −0.674944 14.2875i −0.0277870 0.588207i
\(591\) 0 0
\(592\) 13.1455 6.36004i 0.540276 0.261396i
\(593\) 20.5469 20.5469i 0.843759 0.843759i −0.145586 0.989346i \(-0.546507\pi\)
0.989346 + 0.145586i \(0.0465069\pi\)
\(594\) 0 0
\(595\) 1.16957 0.675250i 0.0479476 0.0276825i
\(596\) −15.3452 2.59288i −0.628563 0.106209i
\(597\) 0 0
\(598\) 12.6300 + 11.7180i 0.516477 + 0.479186i
\(599\) 28.2451i 1.15407i 0.816721 + 0.577033i \(0.195789\pi\)
−0.816721 + 0.577033i \(0.804211\pi\)
\(600\) 0 0
\(601\) −2.74994 4.76304i −0.112172 0.194288i 0.804473 0.593989i \(-0.202448\pi\)
−0.916646 + 0.399700i \(0.869114\pi\)
\(602\) 5.83581 + 18.2809i 0.237850 + 0.745073i
\(603\) 0 0
\(604\) 18.4519 6.86562i 0.750798 0.279358i
\(605\) −6.17059 + 1.65341i −0.250870 + 0.0672205i
\(606\) 0 0
\(607\) 1.25794 + 0.726274i 0.0510584 + 0.0294786i 0.525312 0.850910i \(-0.323949\pi\)
−0.474254 + 0.880388i \(0.657282\pi\)
\(608\) −0.934410 + 36.2457i −0.0378953 + 1.46996i
\(609\) 0 0
\(610\) −10.7158 9.74908i −0.433872 0.394729i
\(611\) −13.1757 + 7.43632i −0.533031 + 0.300841i
\(612\) 0 0
\(613\) −30.9474 8.29232i −1.24995 0.334924i −0.427634 0.903952i \(-0.640653\pi\)
−0.822318 + 0.569028i \(0.807319\pi\)
\(614\) 3.38516 + 0.737796i 0.136614 + 0.0297750i
\(615\) 0 0
\(616\) 6.14687 0.876356i 0.247665 0.0353094i
\(617\) 4.26824 1.14367i 0.171833 0.0460425i −0.171877 0.985118i \(-0.554983\pi\)
0.343710 + 0.939076i \(0.388316\pi\)
\(618\) 0 0
\(619\) −8.69550 + 8.69550i −0.349502 + 0.349502i −0.859924 0.510422i \(-0.829489\pi\)
0.510422 + 0.859924i \(0.329489\pi\)
\(620\) 3.07912 + 1.40912i 0.123660 + 0.0565918i
\(621\) 0 0
\(622\) 1.74264 + 2.71395i 0.0698734 + 0.108820i
\(623\) −3.14803 −0.126123
\(624\) 0 0
\(625\) −17.3801 −0.695204
\(626\) −24.6476 38.3857i −0.985115 1.53420i
\(627\) 0 0
\(628\) −19.3109 8.83743i −0.770589 0.352652i
\(629\) 3.24329 3.24329i 0.129319 0.129319i
\(630\) 0 0
\(631\) 9.04870 2.42459i 0.360223 0.0965215i −0.0741682 0.997246i \(-0.523630\pi\)
0.434391 + 0.900724i \(0.356963\pi\)
\(632\) −1.29704 9.09761i −0.0515935 0.361884i
\(633\) 0 0
\(634\) 35.1314 + 7.65690i 1.39525 + 0.304094i
\(635\) −13.1858 3.53312i −0.523261 0.140207i
\(636\) 0 0
\(637\) −4.32047 16.7782i −0.171183 0.664775i
\(638\) −10.7181 9.75114i −0.424334 0.386051i
\(639\) 0 0
\(640\) −8.18971 + 0.562992i −0.323727 + 0.0222542i
\(641\) 31.6965 + 18.3000i 1.25194 + 0.722805i 0.971494 0.237066i \(-0.0761856\pi\)
0.280442 + 0.959871i \(0.409519\pi\)
\(642\) 0 0
\(643\) −13.8446 + 3.70965i −0.545977 + 0.146294i −0.521256 0.853400i \(-0.674536\pi\)
−0.0247210 + 0.999694i \(0.507870\pi\)
\(644\) 9.38284 3.49118i 0.369736 0.137572i
\(645\) 0 0
\(646\) 3.46326 + 10.8488i 0.136260 + 0.426840i
\(647\) 16.5697 + 28.6996i 0.651422 + 1.12830i 0.982778 + 0.184790i \(0.0591606\pi\)
−0.331356 + 0.943506i \(0.607506\pi\)
\(648\) 0 0
\(649\) 20.6549i 0.810774i
\(650\) 6.72433 + 21.7970i 0.263750 + 0.854947i
\(651\) 0 0
\(652\) −22.8571 3.86217i −0.895153 0.151254i
\(653\) −35.8657 + 20.7071i −1.40353 + 0.810330i −0.994753 0.102303i \(-0.967379\pi\)
−0.408780 + 0.912633i \(0.634046\pi\)
\(654\) 0 0
\(655\) 0.718828 0.718828i 0.0280869 0.0280869i
\(656\) 6.99864 3.38608i 0.273251 0.132204i
\(657\) 0 0
\(658\) 0.414845 + 8.78161i 0.0161723 + 0.342343i
\(659\) −14.1419 + 24.4945i −0.550889 + 0.954168i 0.447321 + 0.894373i \(0.352378\pi\)
−0.998211 + 0.0597950i \(0.980955\pi\)
\(660\) 0 0
\(661\) 6.42654 23.9842i 0.249963 0.932876i −0.720860 0.693081i \(-0.756253\pi\)
0.970823 0.239796i \(-0.0770804\pi\)
\(662\) −30.4299 27.6846i −1.18269 1.07599i
\(663\) 0 0
\(664\) 9.27567 + 6.96084i 0.359966 + 0.270133i
\(665\) −1.78322 + 6.65505i −0.0691502 + 0.258072i
\(666\) 0 0
\(667\) −20.2334 11.6817i −0.783440 0.452319i
\(668\) 13.8662 + 11.4673i 0.536500 + 0.443684i
\(669\) 0 0
\(670\) −3.42124 + 6.62985i −0.132174 + 0.256134i
\(671\) −14.7927 14.7927i −0.571064 0.571064i
\(672\) 0 0
\(673\) 19.3181 11.1533i 0.744658 0.429929i −0.0791022 0.996867i \(-0.525205\pi\)
0.823761 + 0.566938i \(0.191872\pi\)
\(674\) −16.5859 + 10.6499i −0.638866 + 0.410218i
\(675\) 0 0
\(676\) 21.4812 14.6479i 0.826198 0.563379i
\(677\) 7.36423i 0.283030i −0.989936 0.141515i \(-0.954803\pi\)
0.989936 0.141515i \(-0.0451974\pi\)
\(678\) 0 0
\(679\) −1.45351 + 0.839184i −0.0557805 + 0.0322049i
\(680\) −2.37139 + 1.01217i −0.0909387 + 0.0388148i
\(681\) 0 0
\(682\) 4.34542 + 2.24239i 0.166395 + 0.0858656i
\(683\) −1.34151 5.00660i −0.0513316 0.191572i 0.935499 0.353329i \(-0.114951\pi\)
−0.986831 + 0.161757i \(0.948284\pi\)
\(684\) 0 0
\(685\) 10.5346 + 6.08214i 0.402506 + 0.232387i
\(686\) −24.1661 5.26701i −0.922666 0.201095i
\(687\) 0 0
\(688\) −6.87677 35.9858i −0.262174 1.37195i
\(689\) 1.78294 + 0.496455i 0.0679245 + 0.0189134i
\(690\) 0 0
\(691\) 6.75090 25.1947i 0.256816 0.958451i −0.710255 0.703945i \(-0.751420\pi\)
0.967071 0.254506i \(-0.0819130\pi\)
\(692\) −16.1622 22.7346i −0.614394 0.864239i
\(693\) 0 0
\(694\) −40.8254 + 1.92860i −1.54971 + 0.0732086i
\(695\) 2.84544 + 10.6193i 0.107934 + 0.402814i
\(696\) 0 0
\(697\) 1.72672 1.72672i 0.0654044 0.0654044i
\(698\) −26.4479 + 8.44297i −1.00107 + 0.319571i
\(699\) 0 0
\(700\) 13.0696 + 2.20837i 0.493984 + 0.0834687i
\(701\) −2.13901 −0.0807892 −0.0403946 0.999184i \(-0.512862\pi\)
−0.0403946 + 0.999184i \(0.512862\pi\)
\(702\) 0 0
\(703\) 23.3999i 0.882545i
\(704\) −11.8515 + 0.254028i −0.446671 + 0.00957402i
\(705\) 0 0
\(706\) −25.1596 + 8.03169i −0.946892 + 0.302277i
\(707\) 11.9993 + 11.9993i 0.451279 + 0.451279i
\(708\) 0 0
\(709\) 31.8967 8.54671i 1.19791 0.320978i 0.395901 0.918293i \(-0.370433\pi\)
0.802007 + 0.597315i \(0.203766\pi\)
\(710\) 0.183313 + 3.88045i 0.00687962 + 0.145631i
\(711\) 0 0
\(712\) 5.96685 + 0.720594i 0.223617 + 0.0270054i
\(713\) 7.61569 + 2.04062i 0.285210 + 0.0764218i
\(714\) 0 0
\(715\) −0.966691 3.75406i −0.0361522 0.140394i
\(716\) 1.74948 + 18.4755i 0.0653810 + 0.690462i
\(717\) 0 0
\(718\) 6.97814 32.0171i 0.260422 1.19487i
\(719\) 24.1212 41.7791i 0.899568 1.55810i 0.0715216 0.997439i \(-0.477215\pi\)
0.828047 0.560659i \(-0.189452\pi\)
\(720\) 0 0
\(721\) −3.56176 + 0.954371i −0.132647 + 0.0355426i
\(722\) −27.7516 14.3208i −1.03281 0.532965i
\(723\) 0 0
\(724\) 17.3001 37.8030i 0.642955 1.40494i
\(725\) −15.4665 26.7888i −0.574412 0.994910i
\(726\) 0 0
\(727\) −35.9735 −1.33418 −0.667092 0.744976i \(-0.732461\pi\)
−0.667092 + 0.744976i \(0.732461\pi\)
\(728\) −1.98618 14.9770i −0.0736127 0.555085i
\(729\) 0 0
\(730\) 5.39869 3.46651i 0.199814 0.128301i
\(731\) −5.75364 9.96560i −0.212806 0.368591i
\(732\) 0 0
\(733\) −7.99326 + 7.99326i −0.295238 + 0.295238i −0.839145 0.543907i \(-0.816944\pi\)
0.543907 + 0.839145i \(0.316944\pi\)
\(734\) 37.0036 + 19.0952i 1.36583 + 0.704815i
\(735\) 0 0
\(736\) −18.5836 + 4.46951i −0.685001 + 0.164748i
\(737\) −5.38670 + 9.33004i −0.198422 + 0.343677i
\(738\) 0 0
\(739\) 10.6104 + 2.84304i 0.390308 + 0.104583i 0.448636 0.893715i \(-0.351910\pi\)
−0.0583274 + 0.998298i \(0.518577\pi\)
\(740\) −5.27433 + 0.499435i −0.193888 + 0.0183596i
\(741\) 0 0
\(742\) 0.723726 0.795494i 0.0265688 0.0292035i
\(743\) 9.10445 + 2.43953i 0.334010 + 0.0894977i 0.421926 0.906630i \(-0.361354\pi\)
−0.0879163 + 0.996128i \(0.528021\pi\)
\(744\) 0 0
\(745\) 4.88959 + 2.82301i 0.179141 + 0.103427i
\(746\) −1.59244 33.7095i −0.0583035 1.23419i
\(747\) 0 0
\(748\) −3.48956 + 1.29840i −0.127591 + 0.0474742i
\(749\) −10.7484 10.7484i −0.392736 0.392736i
\(750\) 0 0
\(751\) −11.9625 20.7197i −0.436519 0.756073i 0.560899 0.827884i \(-0.310456\pi\)
−0.997418 + 0.0718109i \(0.977122\pi\)
\(752\) 1.22383 16.7398i 0.0446286 0.610439i
\(753\) 0 0
\(754\) −23.9807 + 25.8469i −0.873324 + 0.941287i
\(755\) −7.14257 −0.259945
\(756\) 0 0
\(757\) −4.03960 + 2.33226i −0.146822 + 0.0847676i −0.571611 0.820525i \(-0.693681\pi\)
0.424789 + 0.905292i \(0.360348\pi\)
\(758\) −16.8682 + 5.38484i −0.612680 + 0.195586i
\(759\) 0 0
\(760\) 4.90331 12.2060i 0.177862 0.442757i
\(761\) 5.39526 + 20.1354i 0.195578 + 0.729907i 0.992116 + 0.125319i \(0.0399955\pi\)
−0.796538 + 0.604588i \(0.793338\pi\)
\(762\) 0 0
\(763\) −7.55350 + 13.0831i −0.273455 + 0.473638i
\(764\) 42.4673 30.1903i 1.53641 1.09225i
\(765\) 0 0
\(766\) −32.1535 + 35.3420i −1.16175 + 1.27696i
\(767\) −50.2562 0.490983i −1.81464 0.0177284i
\(768\) 0 0
\(769\) −10.2054 + 38.0871i −0.368016 + 1.37346i 0.495269 + 0.868740i \(0.335070\pi\)
−0.863285 + 0.504716i \(0.831597\pi\)
\(770\) −2.20091 0.479690i −0.0793155 0.0172868i
\(771\) 0 0
\(772\) 19.1555 23.1626i 0.689420 0.833641i
\(773\) −12.6898 47.3590i −0.456421 1.70339i −0.683877 0.729597i \(-0.739707\pi\)
0.227456 0.973788i \(-0.426959\pi\)
\(774\) 0 0
\(775\) 7.38134 + 7.38134i 0.265146 + 0.265146i
\(776\) 2.94711 1.25790i 0.105795 0.0451558i
\(777\) 0 0
\(778\) −22.5755 35.1587i −0.809372 1.26050i
\(779\) 12.4581i 0.446357i
\(780\) 0 0
\(781\) 5.60981i 0.200735i
\(782\) −5.05162 + 3.24366i −0.180646 + 0.115993i
\(783\) 0 0
\(784\) 18.1538 + 6.31523i 0.648351 + 0.225544i
\(785\) 5.44798 + 5.44798i 0.194447 + 0.194447i
\(786\) 0 0
\(787\) 4.46886 + 16.6780i 0.159298 + 0.594507i 0.998699 + 0.0509947i \(0.0162392\pi\)
−0.839401 + 0.543512i \(0.817094\pi\)
\(788\) −25.4392 + 30.7608i −0.906232 + 1.09581i
\(789\) 0 0
\(790\) −0.709960 + 3.25744i −0.0252592 + 0.115895i
\(791\) −1.81859 + 6.78708i −0.0646617 + 0.241321i
\(792\) 0 0
\(793\) −36.3442 + 35.6409i −1.29062 + 1.26565i
\(794\) −30.3783 27.6376i −1.07809 0.980823i
\(795\) 0 0
\(796\) 13.0483 + 18.3545i 0.462486 + 0.650557i
\(797\) −7.88369 + 13.6550i −0.279255 + 0.483683i −0.971200 0.238267i \(-0.923421\pi\)
0.691945 + 0.721950i \(0.256754\pi\)
\(798\) 0 0
\(799\) −1.36445 5.09220i −0.0482708 0.180149i
\(800\) −24.2669 7.17748i −0.857965 0.253762i
\(801\) 0 0
\(802\) −2.37826 7.45000i −0.0839794 0.263069i
\(803\) 8.02350 4.63237i 0.283143 0.163473i
\(804\) 0 0
\(805\) −3.63201 −0.128012
\(806\) 5.55935 10.5197i 0.195820 0.370541i
\(807\) 0 0
\(808\) −19.9970 25.4904i −0.703493 0.896748i
\(809\) −16.1331 27.9433i −0.567210 0.982436i −0.996840 0.0794311i \(-0.974690\pi\)
0.429631 0.903005i \(-0.358644\pi\)
\(810\) 0 0
\(811\) −2.82597 2.82597i −0.0992332 0.0992332i 0.655747 0.754980i \(-0.272354\pi\)
−0.754980 + 0.655747i \(0.772354\pi\)
\(812\) 7.14461 + 19.2017i 0.250727 + 0.673849i
\(813\) 0 0
\(814\) −7.64194 + 0.361006i −0.267850 + 0.0126533i
\(815\) 7.28319 + 4.20495i 0.255119 + 0.147293i
\(816\) 0 0
\(817\) 56.7061 + 15.1944i 1.98390 + 0.531583i
\(818\) 19.3186 + 17.5757i 0.675460 + 0.614521i
\(819\) 0 0
\(820\) −2.80804 + 0.265898i −0.0980612 + 0.00928557i
\(821\) 25.7200 + 6.89166i 0.897635 + 0.240521i 0.678000 0.735062i \(-0.262847\pi\)
0.219635 + 0.975582i \(0.429513\pi\)
\(822\) 0 0
\(823\) 1.80298 3.12285i 0.0628478 0.108856i −0.832889 0.553439i \(-0.813315\pi\)
0.895737 + 0.444584i \(0.146648\pi\)
\(824\) 6.96951 0.993639i 0.242794 0.0346151i
\(825\) 0 0
\(826\) −13.3925 + 25.9526i −0.465984 + 0.903007i
\(827\) −18.5758 + 18.5758i −0.645943 + 0.645943i −0.952010 0.306067i \(-0.900987\pi\)
0.306067 + 0.952010i \(0.400987\pi\)
\(828\) 0 0
\(829\) −0.283646 0.491289i −0.00985143 0.0170632i 0.861058 0.508507i \(-0.169803\pi\)
−0.870909 + 0.491444i \(0.836469\pi\)
\(830\) −2.27324 3.54031i −0.0789054 0.122886i
\(831\) 0 0
\(832\) 0.336364 + 28.8424i 0.0116613 + 0.999932i
\(833\) 6.03708 0.209172
\(834\) 0 0
\(835\) −3.26397 5.65336i −0.112954 0.195643i
\(836\) 7.90446 17.2723i 0.273382 0.597373i
\(837\) 0 0
\(838\) −18.3423 + 35.5447i −0.633625 + 1.22787i
\(839\) 32.7243 8.76844i 1.12977 0.302720i 0.354937 0.934890i \(-0.384502\pi\)
0.774830 + 0.632170i \(0.217836\pi\)
\(840\) 0 0
\(841\) 9.40638 16.2923i 0.324358 0.561805i
\(842\) 38.4796 + 8.38665i 1.32610 + 0.289023i
\(843\) 0 0
\(844\) −2.27696 + 0.215609i −0.0783764 + 0.00742158i
\(845\) −9.15713 + 2.26286i −0.315015 + 0.0778446i
\(846\) 0 0
\(847\) 12.5990 + 3.37588i 0.432905 + 0.115997i
\(848\) −1.55386 + 1.34213i −0.0533597 + 0.0460891i
\(849\) 0 0
\(850\) −7.93952 + 0.375064i −0.272323 + 0.0128646i
\(851\) −11.9151 + 3.19264i −0.408445 + 0.109442i
\(852\) 0 0
\(853\) −15.4913 15.4913i −0.530411 0.530411i 0.390283 0.920695i \(-0.372377\pi\)
−0.920695 + 0.390283i \(0.872377\pi\)
\(854\) 8.99535 + 28.1783i 0.307814 + 0.964240i
\(855\) 0 0
\(856\) 17.9123 + 22.8330i 0.612231 + 0.780416i
\(857\) 17.3171i 0.591540i −0.955259 0.295770i \(-0.904424\pi\)
0.955259 0.295770i \(-0.0955762\pi\)
\(858\) 0 0
\(859\) −22.9629 −0.783484 −0.391742 0.920075i \(-0.628127\pi\)
−0.391742 + 0.920075i \(0.628127\pi\)
\(860\) −2.21450 + 13.1058i −0.0755137 + 0.446905i
\(861\) 0 0
\(862\) −13.7071 42.9381i −0.466867 1.46248i
\(863\) −18.9344 + 18.9344i −0.644536 + 0.644536i −0.951667 0.307131i \(-0.900631\pi\)
0.307131 + 0.951667i \(0.400631\pi\)
\(864\) 0 0
\(865\) 2.61917 + 9.77489i 0.0890546 + 0.332356i
\(866\) −1.01485 21.4827i −0.0344859 0.730013i
\(867\) 0 0
\(868\) −4.00602 5.63508i −0.135973 0.191267i
\(869\) −1.24604 + 4.65029i −0.0422690 + 0.157750i
\(870\) 0 0
\(871\) 22.5732 + 13.3284i 0.764865 + 0.451615i
\(872\) 17.3118 23.0689i 0.586253 0.781212i
\(873\) 0 0
\(874\) 6.52209 29.9247i 0.220613 1.01222i
\(875\) −8.81910 5.09171i −0.298140 0.172131i
\(876\) 0 0
\(877\) −11.6288 43.3992i −0.392676 1.46549i −0.825703 0.564106i \(-0.809221\pi\)
0.433027 0.901381i \(-0.357446\pi\)
\(878\) −2.14184 + 4.15057i −0.0722837 + 0.140075i
\(879\) 0 0
\(880\) 4.06186 + 1.41301i 0.136925 + 0.0476326i
\(881\) −2.13057 + 1.23009i −0.0717808 + 0.0414427i −0.535461 0.844560i \(-0.679862\pi\)
0.463680 + 0.886003i \(0.346529\pi\)
\(882\) 0 0
\(883\) 39.7470i 1.33759i 0.743446 + 0.668796i \(0.233190\pi\)
−0.743446 + 0.668796i \(0.766810\pi\)
\(884\) 3.07624 + 8.52145i 0.103465 + 0.286607i
\(885\) 0 0
\(886\) −9.25807 14.4184i −0.311031 0.484394i
\(887\) 17.1497 9.90141i 0.575832 0.332457i −0.183643 0.982993i \(-0.558789\pi\)
0.759475 + 0.650536i \(0.225456\pi\)
\(888\) 0 0
\(889\) 19.7085 + 19.7085i 0.661003 + 0.661003i
\(890\) −1.93767 0.999906i −0.0649508 0.0335169i
\(891\) 0 0
\(892\) −18.7146 + 22.6295i −0.626610 + 0.757692i
\(893\) 23.2919 + 13.4476i 0.779435 + 0.450007i
\(894\) 0 0
\(895\) 1.74256 6.50333i 0.0582474 0.217382i
\(896\) 15.0560 + 7.36526i 0.502986 + 0.246056i
\(897\) 0 0
\(898\) −9.05616 + 9.95422i −0.302208 + 0.332177i
\(899\) −4.17607 + 15.5853i −0.139280 + 0.519799i
\(900\) 0 0
\(901\) −0.322450 + 0.558500i −0.0107424 + 0.0186063i
\(902\) −4.06855 + 0.192199i −0.135468 + 0.00639953i
\(903\) 0 0
\(904\) 5.00059 12.4481i 0.166317 0.414018i
\(905\) −10.6650 + 10.6650i −0.354515 + 0.354515i
\(906\) 0 0
\(907\) −16.4874 + 9.51900i −0.547455 + 0.316073i −0.748095 0.663592i \(-0.769031\pi\)
0.200640 + 0.979665i \(0.435698\pi\)
\(908\) −2.98569 + 17.6699i −0.0990838 + 0.586397i
\(909\) 0 0
\(910\) −1.21947 + 5.34373i −0.0404250 + 0.177143i
\(911\) 1.28948i 0.0427225i −0.999772 0.0213612i \(-0.993200\pi\)
0.999772 0.0213612i \(-0.00680001\pi\)
\(912\) 0 0
\(913\) −3.03778 5.26159i −0.100536 0.174133i
\(914\) 16.3355 5.21477i 0.540329 0.172489i
\(915\) 0 0
\(916\) −4.33830 + 1.61420i −0.143342 + 0.0533347i
\(917\) −2.00489 + 0.537210i −0.0662074 + 0.0177402i
\(918\) 0 0
\(919\) −23.2515 13.4243i −0.766997 0.442826i 0.0648055 0.997898i \(-0.479357\pi\)
−0.831802 + 0.555072i \(0.812691\pi\)
\(920\) 6.88421 + 0.831380i 0.226966 + 0.0274098i
\(921\) 0 0
\(922\) −23.0281 + 25.3116i −0.758389 + 0.833595i
\(923\) 13.6494 + 0.133350i 0.449277 + 0.00438926i
\(924\) 0 0
\(925\) −15.7755 4.22703i −0.518695 0.138984i
\(926\) −5.43227 + 24.9244i −0.178516 + 0.819066i
\(927\) 0 0
\(928\) −9.14672 38.0309i −0.300256 1.24842i
\(929\) −37.8024 + 10.1291i −1.24026 + 0.332326i −0.818566 0.574413i \(-0.805230\pi\)
−0.421692 + 0.906739i \(0.638564\pi\)
\(930\) 0 0
\(931\) −21.7784 + 21.7784i −0.713757 + 0.713757i
\(932\) 27.6874 + 12.6708i 0.906931 + 0.415047i
\(933\) 0 0
\(934\) 21.6091 13.8753i 0.707073 0.454014i
\(935\) 1.35078 0.0441752
\(936\) 0 0
\(937\) 46.1571 1.50789 0.753943 0.656939i \(-0.228149\pi\)
0.753943 + 0.656939i \(0.228149\pi\)
\(938\) 12.8179 8.23039i 0.418518 0.268732i
\(939\) 0 0
\(940\) −2.53395 + 5.53700i −0.0826484 + 0.180597i
\(941\) 35.7367 35.7367i 1.16498 1.16498i 0.181611 0.983370i \(-0.441869\pi\)
0.983370 0.181611i \(-0.0581313\pi\)
\(942\) 0 0
\(943\) −6.34359 + 1.69976i −0.206576 + 0.0553518i
\(944\) 31.3250 46.1256i 1.01954 1.50126i
\(945\) 0 0
\(946\) −4.08732 + 18.7535i −0.132890 + 0.609728i
\(947\) −0.723796 0.193941i −0.0235202 0.00630222i 0.247040 0.969005i \(-0.420542\pi\)
−0.270560 + 0.962703i \(0.587209\pi\)
\(948\) 0 0
\(949\) −11.0805 19.6324i −0.359687 0.637295i
\(950\) 27.2883 29.9943i 0.885348 0.973143i
\(951\) 0 0
\(952\) 5.22647 + 0.631181i 0.169391 + 0.0204567i
\(953\) 41.5062 + 23.9636i 1.34452 + 0.776257i 0.987467 0.157828i \(-0.0504492\pi\)
0.357050 + 0.934085i \(0.383783\pi\)
\(954\) 0 0
\(955\) −18.2591 + 4.89251i −0.590851 + 0.158318i
\(956\) −19.8511 53.3514i −0.642030 1.72551i
\(957\) 0 0
\(958\) −22.0837 + 7.04978i −0.713491 + 0.227768i
\(959\) −12.4184 21.5092i −0.401010 0.694569i
\(960\) 0 0
\(961\) 25.5550i 0.824354i
\(962\) 0.696723 + 18.6025i 0.0224633 + 0.599768i
\(963\) 0 0
\(964\) −7.37591 1.24631i −0.237562 0.0401409i
\(965\) −9.44359 + 5.45226i −0.304000 + 0.175514i
\(966\) 0 0
\(967\) −8.44481 + 8.44481i −0.271567 + 0.271567i −0.829731 0.558164i \(-0.811506\pi\)
0.558164 + 0.829731i \(0.311506\pi\)
\(968\) −23.1076 9.28266i −0.742706 0.298356i
\(969\) 0 0
\(970\) −1.16121 + 0.0548557i −0.0372842 + 0.00176131i
\(971\) −24.1539 + 41.8358i −0.775136 + 1.34257i 0.159582 + 0.987185i \(0.448985\pi\)
−0.934718 + 0.355390i \(0.884348\pi\)
\(972\) 0 0
\(973\) 5.80974 21.6822i 0.186252 0.695101i
\(974\) 34.3409 37.7463i 1.10035 1.20947i
\(975\) 0 0
\(976\) −10.5999 55.4688i −0.339295 1.77551i
\(977\) −8.21436 + 30.6564i −0.262801 + 0.980786i 0.700782 + 0.713376i \(0.252835\pi\)
−0.963583 + 0.267410i \(0.913832\pi\)
\(978\) 0 0
\(979\) −2.72683 1.57434i −0.0871500 0.0503161i
\(980\) −5.37365 4.44400i −0.171655 0.141958i
\(981\) 0 0
\(982\) −18.8428 9.72354i −0.601297 0.310291i
\(983\) 18.1345 + 18.1345i 0.578400 + 0.578400i 0.934462 0.356062i \(-0.115881\pi\)
−0.356062 + 0.934462i \(0.615881\pi\)
\(984\) 0 0
\(985\) 12.5414 7.24080i 0.399603 0.230711i
\(986\) −6.63807 10.3380i −0.211399 0.329229i
\(987\) 0 0
\(988\) −41.8379 19.6432i −1.33104 0.624935i
\(989\) 30.9475i 0.984074i
\(990\) 0 0
\(991\) −15.3411 + 8.85718i −0.487326 + 0.281358i −0.723464 0.690362i \(-0.757451\pi\)
0.236139 + 0.971719i \(0.424118\pi\)
\(992\) 6.30322 + 11.5979i 0.200127 + 0.368232i
\(993\) 0 0
\(994\) 3.63736 7.04866i 0.115370 0.223570i
\(995\) −2.11456 7.89164i −0.0670360 0.250182i
\(996\) 0 0
\(997\) −4.27051 2.46558i −0.135249 0.0780858i 0.430849 0.902424i \(-0.358214\pi\)
−0.566098 + 0.824338i \(0.691547\pi\)
\(998\) −12.9967 + 59.6315i −0.411403 + 1.88760i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.ed.e.739.5 56
3.2 odd 2 312.2.bt.d.115.10 yes 56
8.3 odd 2 inner 936.2.ed.e.739.12 56
13.6 odd 12 inner 936.2.ed.e.19.12 56
24.11 even 2 312.2.bt.d.115.3 yes 56
39.32 even 12 312.2.bt.d.19.3 56
104.19 even 12 inner 936.2.ed.e.19.5 56
312.227 odd 12 312.2.bt.d.19.10 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bt.d.19.3 56 39.32 even 12
312.2.bt.d.19.10 yes 56 312.227 odd 12
312.2.bt.d.115.3 yes 56 24.11 even 2
312.2.bt.d.115.10 yes 56 3.2 odd 2
936.2.ed.e.19.5 56 104.19 even 12 inner
936.2.ed.e.19.12 56 13.6 odd 12 inner
936.2.ed.e.739.5 56 1.1 even 1 trivial
936.2.ed.e.739.12 56 8.3 odd 2 inner