Properties

Label 936.2.ed.e.19.12
Level $936$
Weight $2$
Character 936.19
Analytic conductor $7.474$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(19,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.ed (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 19.12
Character \(\chi\) \(=\) 936.19
Dual form 936.2.ed.e.739.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.25675 + 0.648526i) q^{2} +(1.15883 + 1.63007i) q^{4} +(-0.513065 - 0.513065i) q^{5} +(1.43100 + 0.383434i) q^{7} +(0.399211 + 2.80011i) q^{8} +(-0.312057 - 0.977529i) q^{10} +(-1.43129 + 0.383513i) q^{11} +(0.967164 + 3.47341i) q^{13} +(1.54973 + 1.40992i) q^{14} +(-1.31424 + 3.77793i) q^{16} +(-1.08804 + 0.628178i) q^{17} +(6.19113 + 1.65891i) q^{19} +(0.241777 - 1.43088i) q^{20} +(-2.04749 - 0.446251i) q^{22} +(-1.68941 + 2.92615i) q^{23} -4.47353i q^{25} +(-1.03712 + 4.99243i) q^{26} +(1.03325 + 2.77695i) q^{28} +(5.98829 + 3.45734i) q^{29} +(-1.65000 - 1.65000i) q^{31} +(-4.10176 + 3.89559i) q^{32} +(-1.77478 + 0.0838407i) q^{34} +(-0.537467 - 0.930920i) q^{35} +(0.944898 + 3.52641i) q^{37} +(6.70484 + 6.09994i) q^{38} +(1.23182 - 1.64146i) q^{40} +(-0.503062 - 1.87745i) q^{41} +(7.93214 - 4.57963i) q^{43} +(-2.28377 - 1.88867i) q^{44} +(-4.02085 + 2.58180i) q^{46} +(-2.96711 + 2.96711i) q^{47} +(-4.16145 - 2.40261i) q^{49} +(2.90120 - 5.62210i) q^{50} +(-4.54112 + 5.60163i) q^{52} -0.513310i q^{53} +(0.931112 + 0.537578i) q^{55} +(-0.502390 + 4.16002i) q^{56} +(5.28359 + 8.22856i) q^{58} +(3.60773 - 13.4642i) q^{59} +(-12.2267 + 7.05906i) q^{61} +(-1.00357 - 3.14371i) q^{62} +(-7.68126 + 2.23567i) q^{64} +(1.28587 - 2.27830i) q^{65} +(1.88176 + 7.02284i) q^{67} +(-2.28482 - 1.04562i) q^{68} +(-0.0717338 - 1.51849i) q^{70} +(0.979852 - 3.65686i) q^{71} +(-4.42114 - 4.42114i) q^{73} +(-1.09947 + 5.04459i) q^{74} +(4.47032 + 12.0143i) q^{76} -2.19522 q^{77} -3.24902i q^{79} +(2.61261 - 1.26403i) q^{80} +(0.585356 - 2.68573i) q^{82} +(2.89926 - 2.89926i) q^{83} +(0.880529 + 0.235937i) q^{85} +(12.9387 - 0.611226i) q^{86} +(-1.64527 - 3.85467i) q^{88} +(2.05252 - 0.549972i) q^{89} +(0.0521823 + 5.34128i) q^{91} +(-6.72756 + 0.637043i) q^{92} +(-5.65316 + 1.80466i) q^{94} +(-2.32532 - 4.02758i) q^{95} +(1.09430 + 0.293217i) q^{97} +(-3.67173 - 5.71829i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 12 q^{8} + 28 q^{14} + 12 q^{16} - 8 q^{19} + 4 q^{20} + 10 q^{22} - 34 q^{26} - 14 q^{28} + 30 q^{32} + 56 q^{34} - 28 q^{40} - 40 q^{41} + 44 q^{44} - 18 q^{46} + 24 q^{49} + 72 q^{50} + 32 q^{52}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.25675 + 0.648526i 0.888654 + 0.458577i
\(3\) 0 0
\(4\) 1.15883 + 1.63007i 0.579413 + 0.815034i
\(5\) −0.513065 0.513065i −0.229449 0.229449i 0.583013 0.812463i \(-0.301874\pi\)
−0.812463 + 0.583013i \(0.801874\pi\)
\(6\) 0 0
\(7\) 1.43100 + 0.383434i 0.540866 + 0.144925i 0.518901 0.854834i \(-0.326341\pi\)
0.0219645 + 0.999759i \(0.493008\pi\)
\(8\) 0.399211 + 2.80011i 0.141142 + 0.989989i
\(9\) 0 0
\(10\) −0.312057 0.977529i −0.0986809 0.309122i
\(11\) −1.43129 + 0.383513i −0.431550 + 0.115634i −0.468054 0.883700i \(-0.655045\pi\)
0.0365035 + 0.999334i \(0.488378\pi\)
\(12\) 0 0
\(13\) 0.967164 + 3.47341i 0.268243 + 0.963351i
\(14\) 1.54973 + 1.40992i 0.414184 + 0.376817i
\(15\) 0 0
\(16\) −1.31424 + 3.77793i −0.328560 + 0.944483i
\(17\) −1.08804 + 0.628178i −0.263888 + 0.152356i −0.626107 0.779737i \(-0.715353\pi\)
0.362219 + 0.932093i \(0.382019\pi\)
\(18\) 0 0
\(19\) 6.19113 + 1.65891i 1.42034 + 0.380580i 0.885605 0.464439i \(-0.153744\pi\)
0.534737 + 0.845018i \(0.320411\pi\)
\(20\) 0.241777 1.43088i 0.0540630 0.319955i
\(21\) 0 0
\(22\) −2.04749 0.446251i −0.436526 0.0951410i
\(23\) −1.68941 + 2.92615i −0.352267 + 0.610144i −0.986646 0.162878i \(-0.947922\pi\)
0.634379 + 0.773022i \(0.281256\pi\)
\(24\) 0 0
\(25\) 4.47353i 0.894706i
\(26\) −1.03712 + 4.99243i −0.203396 + 0.979097i
\(27\) 0 0
\(28\) 1.03325 + 2.77695i 0.195266 + 0.524795i
\(29\) 5.98829 + 3.45734i 1.11200 + 0.642012i 0.939346 0.342971i \(-0.111433\pi\)
0.172651 + 0.984983i \(0.444767\pi\)
\(30\) 0 0
\(31\) −1.65000 1.65000i −0.296349 0.296349i 0.543233 0.839582i \(-0.317200\pi\)
−0.839582 + 0.543233i \(0.817200\pi\)
\(32\) −4.10176 + 3.89559i −0.725095 + 0.688649i
\(33\) 0 0
\(34\) −1.77478 + 0.0838407i −0.304372 + 0.0143786i
\(35\) −0.537467 0.930920i −0.0908485 0.157354i
\(36\) 0 0
\(37\) 0.944898 + 3.52641i 0.155340 + 0.579738i 0.999076 + 0.0429788i \(0.0136848\pi\)
−0.843736 + 0.536759i \(0.819649\pi\)
\(38\) 6.70484 + 6.09994i 1.08767 + 0.989541i
\(39\) 0 0
\(40\) 1.23182 1.64146i 0.194768 0.259538i
\(41\) −0.503062 1.87745i −0.0785651 0.293209i 0.915453 0.402425i \(-0.131833\pi\)
−0.994018 + 0.109216i \(0.965166\pi\)
\(42\) 0 0
\(43\) 7.93214 4.57963i 1.20964 0.698386i 0.246960 0.969026i \(-0.420568\pi\)
0.962681 + 0.270639i \(0.0872351\pi\)
\(44\) −2.28377 1.88867i −0.344291 0.284728i
\(45\) 0 0
\(46\) −4.02085 + 2.58180i −0.592842 + 0.380666i
\(47\) −2.96711 + 2.96711i −0.432797 + 0.432797i −0.889579 0.456781i \(-0.849002\pi\)
0.456781 + 0.889579i \(0.349002\pi\)
\(48\) 0 0
\(49\) −4.16145 2.40261i −0.594493 0.343231i
\(50\) 2.90120 5.62210i 0.410292 0.795084i
\(51\) 0 0
\(52\) −4.54112 + 5.60163i −0.629740 + 0.776806i
\(53\) 0.513310i 0.0705086i −0.999378 0.0352543i \(-0.988776\pi\)
0.999378 0.0352543i \(-0.0112241\pi\)
\(54\) 0 0
\(55\) 0.931112 + 0.537578i 0.125551 + 0.0724869i
\(56\) −0.502390 + 4.16002i −0.0671347 + 0.555906i
\(57\) 0 0
\(58\) 5.28359 + 8.22856i 0.693769 + 1.08046i
\(59\) 3.60773 13.4642i 0.469687 1.75290i −0.171176 0.985241i \(-0.554757\pi\)
0.640863 0.767655i \(-0.278577\pi\)
\(60\) 0 0
\(61\) −12.2267 + 7.05906i −1.56546 + 0.903820i −0.568775 + 0.822493i \(0.692583\pi\)
−0.996687 + 0.0813276i \(0.974084\pi\)
\(62\) −1.00357 3.14371i −0.127453 0.399251i
\(63\) 0 0
\(64\) −7.68126 + 2.23567i −0.960158 + 0.279459i
\(65\) 1.28587 2.27830i 0.159492 0.282589i
\(66\) 0 0
\(67\) 1.88176 + 7.02284i 0.229894 + 0.857977i 0.980384 + 0.197095i \(0.0631507\pi\)
−0.750490 + 0.660881i \(0.770183\pi\)
\(68\) −2.28482 1.04562i −0.277075 0.126800i
\(69\) 0 0
\(70\) −0.0717338 1.51849i −0.00857383 0.181495i
\(71\) 0.979852 3.65686i 0.116287 0.433989i −0.883093 0.469198i \(-0.844543\pi\)
0.999380 + 0.0352090i \(0.0112097\pi\)
\(72\) 0 0
\(73\) −4.42114 4.42114i −0.517455 0.517455i 0.399345 0.916801i \(-0.369237\pi\)
−0.916801 + 0.399345i \(0.869237\pi\)
\(74\) −1.09947 + 5.04459i −0.127811 + 0.586422i
\(75\) 0 0
\(76\) 4.47032 + 12.0143i 0.512780 + 1.37814i
\(77\) −2.19522 −0.250169
\(78\) 0 0
\(79\) 3.24902i 0.365543i −0.983155 0.182771i \(-0.941493\pi\)
0.983155 0.182771i \(-0.0585068\pi\)
\(80\) 2.61261 1.26403i 0.292099 0.141323i
\(81\) 0 0
\(82\) 0.585356 2.68573i 0.0646418 0.296590i
\(83\) 2.89926 2.89926i 0.318235 0.318235i −0.529854 0.848089i \(-0.677753\pi\)
0.848089 + 0.529854i \(0.177753\pi\)
\(84\) 0 0
\(85\) 0.880529 + 0.235937i 0.0955068 + 0.0255910i
\(86\) 12.9387 0.611226i 1.39522 0.0659102i
\(87\) 0 0
\(88\) −1.64527 3.85467i −0.175386 0.410909i
\(89\) 2.05252 0.549972i 0.217567 0.0582969i −0.148389 0.988929i \(-0.547409\pi\)
0.365956 + 0.930632i \(0.380742\pi\)
\(90\) 0 0
\(91\) 0.0521823 + 5.34128i 0.00547019 + 0.559919i
\(92\) −6.72756 + 0.637043i −0.701396 + 0.0664163i
\(93\) 0 0
\(94\) −5.65316 + 1.80466i −0.583079 + 0.186136i
\(95\) −2.32532 4.02758i −0.238573 0.413221i
\(96\) 0 0
\(97\) 1.09430 + 0.293217i 0.111109 + 0.0297716i 0.313945 0.949441i \(-0.398349\pi\)
−0.202836 + 0.979213i \(0.565016\pi\)
\(98\) −3.67173 5.71829i −0.370901 0.577634i
\(99\) 0 0
\(100\) 7.29215 5.18405i 0.729215 0.518405i
\(101\) 5.72724 9.91986i 0.569881 0.987063i −0.426696 0.904395i \(-0.640323\pi\)
0.996577 0.0826680i \(-0.0263441\pi\)
\(102\) 0 0
\(103\) −2.48901 −0.245249 −0.122625 0.992453i \(-0.539131\pi\)
−0.122625 + 0.992453i \(0.539131\pi\)
\(104\) −9.33984 + 4.09479i −0.915847 + 0.401527i
\(105\) 0 0
\(106\) 0.332895 0.645101i 0.0323337 0.0626578i
\(107\) 5.13018 8.88572i 0.495953 0.859015i −0.504036 0.863682i \(-0.668152\pi\)
0.999989 + 0.00466706i \(0.00148558\pi\)
\(108\) 0 0
\(109\) −7.21056 7.21056i −0.690646 0.690646i 0.271728 0.962374i \(-0.412405\pi\)
−0.962374 + 0.271728i \(0.912405\pi\)
\(110\) 0.821539 + 1.27945i 0.0783306 + 0.121991i
\(111\) 0 0
\(112\) −3.32926 + 4.90228i −0.314586 + 0.463222i
\(113\) 2.37145 + 4.10748i 0.223088 + 0.386399i 0.955744 0.294200i \(-0.0950531\pi\)
−0.732656 + 0.680599i \(0.761720\pi\)
\(114\) 0 0
\(115\) 2.36808 0.634526i 0.220825 0.0591698i
\(116\) 1.30369 + 13.7678i 0.121045 + 1.27831i
\(117\) 0 0
\(118\) 13.2659 14.5814i 1.22123 1.34233i
\(119\) −1.79784 + 0.481730i −0.164808 + 0.0441601i
\(120\) 0 0
\(121\) −7.62477 + 4.40216i −0.693161 + 0.400197i
\(122\) −19.9438 + 0.942148i −1.80563 + 0.0852981i
\(123\) 0 0
\(124\) 0.777549 4.60169i 0.0698259 0.413244i
\(125\) −4.86053 + 4.86053i −0.434739 + 0.434739i
\(126\) 0 0
\(127\) 9.40686 16.2932i 0.834724 1.44578i −0.0595311 0.998226i \(-0.518961\pi\)
0.894255 0.447558i \(-0.147706\pi\)
\(128\) −11.1033 2.17183i −0.981402 0.191964i
\(129\) 0 0
\(130\) 3.09355 2.02933i 0.271322 0.177984i
\(131\) 1.40105 0.122410 0.0612050 0.998125i \(-0.480506\pi\)
0.0612050 + 0.998125i \(0.480506\pi\)
\(132\) 0 0
\(133\) 8.22340 + 4.74778i 0.713059 + 0.411685i
\(134\) −2.18960 + 10.0463i −0.189152 + 0.867869i
\(135\) 0 0
\(136\) −2.19333 2.79585i −0.188076 0.239742i
\(137\) 4.33906 16.1936i 0.370711 1.38351i −0.488800 0.872396i \(-0.662565\pi\)
0.859511 0.511117i \(-0.170768\pi\)
\(138\) 0 0
\(139\) −7.57593 13.1219i −0.642582 1.11298i −0.984854 0.173384i \(-0.944530\pi\)
0.342273 0.939601i \(-0.388803\pi\)
\(140\) 0.894631 1.95488i 0.0756101 0.165218i
\(141\) 0 0
\(142\) 3.60299 3.96028i 0.302357 0.332340i
\(143\) −2.71639 4.60054i −0.227156 0.384717i
\(144\) 0 0
\(145\) −1.29854 4.84622i −0.107838 0.402456i
\(146\) −2.68903 8.42348i −0.222546 0.697132i
\(147\) 0 0
\(148\) −4.65331 + 5.62674i −0.382499 + 0.462515i
\(149\) −2.01396 + 7.51621i −0.164990 + 0.615752i 0.833051 + 0.553196i \(0.186592\pi\)
−0.998041 + 0.0625561i \(0.980075\pi\)
\(150\) 0 0
\(151\) 6.96070 6.96070i 0.566453 0.566453i −0.364680 0.931133i \(-0.618822\pi\)
0.931133 + 0.364680i \(0.118822\pi\)
\(152\) −2.17357 + 17.9981i −0.176299 + 1.45984i
\(153\) 0 0
\(154\) −2.75884 1.42366i −0.222314 0.114722i
\(155\) 1.69312i 0.135994i
\(156\) 0 0
\(157\) 10.6185i 0.847450i 0.905791 + 0.423725i \(0.139278\pi\)
−0.905791 + 0.423725i \(0.860722\pi\)
\(158\) 2.10707 4.08319i 0.167630 0.324841i
\(159\) 0 0
\(160\) 4.10315 + 0.105779i 0.324383 + 0.00836255i
\(161\) −3.53953 + 3.53953i −0.278954 + 0.278954i
\(162\) 0 0
\(163\) 2.99986 11.1956i 0.234967 0.876908i −0.743197 0.669073i \(-0.766692\pi\)
0.978164 0.207835i \(-0.0666418\pi\)
\(164\) 2.47741 2.99567i 0.193453 0.233922i
\(165\) 0 0
\(166\) 5.52388 1.76339i 0.428736 0.136866i
\(167\) −2.32855 8.69026i −0.180189 0.672473i −0.995609 0.0936043i \(-0.970161\pi\)
0.815421 0.578868i \(-0.196506\pi\)
\(168\) 0 0
\(169\) −11.1292 + 6.71872i −0.856091 + 0.516824i
\(170\) 0.953591 + 0.867560i 0.0731371 + 0.0665388i
\(171\) 0 0
\(172\) 16.6571 + 7.62294i 1.27009 + 0.581243i
\(173\) 6.97351 + 12.0785i 0.530186 + 0.918309i 0.999380 + 0.0352137i \(0.0112112\pi\)
−0.469194 + 0.883095i \(0.655455\pi\)
\(174\) 0 0
\(175\) 1.71530 6.40160i 0.129665 0.483916i
\(176\) 0.432173 5.91135i 0.0325763 0.445585i
\(177\) 0 0
\(178\) 2.93617 + 0.639940i 0.220076 + 0.0479655i
\(179\) 8.03592 + 4.63954i 0.600633 + 0.346776i 0.769291 0.638899i \(-0.220610\pi\)
−0.168658 + 0.985675i \(0.553943\pi\)
\(180\) 0 0
\(181\) 20.7868 1.54507 0.772535 0.634973i \(-0.218989\pi\)
0.772535 + 0.634973i \(0.218989\pi\)
\(182\) −3.39838 + 6.74648i −0.251905 + 0.500083i
\(183\) 0 0
\(184\) −8.86798 3.56240i −0.653756 0.262623i
\(185\) 1.32448 2.29407i 0.0973778 0.168663i
\(186\) 0 0
\(187\) 1.31638 1.31638i 0.0962634 0.0962634i
\(188\) −8.27496 1.39822i −0.603513 0.101976i
\(189\) 0 0
\(190\) −0.310353 6.56968i −0.0225153 0.476615i
\(191\) 22.5621 13.0262i 1.63254 0.942545i 0.649228 0.760593i \(-0.275092\pi\)
0.983307 0.181952i \(-0.0582414\pi\)
\(192\) 0 0
\(193\) −14.5165 + 3.88969i −1.04492 + 0.279986i −0.740152 0.672439i \(-0.765247\pi\)
−0.304771 + 0.952426i \(0.598580\pi\)
\(194\) 1.18510 + 1.07818i 0.0850851 + 0.0774089i
\(195\) 0 0
\(196\) −0.905977 9.56766i −0.0647126 0.683404i
\(197\) −19.2785 + 5.16566i −1.37354 + 0.368038i −0.868769 0.495217i \(-0.835088\pi\)
−0.504767 + 0.863255i \(0.668422\pi\)
\(198\) 0 0
\(199\) −5.62998 9.75141i −0.399098 0.691259i 0.594516 0.804083i \(-0.297344\pi\)
−0.993615 + 0.112825i \(0.964010\pi\)
\(200\) 12.5264 1.78588i 0.885749 0.126281i
\(201\) 0 0
\(202\) 13.6310 8.75250i 0.959072 0.615823i
\(203\) 7.24355 + 7.24355i 0.508398 + 0.508398i
\(204\) 0 0
\(205\) −0.705151 + 1.22136i −0.0492499 + 0.0853033i
\(206\) −3.12806 1.61419i −0.217942 0.112466i
\(207\) 0 0
\(208\) −14.3934 0.911019i −0.998003 0.0631678i
\(209\) −9.49752 −0.656957
\(210\) 0 0
\(211\) 0.571787 0.990365i 0.0393635 0.0681795i −0.845672 0.533702i \(-0.820800\pi\)
0.885036 + 0.465523i \(0.154134\pi\)
\(212\) 0.836731 0.594838i 0.0574669 0.0408536i
\(213\) 0 0
\(214\) 12.2100 7.84005i 0.834656 0.535935i
\(215\) −6.41935 1.72006i −0.437796 0.117307i
\(216\) 0 0
\(217\) −1.72848 2.99382i −0.117337 0.203233i
\(218\) −4.38561 13.7381i −0.297031 0.930460i
\(219\) 0 0
\(220\) 0.202710 + 2.14073i 0.0136667 + 0.144328i
\(221\) −3.23423 3.17165i −0.217558 0.213348i
\(222\) 0 0
\(223\) −14.1824 + 3.80017i −0.949726 + 0.254478i −0.700246 0.713902i \(-0.746926\pi\)
−0.249480 + 0.968380i \(0.580260\pi\)
\(224\) −7.36330 + 4.00181i −0.491981 + 0.267382i
\(225\) 0 0
\(226\) 0.316509 + 6.70001i 0.0210539 + 0.445678i
\(227\) 8.65489 + 2.31907i 0.574445 + 0.153922i 0.534334 0.845273i \(-0.320562\pi\)
0.0401107 + 0.999195i \(0.487229\pi\)
\(228\) 0 0
\(229\) −1.63656 + 1.63656i −0.108147 + 0.108147i −0.759110 0.650963i \(-0.774365\pi\)
0.650963 + 0.759110i \(0.274365\pi\)
\(230\) 3.38759 + 0.738325i 0.223371 + 0.0486837i
\(231\) 0 0
\(232\) −7.29035 + 18.1481i −0.478635 + 1.19148i
\(233\) 15.2245i 0.997391i 0.866777 + 0.498695i \(0.166187\pi\)
−0.866777 + 0.498695i \(0.833813\pi\)
\(234\) 0 0
\(235\) 3.04464 0.198610
\(236\) 26.1284 9.72188i 1.70081 0.632841i
\(237\) 0 0
\(238\) −2.57185 0.560534i −0.166708 0.0363341i
\(239\) 20.1260 + 20.1260i 1.30184 + 1.30184i 0.927149 + 0.374693i \(0.122252\pi\)
0.374693 + 0.927149i \(0.377748\pi\)
\(240\) 0 0
\(241\) 0.968043 3.61278i 0.0623571 0.232720i −0.927713 0.373294i \(-0.878228\pi\)
0.990070 + 0.140574i \(0.0448949\pi\)
\(242\) −12.4373 + 0.587541i −0.799502 + 0.0377686i
\(243\) 0 0
\(244\) −25.6753 11.7500i −1.64369 0.752219i
\(245\) 0.902396 + 3.36779i 0.0576520 + 0.215160i
\(246\) 0 0
\(247\) 0.225764 + 23.1088i 0.0143650 + 1.47038i
\(248\) 3.96150 5.27889i 0.251555 0.335210i
\(249\) 0 0
\(250\) −9.26065 + 2.95628i −0.585695 + 0.186971i
\(251\) −19.4389 + 11.2231i −1.22697 + 0.708393i −0.966395 0.257060i \(-0.917246\pi\)
−0.260577 + 0.965453i \(0.583913\pi\)
\(252\) 0 0
\(253\) 1.29582 4.83608i 0.0814678 0.304042i
\(254\) 22.3886 14.3758i 1.40479 0.902017i
\(255\) 0 0
\(256\) −12.5455 9.93022i −0.784097 0.620639i
\(257\) −25.8091 14.9009i −1.60993 0.929494i −0.989384 0.145324i \(-0.953578\pi\)
−0.620546 0.784170i \(-0.713089\pi\)
\(258\) 0 0
\(259\) 5.40858i 0.336073i
\(260\) 5.20389 0.544108i 0.322731 0.0337441i
\(261\) 0 0
\(262\) 1.76076 + 0.908616i 0.108780 + 0.0561345i
\(263\) −2.11644 1.22193i −0.130506 0.0753474i 0.433326 0.901237i \(-0.357340\pi\)
−0.563831 + 0.825890i \(0.690673\pi\)
\(264\) 0 0
\(265\) −0.263361 + 0.263361i −0.0161782 + 0.0161782i
\(266\) 7.25567 + 11.2999i 0.444874 + 0.692838i
\(267\) 0 0
\(268\) −9.26706 + 11.2057i −0.566076 + 0.684495i
\(269\) 22.9614 13.2568i 1.39998 0.808280i 0.405592 0.914054i \(-0.367065\pi\)
0.994390 + 0.105774i \(0.0337320\pi\)
\(270\) 0 0
\(271\) −1.72024 6.42004i −0.104497 0.389990i 0.893790 0.448485i \(-0.148036\pi\)
−0.998288 + 0.0584956i \(0.981370\pi\)
\(272\) −0.943273 4.93610i −0.0571943 0.299295i
\(273\) 0 0
\(274\) 15.9551 17.5373i 0.963882 1.05946i
\(275\) 1.71566 + 6.40292i 0.103458 + 0.386111i
\(276\) 0 0
\(277\) 0.878646 + 1.52186i 0.0527927 + 0.0914397i 0.891214 0.453583i \(-0.149854\pi\)
−0.838421 + 0.545023i \(0.816521\pi\)
\(278\) −1.01113 21.4041i −0.0606437 1.28373i
\(279\) 0 0
\(280\) 2.39212 1.87660i 0.142956 0.112148i
\(281\) −17.3570 17.3570i −1.03543 1.03543i −0.999349 0.0360826i \(-0.988512\pi\)
−0.0360826 0.999349i \(-0.511488\pi\)
\(282\) 0 0
\(283\) −3.46233 1.99897i −0.205814 0.118827i 0.393551 0.919303i \(-0.371247\pi\)
−0.599364 + 0.800476i \(0.704580\pi\)
\(284\) 7.09640 2.64044i 0.421094 0.156681i
\(285\) 0 0
\(286\) −0.430244 7.54337i −0.0254409 0.446049i
\(287\) 2.87952i 0.169973i
\(288\) 0 0
\(289\) −7.71078 + 13.3555i −0.453576 + 0.785616i
\(290\) 1.51096 6.93261i 0.0887268 0.407097i
\(291\) 0 0
\(292\) 2.08342 12.3301i 0.121923 0.721564i
\(293\) −20.3123 5.44266i −1.18666 0.317963i −0.389093 0.921199i \(-0.627211\pi\)
−0.797563 + 0.603235i \(0.793878\pi\)
\(294\) 0 0
\(295\) −8.75903 + 5.05703i −0.509971 + 0.294432i
\(296\) −9.49712 + 4.05360i −0.552009 + 0.235611i
\(297\) 0 0
\(298\) −7.40550 + 8.13987i −0.428989 + 0.471530i
\(299\) −11.7977 3.03796i −0.682276 0.175690i
\(300\) 0 0
\(301\) 13.1069 3.51197i 0.755466 0.202427i
\(302\) 13.2620 4.23364i 0.763144 0.243619i
\(303\) 0 0
\(304\) −14.4039 + 21.2095i −0.826119 + 1.21645i
\(305\) 9.89482 + 2.65131i 0.566576 + 0.151814i
\(306\) 0 0
\(307\) −1.73231 1.73231i −0.0988683 0.0988683i 0.655943 0.754811i \(-0.272271\pi\)
−0.754811 + 0.655943i \(0.772271\pi\)
\(308\) −2.54388 3.57836i −0.144951 0.203896i
\(309\) 0 0
\(310\) −1.09803 + 2.12782i −0.0623640 + 0.120852i
\(311\) 2.28061 0.129321 0.0646606 0.997907i \(-0.479404\pi\)
0.0646606 + 0.997907i \(0.479404\pi\)
\(312\) 0 0
\(313\) 32.2565 1.82325 0.911623 0.411028i \(-0.134830\pi\)
0.911623 + 0.411028i \(0.134830\pi\)
\(314\) −6.88639 + 13.3448i −0.388621 + 0.753090i
\(315\) 0 0
\(316\) 5.29612 3.76505i 0.297930 0.211800i
\(317\) 17.9781 + 17.9781i 1.00975 + 1.00975i 0.999952 + 0.00979695i \(0.00311852\pi\)
0.00979695 + 0.999952i \(0.496881\pi\)
\(318\) 0 0
\(319\) −9.89691 2.65187i −0.554121 0.148476i
\(320\) 5.08803 + 2.79394i 0.284429 + 0.156186i
\(321\) 0 0
\(322\) −6.74377 + 2.15281i −0.375816 + 0.119972i
\(323\) −7.77826 + 2.08418i −0.432794 + 0.115967i
\(324\) 0 0
\(325\) 15.5384 4.32664i 0.861916 0.239999i
\(326\) 11.0307 12.1246i 0.610934 0.671518i
\(327\) 0 0
\(328\) 5.05625 2.15813i 0.279185 0.119163i
\(329\) −5.38361 + 3.10823i −0.296808 + 0.171362i
\(330\) 0 0
\(331\) 28.0985 + 7.52896i 1.54443 + 0.413829i 0.927694 0.373341i \(-0.121788\pi\)
0.616736 + 0.787170i \(0.288454\pi\)
\(332\) 8.08573 + 1.36625i 0.443762 + 0.0749826i
\(333\) 0 0
\(334\) 2.70947 12.4316i 0.148255 0.680226i
\(335\) 2.63770 4.56864i 0.144113 0.249611i
\(336\) 0 0
\(337\) 13.9376i 0.759229i 0.925145 + 0.379615i \(0.123943\pi\)
−0.925145 + 0.379615i \(0.876057\pi\)
\(338\) −18.3438 + 1.22616i −0.997773 + 0.0666941i
\(339\) 0 0
\(340\) 0.635787 + 1.70873i 0.0344804 + 0.0926690i
\(341\) 2.99443 + 1.72884i 0.162158 + 0.0936217i
\(342\) 0 0
\(343\) −12.3667 12.3667i −0.667739 0.667739i
\(344\) 15.9901 + 20.3827i 0.862126 + 1.09896i
\(345\) 0 0
\(346\) 0.930729 + 19.7021i 0.0500363 + 1.05919i
\(347\) 14.4501 + 25.0283i 0.775720 + 1.34359i 0.934389 + 0.356255i \(0.115947\pi\)
−0.158668 + 0.987332i \(0.550720\pi\)
\(348\) 0 0
\(349\) −5.08095 18.9624i −0.271977 1.01503i −0.957840 0.287302i \(-0.907242\pi\)
0.685863 0.727731i \(-0.259425\pi\)
\(350\) 6.30731 6.93278i 0.337140 0.370572i
\(351\) 0 0
\(352\) 4.37680 7.14879i 0.233284 0.381032i
\(353\) 4.83344 + 18.0387i 0.257258 + 0.960101i 0.966820 + 0.255458i \(0.0822262\pi\)
−0.709562 + 0.704643i \(0.751107\pi\)
\(354\) 0 0
\(355\) −2.37893 + 1.37348i −0.126261 + 0.0728966i
\(356\) 3.27501 + 2.70843i 0.173575 + 0.143546i
\(357\) 0 0
\(358\) 7.09026 + 11.0422i 0.374732 + 0.583600i
\(359\) −16.3844 + 16.3844i −0.864734 + 0.864734i −0.991884 0.127149i \(-0.959417\pi\)
0.127149 + 0.991884i \(0.459417\pi\)
\(360\) 0 0
\(361\) 19.1236 + 11.0410i 1.00651 + 0.581107i
\(362\) 26.1237 + 13.4808i 1.37303 + 0.708534i
\(363\) 0 0
\(364\) −8.64618 + 6.27468i −0.453183 + 0.328883i
\(365\) 4.53666i 0.237460i
\(366\) 0 0
\(367\) 25.4992 + 14.7220i 1.33105 + 0.768480i 0.985460 0.169907i \(-0.0543466\pi\)
0.345587 + 0.938387i \(0.387680\pi\)
\(368\) −8.83450 10.2282i −0.460530 0.533179i
\(369\) 0 0
\(370\) 3.15230 2.02410i 0.163880 0.105228i
\(371\) 0.196821 0.734545i 0.0102184 0.0381357i
\(372\) 0 0
\(373\) −20.6658 + 11.9314i −1.07003 + 0.617785i −0.928191 0.372104i \(-0.878636\pi\)
−0.141844 + 0.989889i \(0.545303\pi\)
\(374\) 2.50807 0.800651i 0.129689 0.0414007i
\(375\) 0 0
\(376\) −9.49274 7.12374i −0.489551 0.367379i
\(377\) −6.21711 + 24.1436i −0.320197 + 1.24346i
\(378\) 0 0
\(379\) 3.24058 + 12.0940i 0.166457 + 0.621227i 0.997850 + 0.0655416i \(0.0208775\pi\)
−0.831393 + 0.555686i \(0.812456\pi\)
\(380\) 3.87058 8.45770i 0.198556 0.433871i
\(381\) 0 0
\(382\) 36.8027 1.73856i 1.88299 0.0889527i
\(383\) 8.74431 32.6342i 0.446814 1.66753i −0.264290 0.964443i \(-0.585138\pi\)
0.711103 0.703088i \(-0.248196\pi\)
\(384\) 0 0
\(385\) 1.12629 + 1.12629i 0.0574011 + 0.0574011i
\(386\) −20.7662 4.52600i −1.05697 0.230367i
\(387\) 0 0
\(388\) 0.790141 + 2.12357i 0.0401133 + 0.107808i
\(389\) −29.5448 −1.49798 −0.748990 0.662581i \(-0.769461\pi\)
−0.748990 + 0.662581i \(0.769461\pi\)
\(390\) 0 0
\(391\) 4.24501i 0.214679i
\(392\) 5.06630 12.6117i 0.255887 0.636986i
\(393\) 0 0
\(394\) −27.5783 6.01069i −1.38937 0.302814i
\(395\) −1.66696 + 1.66696i −0.0838736 + 0.0838736i
\(396\) 0 0
\(397\) −28.0508 7.51619i −1.40783 0.377227i −0.526679 0.850064i \(-0.676563\pi\)
−0.881150 + 0.472838i \(0.843230\pi\)
\(398\) −0.751413 15.9062i −0.0376649 0.797308i
\(399\) 0 0
\(400\) 16.9007 + 5.87929i 0.845035 + 0.293965i
\(401\) 5.34143 1.43123i 0.266738 0.0714723i −0.122971 0.992410i \(-0.539242\pi\)
0.389709 + 0.920938i \(0.372576\pi\)
\(402\) 0 0
\(403\) 4.13532 7.32697i 0.205995 0.364982i
\(404\) 22.8069 2.15962i 1.13469 0.107445i
\(405\) 0 0
\(406\) 4.40568 + 13.8009i 0.218650 + 0.684930i
\(407\) −2.70485 4.68493i −0.134074 0.232223i
\(408\) 0 0
\(409\) −17.8385 4.77981i −0.882056 0.236346i −0.210762 0.977537i \(-0.567595\pi\)
−0.671294 + 0.741191i \(0.734261\pi\)
\(410\) −1.67828 + 1.07763i −0.0828843 + 0.0532203i
\(411\) 0 0
\(412\) −2.88433 4.05725i −0.142101 0.199887i
\(413\) 10.3253 17.8840i 0.508075 0.880012i
\(414\) 0 0
\(415\) −2.97501 −0.146038
\(416\) −17.4980 10.4794i −0.857912 0.513796i
\(417\) 0 0
\(418\) −11.9360 6.15939i −0.583808 0.301266i
\(419\) −14.1415 + 24.4939i −0.690859 + 1.19660i 0.280698 + 0.959796i \(0.409434\pi\)
−0.971557 + 0.236807i \(0.923899\pi\)
\(420\) 0 0
\(421\) 19.6915 + 19.6915i 0.959704 + 0.959704i 0.999219 0.0395149i \(-0.0125812\pi\)
−0.0395149 + 0.999219i \(0.512581\pi\)
\(422\) 1.36087 0.873819i 0.0662461 0.0425368i
\(423\) 0 0
\(424\) 1.43733 0.204919i 0.0698028 0.00995174i
\(425\) 2.81017 + 4.86736i 0.136313 + 0.236102i
\(426\) 0 0
\(427\) −20.2030 + 5.41337i −0.977691 + 0.261971i
\(428\) 20.4293 1.93448i 0.987488 0.0935068i
\(429\) 0 0
\(430\) −6.95199 6.32479i −0.335255 0.305009i
\(431\) −30.7854 + 8.24891i −1.48288 + 0.397336i −0.907326 0.420428i \(-0.861880\pi\)
−0.575553 + 0.817764i \(0.695213\pi\)
\(432\) 0 0
\(433\) 13.1701 7.60376i 0.632915 0.365414i −0.148965 0.988842i \(-0.547594\pi\)
0.781880 + 0.623429i \(0.214261\pi\)
\(434\) −0.230694 4.88344i −0.0110737 0.234412i
\(435\) 0 0
\(436\) 3.39791 20.1095i 0.162730 0.963069i
\(437\) −15.3136 + 15.3136i −0.732548 + 0.732548i
\(438\) 0 0
\(439\) 1.65131 2.86016i 0.0788129 0.136508i −0.823925 0.566699i \(-0.808220\pi\)
0.902738 + 0.430191i \(0.141554\pi\)
\(440\) −1.13357 + 2.82182i −0.0540407 + 0.134525i
\(441\) 0 0
\(442\) −2.00771 6.08344i −0.0954972 0.289360i
\(443\) 12.1161 0.575654 0.287827 0.957682i \(-0.407067\pi\)
0.287827 + 0.957682i \(0.407067\pi\)
\(444\) 0 0
\(445\) −1.33525 0.770906i −0.0632968 0.0365444i
\(446\) −20.2882 4.42183i −0.960676 0.209380i
\(447\) 0 0
\(448\) −11.8491 + 0.253975i −0.559817 + 0.0119992i
\(449\) −2.46287 + 9.19155i −0.116230 + 0.433776i −0.999376 0.0353221i \(-0.988754\pi\)
0.883146 + 0.469098i \(0.155421\pi\)
\(450\) 0 0
\(451\) 1.44006 + 2.49425i 0.0678096 + 0.117450i
\(452\) −3.94736 + 8.62548i −0.185668 + 0.405709i
\(453\) 0 0
\(454\) 9.37303 + 8.52741i 0.439898 + 0.400211i
\(455\) 2.71365 2.76720i 0.127218 0.129728i
\(456\) 0 0
\(457\) −3.13824 11.7121i −0.146800 0.547867i −0.999669 0.0257405i \(-0.991806\pi\)
0.852868 0.522126i \(-0.174861\pi\)
\(458\) −3.11809 + 0.995387i −0.145699 + 0.0465114i
\(459\) 0 0
\(460\) 3.77852 + 3.12483i 0.176174 + 0.145696i
\(461\) 6.26259 23.3723i 0.291678 1.08856i −0.652142 0.758097i \(-0.726129\pi\)
0.943820 0.330460i \(-0.107204\pi\)
\(462\) 0 0
\(463\) 12.7547 12.7547i 0.592763 0.592763i −0.345614 0.938377i \(-0.612329\pi\)
0.938377 + 0.345614i \(0.112329\pi\)
\(464\) −20.9316 + 18.0796i −0.971727 + 0.839323i
\(465\) 0 0
\(466\) −9.87350 + 19.1334i −0.457381 + 0.886336i
\(467\) 18.1587i 0.840286i −0.907458 0.420143i \(-0.861980\pi\)
0.907458 0.420143i \(-0.138020\pi\)
\(468\) 0 0
\(469\) 10.7712i 0.497367i
\(470\) 3.82634 + 1.97453i 0.176496 + 0.0910782i
\(471\) 0 0
\(472\) 39.1417 + 4.72699i 1.80164 + 0.217577i
\(473\) −9.59686 + 9.59686i −0.441264 + 0.441264i
\(474\) 0 0
\(475\) 7.42117 27.6962i 0.340507 1.27079i
\(476\) −2.86864 2.37236i −0.131484 0.108737i
\(477\) 0 0
\(478\) 12.2410 + 38.3455i 0.559892 + 1.75388i
\(479\) −4.24253 15.8334i −0.193846 0.723444i −0.992562 0.121736i \(-0.961154\pi\)
0.798716 0.601708i \(-0.205513\pi\)
\(480\) 0 0
\(481\) −11.3348 + 6.69263i −0.516822 + 0.305158i
\(482\) 3.55957 3.91256i 0.162134 0.178212i
\(483\) 0 0
\(484\) −16.0116 7.32754i −0.727800 0.333070i
\(485\) −0.411007 0.711885i −0.0186629 0.0323251i
\(486\) 0 0
\(487\) −9.33917 + 34.8542i −0.423198 + 1.57940i 0.344629 + 0.938739i \(0.388005\pi\)
−0.767827 + 0.640658i \(0.778662\pi\)
\(488\) −24.6472 31.4180i −1.11573 1.42222i
\(489\) 0 0
\(490\) −1.05002 + 4.81769i −0.0474349 + 0.217641i
\(491\) 12.9846 + 7.49664i 0.585985 + 0.338319i 0.763508 0.645798i \(-0.223475\pi\)
−0.177523 + 0.984117i \(0.556808\pi\)
\(492\) 0 0
\(493\) −8.68730 −0.391256
\(494\) −14.7029 + 29.1883i −0.661516 + 1.31324i
\(495\) 0 0
\(496\) 8.40210 4.06510i 0.377266 0.182528i
\(497\) 2.80433 4.85724i 0.125791 0.217877i
\(498\) 0 0
\(499\) −30.5157 + 30.5157i −1.36607 + 1.36607i −0.500105 + 0.865965i \(0.666705\pi\)
−0.865965 + 0.500105i \(0.833295\pi\)
\(500\) −13.5555 2.29048i −0.606221 0.102433i
\(501\) 0 0
\(502\) −31.7082 + 1.49790i −1.41521 + 0.0668546i
\(503\) −30.7732 + 17.7669i −1.37211 + 0.792187i −0.991193 0.132424i \(-0.957724\pi\)
−0.380914 + 0.924610i \(0.624391\pi\)
\(504\) 0 0
\(505\) −8.02797 + 2.15109i −0.357240 + 0.0957222i
\(506\) 4.76485 5.23736i 0.211823 0.232829i
\(507\) 0 0
\(508\) 37.4599 3.54714i 1.66201 0.157379i
\(509\) −17.3479 + 4.64835i −0.768931 + 0.206034i −0.621899 0.783097i \(-0.713639\pi\)
−0.147032 + 0.989132i \(0.546972\pi\)
\(510\) 0 0
\(511\) −4.63141 8.02185i −0.204882 0.354866i
\(512\) −9.32657 20.6159i −0.412180 0.911102i
\(513\) 0 0
\(514\) −22.7719 35.4646i −1.00443 1.56428i
\(515\) 1.27702 + 1.27702i 0.0562724 + 0.0562724i
\(516\) 0 0
\(517\) 3.10887 5.38472i 0.136728 0.236820i
\(518\) −3.50761 + 6.79722i −0.154115 + 0.298653i
\(519\) 0 0
\(520\) 6.89284 + 2.69105i 0.302271 + 0.118010i
\(521\) 33.0188 1.44658 0.723289 0.690545i \(-0.242629\pi\)
0.723289 + 0.690545i \(0.242629\pi\)
\(522\) 0 0
\(523\) 0.905353 1.56812i 0.0395883 0.0685690i −0.845552 0.533893i \(-0.820729\pi\)
0.885141 + 0.465324i \(0.154062\pi\)
\(524\) 1.62357 + 2.28380i 0.0709261 + 0.0997684i
\(525\) 0 0
\(526\) −1.86738 2.90823i −0.0814217 0.126805i
\(527\) 2.83176 + 0.758768i 0.123353 + 0.0330524i
\(528\) 0 0
\(529\) 5.79177 + 10.0316i 0.251816 + 0.436158i
\(530\) −0.501776 + 0.160182i −0.0217957 + 0.00695786i
\(531\) 0 0
\(532\) 1.79029 + 18.9066i 0.0776190 + 0.819703i
\(533\) 6.03462 3.56315i 0.261389 0.154337i
\(534\) 0 0
\(535\) −7.19106 + 1.92684i −0.310897 + 0.0833045i
\(536\) −18.9135 + 8.07274i −0.816940 + 0.348689i
\(537\) 0 0
\(538\) 37.4541 1.76934i 1.61476 0.0762815i
\(539\) 6.87768 + 1.84287i 0.296243 + 0.0793780i
\(540\) 0 0
\(541\) −27.7884 + 27.7884i −1.19472 + 1.19472i −0.218990 + 0.975727i \(0.570276\pi\)
−0.975727 + 0.218990i \(0.929724\pi\)
\(542\) 2.00165 9.18399i 0.0859783 0.394486i
\(543\) 0 0
\(544\) 2.01574 6.81517i 0.0864241 0.292198i
\(545\) 7.39896i 0.316937i
\(546\) 0 0
\(547\) 6.37762 0.272687 0.136344 0.990662i \(-0.456465\pi\)
0.136344 + 0.990662i \(0.456465\pi\)
\(548\) 31.4249 11.6926i 1.34240 0.499484i
\(549\) 0 0
\(550\) −1.99632 + 9.15950i −0.0851232 + 0.390562i
\(551\) 31.3388 + 31.3388i 1.33508 + 1.33508i
\(552\) 0 0
\(553\) 1.24578 4.64933i 0.0529761 0.197710i
\(554\) 0.117270 + 2.48242i 0.00498231 + 0.105468i
\(555\) 0 0
\(556\) 12.6104 27.5553i 0.534799 1.16860i
\(557\) 1.53541 + 5.73023i 0.0650574 + 0.242798i 0.990795 0.135368i \(-0.0432217\pi\)
−0.925738 + 0.378166i \(0.876555\pi\)
\(558\) 0 0
\(559\) 23.5786 + 23.1224i 0.997269 + 0.977972i
\(560\) 4.22331 0.807061i 0.178468 0.0341046i
\(561\) 0 0
\(562\) −10.5569 33.0698i −0.445315 1.39497i
\(563\) −5.39506 + 3.11484i −0.227375 + 0.131275i −0.609360 0.792893i \(-0.708574\pi\)
0.381986 + 0.924168i \(0.375240\pi\)
\(564\) 0 0
\(565\) 0.890693 3.32411i 0.0374717 0.139846i
\(566\) −3.05488 4.75761i −0.128406 0.199977i
\(567\) 0 0
\(568\) 10.6308 + 1.28384i 0.446058 + 0.0538687i
\(569\) 1.68213 + 0.971181i 0.0705187 + 0.0407140i 0.534845 0.844950i \(-0.320370\pi\)
−0.464326 + 0.885664i \(0.653703\pi\)
\(570\) 0 0
\(571\) 31.5350i 1.31970i 0.751398 + 0.659850i \(0.229380\pi\)
−0.751398 + 0.659850i \(0.770620\pi\)
\(572\) 4.35137 9.75913i 0.181940 0.408050i
\(573\) 0 0
\(574\) 1.86744 3.61883i 0.0779456 0.151047i
\(575\) 13.0902 + 7.55764i 0.545900 + 0.315175i
\(576\) 0 0
\(577\) 17.6927 17.6927i 0.736558 0.736558i −0.235352 0.971910i \(-0.575624\pi\)
0.971910 + 0.235352i \(0.0756242\pi\)
\(578\) −18.3519 + 11.7838i −0.763338 + 0.490142i
\(579\) 0 0
\(580\) 6.39488 7.73263i 0.265533 0.321080i
\(581\) 5.26050 3.03715i 0.218242 0.126002i
\(582\) 0 0
\(583\) 0.196861 + 0.734696i 0.00815316 + 0.0304280i
\(584\) 10.6147 14.1446i 0.439240 0.585310i
\(585\) 0 0
\(586\) −21.9977 20.0131i −0.908716 0.826733i
\(587\) −7.64218 28.5210i −0.315427 1.17719i −0.923592 0.383377i \(-0.874761\pi\)
0.608165 0.793810i \(-0.291906\pi\)
\(588\) 0 0
\(589\) −7.47818 12.9526i −0.308133 0.533702i
\(590\) −14.2875 + 0.674944i −0.588207 + 0.0277870i
\(591\) 0 0
\(592\) −14.5643 1.06479i −0.598591 0.0437624i
\(593\) 20.5469 + 20.5469i 0.843759 + 0.843759i 0.989346 0.145586i \(-0.0465069\pi\)
−0.145586 + 0.989346i \(0.546507\pi\)
\(594\) 0 0
\(595\) 1.16957 + 0.675250i 0.0479476 + 0.0276825i
\(596\) −14.5858 + 5.42709i −0.597456 + 0.222302i
\(597\) 0 0
\(598\) −12.8565 11.4690i −0.525741 0.469004i
\(599\) 28.2451i 1.15407i 0.816721 + 0.577033i \(0.195789\pi\)
−0.816721 + 0.577033i \(0.804211\pi\)
\(600\) 0 0
\(601\) −2.74994 + 4.76304i −0.112172 + 0.194288i −0.916646 0.399700i \(-0.869114\pi\)
0.804473 + 0.593989i \(0.202448\pi\)
\(602\) 18.7496 + 4.08648i 0.764177 + 0.166553i
\(603\) 0 0
\(604\) 19.4126 + 3.28016i 0.789889 + 0.133468i
\(605\) 6.17059 + 1.65341i 0.250870 + 0.0672205i
\(606\) 0 0
\(607\) −1.25794 + 0.726274i −0.0510584 + 0.0294786i −0.525312 0.850910i \(-0.676051\pi\)
0.474254 + 0.880388i \(0.342718\pi\)
\(608\) −31.8569 + 17.3136i −1.29197 + 0.702161i
\(609\) 0 0
\(610\) 10.7158 + 9.74908i 0.433872 + 0.394729i
\(611\) −13.1757 7.43632i −0.533031 0.300841i
\(612\) 0 0
\(613\) 30.9474 8.29232i 1.24995 0.334924i 0.427634 0.903952i \(-0.359347\pi\)
0.822318 + 0.569028i \(0.192681\pi\)
\(614\) −1.05363 3.30053i −0.0425210 0.133199i
\(615\) 0 0
\(616\) −0.876356 6.14687i −0.0353094 0.247665i
\(617\) 4.26824 + 1.14367i 0.171833 + 0.0460425i 0.343710 0.939076i \(-0.388316\pi\)
−0.171877 + 0.985118i \(0.554983\pi\)
\(618\) 0 0
\(619\) −8.69550 8.69550i −0.349502 0.349502i 0.510422 0.859924i \(-0.329489\pi\)
−0.859924 + 0.510422i \(0.829489\pi\)
\(620\) −2.75990 + 1.96203i −0.110840 + 0.0787970i
\(621\) 0 0
\(622\) 2.86614 + 1.47903i 0.114922 + 0.0593038i
\(623\) 3.14803 0.126123
\(624\) 0 0
\(625\) −17.3801 −0.695204
\(626\) 40.5383 + 20.9192i 1.62024 + 0.836099i
\(627\) 0 0
\(628\) −17.3089 + 12.3050i −0.690700 + 0.491024i
\(629\) −3.24329 3.24329i −0.129319 0.129319i
\(630\) 0 0
\(631\) −9.04870 2.42459i −0.360223 0.0965215i 0.0741682 0.997246i \(-0.476370\pi\)
−0.434391 + 0.900724i \(0.643037\pi\)
\(632\) 9.09761 1.29704i 0.361884 0.0515935i
\(633\) 0 0
\(634\) 10.9346 + 34.2531i 0.434270 + 1.36037i
\(635\) −13.1858 + 3.53312i −0.523261 + 0.140207i
\(636\) 0 0
\(637\) 4.32047 16.7782i 0.171183 0.664775i
\(638\) −10.7181 9.75114i −0.424334 0.386051i
\(639\) 0 0
\(640\) 4.58242 + 6.81100i 0.181136 + 0.269228i
\(641\) 31.6965 18.3000i 1.25194 0.722805i 0.280442 0.959871i \(-0.409519\pi\)
0.971494 + 0.237066i \(0.0761856\pi\)
\(642\) 0 0
\(643\) −13.8446 3.70965i −0.545977 0.146294i −0.0247210 0.999694i \(-0.507870\pi\)
−0.521256 + 0.853400i \(0.674536\pi\)
\(644\) −9.87137 1.66797i −0.388987 0.0657272i
\(645\) 0 0
\(646\) −11.1270 2.42512i −0.437784 0.0954152i
\(647\) −16.5697 + 28.6996i −0.651422 + 1.12830i 0.331356 + 0.943506i \(0.392494\pi\)
−0.982778 + 0.184790i \(0.940839\pi\)
\(648\) 0 0
\(649\) 20.6549i 0.810774i
\(650\) 22.3338 + 4.63958i 0.876003 + 0.181979i
\(651\) 0 0
\(652\) 21.7259 8.08381i 0.850853 0.316586i
\(653\) 35.8657 + 20.7071i 1.40353 + 0.810330i 0.994753 0.102303i \(-0.0326210\pi\)
0.408780 + 0.912633i \(0.365954\pi\)
\(654\) 0 0
\(655\) −0.718828 0.718828i −0.0280869 0.0280869i
\(656\) 7.75403 + 0.566890i 0.302744 + 0.0221333i
\(657\) 0 0
\(658\) −8.78161 + 0.414845i −0.342343 + 0.0161723i
\(659\) −14.1419 24.4945i −0.550889 0.954168i −0.998211 0.0597950i \(-0.980955\pi\)
0.447321 0.894373i \(-0.352378\pi\)
\(660\) 0 0
\(661\) −6.42654 23.9842i −0.249963 0.932876i −0.970823 0.239796i \(-0.922920\pi\)
0.720860 0.693081i \(-0.243747\pi\)
\(662\) 30.4299 + 27.6846i 1.18269 + 1.07599i
\(663\) 0 0
\(664\) 9.27567 + 6.96084i 0.359966 + 0.270133i
\(665\) −1.78322 6.65505i −0.0691502 0.258072i
\(666\) 0 0
\(667\) −20.2334 + 11.6817i −0.783440 + 0.452319i
\(668\) 11.4673 13.8662i 0.443684 0.536500i
\(669\) 0 0
\(670\) 6.27781 4.03100i 0.242533 0.155731i
\(671\) 14.7927 14.7927i 0.571064 0.571064i
\(672\) 0 0
\(673\) 19.3181 + 11.1533i 0.744658 + 0.429929i 0.823761 0.566938i \(-0.191872\pi\)
−0.0791022 + 0.996867i \(0.525205\pi\)
\(674\) −9.03890 + 17.5160i −0.348165 + 0.674693i
\(675\) 0 0
\(676\) −23.8488 10.3555i −0.917260 0.398288i
\(677\) 7.36423i 0.283030i −0.989936 0.141515i \(-0.954803\pi\)
0.989936 0.141515i \(-0.0451974\pi\)
\(678\) 0 0
\(679\) 1.45351 + 0.839184i 0.0557805 + 0.0322049i
\(680\) −0.309134 + 2.55977i −0.0118547 + 0.0981627i
\(681\) 0 0
\(682\) 2.64205 + 4.11468i 0.101169 + 0.157559i
\(683\) −1.34151 + 5.00660i −0.0513316 + 0.191572i −0.986831 0.161757i \(-0.948284\pi\)
0.935499 + 0.353329i \(0.114951\pi\)
\(684\) 0 0
\(685\) −10.5346 + 6.08214i −0.402506 + 0.232387i
\(686\) −7.52169 23.5620i −0.287179 0.899600i
\(687\) 0 0
\(688\) 6.87677 + 35.9858i 0.262174 + 1.37195i
\(689\) 1.78294 0.496455i 0.0679245 0.0189134i
\(690\) 0 0
\(691\) 6.75090 + 25.1947i 0.256816 + 0.958451i 0.967071 + 0.254506i \(0.0819130\pi\)
−0.710255 + 0.703945i \(0.751420\pi\)
\(692\) −11.6076 + 25.3641i −0.441256 + 0.964200i
\(693\) 0 0
\(694\) 1.92860 + 40.8254i 0.0732086 + 1.54971i
\(695\) −2.84544 + 10.6193i −0.107934 + 0.402814i
\(696\) 0 0
\(697\) 1.72672 + 1.72672i 0.0654044 + 0.0654044i
\(698\) 5.91213 27.1260i 0.223777 1.02674i
\(699\) 0 0
\(700\) 12.4228 4.62229i 0.469537 0.174706i
\(701\) 2.13901 0.0807892 0.0403946 0.999184i \(-0.487138\pi\)
0.0403946 + 0.999184i \(0.487138\pi\)
\(702\) 0 0
\(703\) 23.3999i 0.882545i
\(704\) 10.1367 6.14576i 0.382042 0.231627i
\(705\) 0 0
\(706\) −5.62413 + 25.8047i −0.211667 + 0.971171i
\(707\) 11.9993 11.9993i 0.451279 0.451279i
\(708\) 0 0
\(709\) −31.8967 8.54671i −1.19791 0.320978i −0.395901 0.918293i \(-0.629567\pi\)
−0.802007 + 0.597315i \(0.796234\pi\)
\(710\) −3.88045 + 0.183313i −0.145631 + 0.00687962i
\(711\) 0 0
\(712\) 2.35937 + 5.52774i 0.0884212 + 0.207161i
\(713\) 7.61569 2.04062i 0.285210 0.0764218i
\(714\) 0 0
\(715\) −0.966691 + 3.75406i −0.0361522 + 0.140394i
\(716\) 1.74948 + 18.4755i 0.0653810 + 0.690462i
\(717\) 0 0
\(718\) −31.2167 + 9.96532i −1.16500 + 0.371902i
\(719\) −24.1212 41.7791i −0.899568 1.55810i −0.828047 0.560659i \(-0.810548\pi\)
−0.0715216 0.997439i \(-0.522785\pi\)
\(720\) 0 0
\(721\) −3.56176 0.954371i −0.132647 0.0355426i
\(722\) 16.8732 + 26.2780i 0.627954 + 0.977964i
\(723\) 0 0
\(724\) 24.0883 + 33.8839i 0.895234 + 1.25928i
\(725\) 15.4665 26.7888i 0.574412 0.994910i
\(726\) 0 0
\(727\) 35.9735 1.33418 0.667092 0.744976i \(-0.267539\pi\)
0.667092 + 0.744976i \(0.267539\pi\)
\(728\) −14.9354 + 2.27841i −0.553541 + 0.0844436i
\(729\) 0 0
\(730\) −2.94214 + 5.70143i −0.108894 + 0.211020i
\(731\) −5.75364 + 9.96560i −0.212806 + 0.368591i
\(732\) 0 0
\(733\) 7.99326 + 7.99326i 0.295238 + 0.295238i 0.839145 0.543907i \(-0.183056\pi\)
−0.543907 + 0.839145i \(0.683056\pi\)
\(734\) 22.4985 + 35.0387i 0.830433 + 1.29330i
\(735\) 0 0
\(736\) −4.46951 18.5836i −0.164748 0.685001i
\(737\) −5.38670 9.33004i −0.198422 0.343677i
\(738\) 0 0
\(739\) 10.6104 2.84304i 0.390308 0.104583i −0.0583274 0.998298i \(-0.518577\pi\)
0.448636 + 0.893715i \(0.351910\pi\)
\(740\) 5.27433 0.499435i 0.193888 0.0183596i
\(741\) 0 0
\(742\) 0.723726 0.795494i 0.0265688 0.0292035i
\(743\) −9.10445 + 2.43953i −0.334010 + 0.0894977i −0.421926 0.906630i \(-0.638646\pi\)
0.0879163 + 0.996128i \(0.471979\pi\)
\(744\) 0 0
\(745\) 4.88959 2.82301i 0.179141 0.103427i
\(746\) −33.7095 + 1.59244i −1.23419 + 0.0583035i
\(747\) 0 0
\(748\) 3.67125 + 0.620332i 0.134234 + 0.0226816i
\(749\) 10.7484 10.7484i 0.392736 0.392736i
\(750\) 0 0
\(751\) 11.9625 20.7197i 0.436519 0.756073i −0.560899 0.827884i \(-0.689544\pi\)
0.997418 + 0.0718109i \(0.0228778\pi\)
\(752\) −7.31005 15.1090i −0.266570 0.550970i
\(753\) 0 0
\(754\) −23.4711 + 26.3104i −0.854767 + 0.958170i
\(755\) −7.14257 −0.259945
\(756\) 0 0
\(757\) 4.03960 + 2.33226i 0.146822 + 0.0847676i 0.571611 0.820525i \(-0.306319\pi\)
−0.424789 + 0.905292i \(0.639652\pi\)
\(758\) −3.77069 + 17.3007i −0.136958 + 0.628390i
\(759\) 0 0
\(760\) 10.3494 8.11902i 0.375411 0.294508i
\(761\) 5.39526 20.1354i 0.195578 0.729907i −0.796538 0.604588i \(-0.793338\pi\)
0.992116 0.125319i \(-0.0399955\pi\)
\(762\) 0 0
\(763\) −7.55350 13.0831i −0.273455 0.473638i
\(764\) 47.3792 + 21.6826i 1.71412 + 0.784449i
\(765\) 0 0
\(766\) 32.1535 35.3420i 1.16175 1.27696i
\(767\) 50.2562 0.490983i 1.81464 0.0177284i
\(768\) 0 0
\(769\) −10.2054 38.0871i −0.368016 1.37346i −0.863285 0.504716i \(-0.831597\pi\)
0.495269 0.868740i \(-0.335070\pi\)
\(770\) 0.685034 + 2.14589i 0.0246869 + 0.0773326i
\(771\) 0 0
\(772\) −23.1626 19.1555i −0.833641 0.689420i
\(773\) 12.6898 47.3590i 0.456421 1.70339i −0.227456 0.973788i \(-0.573041\pi\)
0.683877 0.729597i \(-0.260293\pi\)
\(774\) 0 0
\(775\) −7.38134 + 7.38134i −0.265146 + 0.265146i
\(776\) −0.384184 + 3.18122i −0.0137914 + 0.114199i
\(777\) 0 0
\(778\) −37.1303 19.1606i −1.33119 0.686940i
\(779\) 12.4581i 0.446357i
\(780\) 0 0
\(781\) 5.60981i 0.200735i
\(782\) 2.75300 5.33490i 0.0984471 0.190776i
\(783\) 0 0
\(784\) 14.5461 12.5641i 0.519502 0.448717i
\(785\) 5.44798 5.44798i 0.194447 0.194447i
\(786\) 0 0
\(787\) 4.46886 16.6780i 0.159298 0.594507i −0.839401 0.543512i \(-0.817094\pi\)
0.998699 0.0509947i \(-0.0162392\pi\)
\(788\) −30.7608 25.4392i −1.09581 0.906232i
\(789\) 0 0
\(790\) −3.17601 + 1.01388i −0.112997 + 0.0360721i
\(791\) 1.81859 + 6.78708i 0.0646617 + 0.241321i
\(792\) 0 0
\(793\) −36.3442 35.6409i −1.29062 1.26565i
\(794\) −30.3783 27.6376i −1.07809 0.980823i
\(795\) 0 0
\(796\) 9.37128 20.4774i 0.332156 0.725803i
\(797\) 7.88369 + 13.6550i 0.279255 + 0.483683i 0.971200 0.238267i \(-0.0765793\pi\)
−0.691945 + 0.721950i \(0.743246\pi\)
\(798\) 0 0
\(799\) 1.36445 5.09220i 0.0482708 0.180149i
\(800\) 17.4270 + 18.3493i 0.616138 + 0.648747i
\(801\) 0 0
\(802\) 7.64102 + 1.66536i 0.269814 + 0.0588060i
\(803\) 8.02350 + 4.63237i 0.283143 + 0.163473i
\(804\) 0 0
\(805\) 3.63201 0.128012
\(806\) 9.94878 6.52628i 0.350431 0.229878i
\(807\) 0 0
\(808\) 30.0631 + 12.0768i 1.05762 + 0.424860i
\(809\) −16.1331 + 27.9433i −0.567210 + 0.982436i 0.429631 + 0.903005i \(0.358644\pi\)
−0.996840 + 0.0794311i \(0.974690\pi\)
\(810\) 0 0
\(811\) −2.82597 + 2.82597i −0.0992332 + 0.0992332i −0.754980 0.655747i \(-0.772354\pi\)
0.655747 + 0.754980i \(0.272354\pi\)
\(812\) −3.41346 + 20.2015i −0.119789 + 0.708934i
\(813\) 0 0
\(814\) −0.361006 7.64194i −0.0126533 0.267850i
\(815\) −7.28319 + 4.20495i −0.255119 + 0.147293i
\(816\) 0 0
\(817\) 56.7061 15.1944i 1.98390 0.531583i
\(818\) −19.3186 17.5757i −0.675460 0.614521i
\(819\) 0 0
\(820\) −2.80804 + 0.265898i −0.0980612 + 0.00928557i
\(821\) −25.7200 + 6.89166i −0.897635 + 0.240521i −0.678000 0.735062i \(-0.737153\pi\)
−0.219635 + 0.975582i \(0.570487\pi\)
\(822\) 0 0
\(823\) −1.80298 3.12285i −0.0628478 0.108856i 0.832889 0.553439i \(-0.186685\pi\)
−0.895737 + 0.444584i \(0.853352\pi\)
\(824\) −0.993639 6.96951i −0.0346151 0.242794i
\(825\) 0 0
\(826\) 24.5745 15.7794i 0.855057 0.549035i
\(827\) −18.5758 18.5758i −0.645943 0.645943i 0.306067 0.952010i \(-0.400987\pi\)
−0.952010 + 0.306067i \(0.900987\pi\)
\(828\) 0 0
\(829\) 0.283646 0.491289i 0.00985143 0.0170632i −0.861058 0.508507i \(-0.830197\pi\)
0.870909 + 0.491444i \(0.163531\pi\)
\(830\) −3.73884 1.92938i −0.129777 0.0669696i
\(831\) 0 0
\(832\) −15.1944 24.5179i −0.526772 0.850006i
\(833\) 6.03708 0.209172
\(834\) 0 0
\(835\) −3.26397 + 5.65336i −0.112954 + 0.195643i
\(836\) −11.0060 15.4816i −0.380650 0.535442i
\(837\) 0 0
\(838\) −33.6572 + 21.6114i −1.16267 + 0.746554i
\(839\) −32.7243 8.76844i −1.12977 0.302720i −0.354937 0.934890i \(-0.615498\pi\)
−0.774830 + 0.632170i \(0.782164\pi\)
\(840\) 0 0
\(841\) 9.40638 + 16.2923i 0.324358 + 0.561805i
\(842\) 11.9768 + 37.5177i 0.412747 + 1.29294i
\(843\) 0 0
\(844\) 2.27696 0.215609i 0.0783764 0.00742158i
\(845\) 9.15713 + 2.26286i 0.315015 + 0.0778446i
\(846\) 0 0
\(847\) −12.5990 + 3.37588i −0.432905 + 0.115997i
\(848\) 1.93925 + 0.674613i 0.0665942 + 0.0231663i
\(849\) 0 0
\(850\) 0.375064 + 7.93952i 0.0128646 + 0.272323i
\(851\) −11.9151 3.19264i −0.408445 0.109442i
\(852\) 0 0
\(853\) 15.4913 15.4913i 0.530411 0.530411i −0.390283 0.920695i \(-0.627623\pi\)
0.920695 + 0.390283i \(0.127623\pi\)
\(854\) −28.9008 6.29893i −0.988963 0.215545i
\(855\) 0 0
\(856\) 26.9290 + 10.8178i 0.920416 + 0.369745i
\(857\) 17.3171i 0.591540i 0.955259 + 0.295770i \(0.0955762\pi\)
−0.955259 + 0.295770i \(0.904424\pi\)
\(858\) 0 0
\(859\) −22.9629 −0.783484 −0.391742 0.920075i \(-0.628127\pi\)
−0.391742 + 0.920075i \(0.628127\pi\)
\(860\) −4.63510 12.4572i −0.158056 0.424788i
\(861\) 0 0
\(862\) −44.0391 9.59833i −1.49998 0.326920i
\(863\) 18.9344 + 18.9344i 0.644536 + 0.644536i 0.951667 0.307131i \(-0.0993691\pi\)
−0.307131 + 0.951667i \(0.599369\pi\)
\(864\) 0 0
\(865\) 2.61917 9.77489i 0.0890546 0.332356i
\(866\) 21.4827 1.01485i 0.730013 0.0344859i
\(867\) 0 0
\(868\) 2.87711 6.28686i 0.0976556 0.213390i
\(869\) 1.24604 + 4.65029i 0.0422690 + 0.157750i
\(870\) 0 0
\(871\) −22.5732 + 13.3284i −0.764865 + 0.451615i
\(872\) 17.3118 23.0689i 0.586253 0.781212i
\(873\) 0 0
\(874\) −29.1766 + 9.31404i −0.986912 + 0.315052i
\(875\) −8.81910 + 5.09171i −0.298140 + 0.172131i
\(876\) 0 0
\(877\) 11.6288 43.3992i 0.392676 1.46549i −0.433027 0.901381i \(-0.642554\pi\)
0.825703 0.564106i \(-0.190779\pi\)
\(878\) 3.93017 2.52358i 0.132637 0.0851666i
\(879\) 0 0
\(880\) −3.25464 + 2.81117i −0.109714 + 0.0947645i
\(881\) −2.13057 1.23009i −0.0717808 0.0414427i 0.463680 0.886003i \(-0.346529\pi\)
−0.535461 + 0.844560i \(0.679862\pi\)
\(882\) 0 0
\(883\) 39.7470i 1.33759i −0.743446 0.668796i \(-0.766810\pi\)
0.743446 0.668796i \(-0.233190\pi\)
\(884\) 1.42209 8.94741i 0.0478299 0.300934i
\(885\) 0 0
\(886\) 15.2269 + 7.85763i 0.511558 + 0.263982i
\(887\) −17.1497 9.90141i −0.575832 0.332457i 0.183643 0.982993i \(-0.441211\pi\)
−0.759475 + 0.650536i \(0.774544\pi\)
\(888\) 0 0
\(889\) 19.7085 19.7085i 0.661003 0.661003i
\(890\) −1.17812 1.83478i −0.0394905 0.0615019i
\(891\) 0 0
\(892\) −22.6295 18.7146i −0.757692 0.626610i
\(893\) −23.2919 + 13.4476i −0.779435 + 0.450007i
\(894\) 0 0
\(895\) −1.74256 6.50333i −0.0582474 0.217382i
\(896\) −15.0560 7.36526i −0.502986 0.246056i
\(897\) 0 0
\(898\) −9.05616 + 9.95422i −0.302208 + 0.332177i
\(899\) −4.17607 15.5853i −0.139280 0.519799i
\(900\) 0 0
\(901\) 0.322450 + 0.558500i 0.0107424 + 0.0186063i
\(902\) 0.192199 + 4.06855i 0.00639953 + 0.135468i
\(903\) 0 0
\(904\) −10.5547 + 8.28008i −0.351044 + 0.275391i
\(905\) −10.6650 10.6650i −0.354515 0.354515i
\(906\) 0 0
\(907\) −16.4874 9.51900i −0.547455 0.316073i 0.200640 0.979665i \(-0.435698\pi\)
−0.748095 + 0.663592i \(0.769031\pi\)
\(908\) 6.24928 + 16.7955i 0.207390 + 0.557377i
\(909\) 0 0
\(910\) 5.20497 1.71779i 0.172543 0.0569443i
\(911\) 1.28948i 0.0427225i −0.999772 0.0213612i \(-0.993200\pi\)
0.999772 0.0213612i \(-0.00680001\pi\)
\(912\) 0 0
\(913\) −3.03778 + 5.26159i −0.100536 + 0.174133i
\(914\) 3.65161 16.7543i 0.120784 0.554184i
\(915\) 0 0
\(916\) −4.56418 0.771212i −0.150805 0.0254816i
\(917\) 2.00489 + 0.537210i 0.0662074 + 0.0177402i
\(918\) 0 0
\(919\) 23.2515 13.4243i 0.766997 0.442826i −0.0648055 0.997898i \(-0.520643\pi\)
0.831802 + 0.555072i \(0.187309\pi\)
\(920\) 2.72211 + 6.37759i 0.0897452 + 0.210263i
\(921\) 0 0
\(922\) 23.0281 25.3116i 0.758389 0.833595i
\(923\) 13.6494 0.133350i 0.449277 0.00438926i
\(924\) 0 0
\(925\) 15.7755 4.22703i 0.518695 0.138984i
\(926\) 24.3013 7.75770i 0.798589 0.254934i
\(927\) 0 0
\(928\) −38.0309 + 9.14672i −1.24842 + 0.300256i
\(929\) −37.8024 10.1291i −1.24026 0.332326i −0.421692 0.906739i \(-0.638564\pi\)
−0.818566 + 0.574413i \(0.805230\pi\)
\(930\) 0 0
\(931\) −21.7784 21.7784i −0.713757 0.713757i
\(932\) −24.8170 + 17.6426i −0.812907 + 0.577902i
\(933\) 0 0
\(934\) 11.7764 22.8209i 0.385336 0.746724i
\(935\) −1.35078 −0.0441752
\(936\) 0 0
\(937\) 46.1571 1.50789 0.753943 0.656939i \(-0.228149\pi\)
0.753943 + 0.656939i \(0.228149\pi\)
\(938\) −6.98540 + 13.5367i −0.228081 + 0.441988i
\(939\) 0 0
\(940\) 3.52821 + 4.96297i 0.115077 + 0.161874i
\(941\) −35.7367 35.7367i −1.16498 1.16498i −0.983370 0.181611i \(-0.941869\pi\)
−0.181611 0.983370i \(-0.558131\pi\)
\(942\) 0 0
\(943\) 6.34359 + 1.69976i 0.206576 + 0.0553518i
\(944\) 46.1256 + 31.3250i 1.50126 + 1.01954i
\(945\) 0 0
\(946\) −18.2846 + 5.83701i −0.594485 + 0.189777i
\(947\) −0.723796 + 0.193941i −0.0235202 + 0.00630222i −0.270560 0.962703i \(-0.587209\pi\)
0.247040 + 0.969005i \(0.420542\pi\)
\(948\) 0 0
\(949\) 11.0805 19.6324i 0.359687 0.637295i
\(950\) 27.2883 29.9943i 0.885348 0.973143i
\(951\) 0 0
\(952\) −2.06662 4.84184i −0.0669794 0.156925i
\(953\) 41.5062 23.9636i 1.34452 0.776257i 0.357050 0.934085i \(-0.383783\pi\)
0.987467 + 0.157828i \(0.0504492\pi\)
\(954\) 0 0
\(955\) −18.2591 4.89251i −0.590851 0.158318i
\(956\) −9.48418 + 56.1293i −0.306740 + 1.81535i
\(957\) 0 0
\(958\) 4.93656 22.6499i 0.159493 0.731786i
\(959\) 12.4184 21.5092i 0.401010 0.694569i
\(960\) 0 0
\(961\) 25.5550i 0.824354i
\(962\) −18.5853 + 1.06003i −0.599215 + 0.0341769i
\(963\) 0 0
\(964\) 7.01088 2.60862i 0.225805 0.0840179i
\(965\) 9.44359 + 5.45226i 0.304000 + 0.175514i
\(966\) 0 0
\(967\) 8.44481 + 8.44481i 0.271567 + 0.271567i 0.829731 0.558164i \(-0.188494\pi\)
−0.558164 + 0.829731i \(0.688494\pi\)
\(968\) −15.3704 19.5928i −0.494025 0.629737i
\(969\) 0 0
\(970\) −0.0548557 1.16121i −0.00176131 0.0372842i
\(971\) −24.1539 41.8358i −0.775136 1.34257i −0.934718 0.355390i \(-0.884348\pi\)
0.159582 0.987185i \(-0.448985\pi\)
\(972\) 0 0
\(973\) −5.80974 21.6822i −0.186252 0.695101i
\(974\) −34.3409 + 37.7463i −1.10035 + 1.20947i
\(975\) 0 0
\(976\) −10.5999 55.4688i −0.339295 1.77551i
\(977\) −8.21436 30.6564i −0.262801 0.980786i −0.963583 0.267410i \(-0.913832\pi\)
0.700782 0.713376i \(-0.252835\pi\)
\(978\) 0 0
\(979\) −2.72683 + 1.57434i −0.0871500 + 0.0503161i
\(980\) −4.44400 + 5.37365i −0.141958 + 0.171655i
\(981\) 0 0
\(982\) 11.4565 + 17.8422i 0.365593 + 0.569368i
\(983\) −18.1345 + 18.1345i −0.578400 + 0.578400i −0.934462 0.356062i \(-0.884119\pi\)
0.356062 + 0.934462i \(0.384119\pi\)
\(984\) 0 0
\(985\) 12.5414 + 7.24080i 0.399603 + 0.230711i
\(986\) −10.9177 5.63394i −0.347692 0.179421i
\(987\) 0 0
\(988\) −37.4073 + 27.1471i −1.19008 + 0.863664i
\(989\) 30.9475i 0.984074i
\(990\) 0 0
\(991\) 15.3411 + 8.85718i 0.487326 + 0.281358i 0.723464 0.690362i \(-0.242549\pi\)
−0.236139 + 0.971719i \(0.575882\pi\)
\(992\) 13.1956 + 0.340182i 0.418962 + 0.0108008i
\(993\) 0 0
\(994\) 6.67438 4.28564i 0.211698 0.135932i
\(995\) −2.11456 + 7.89164i −0.0670360 + 0.250182i
\(996\) 0 0
\(997\) 4.27051 2.46558i 0.135249 0.0780858i −0.430849 0.902424i \(-0.641786\pi\)
0.566098 + 0.824338i \(0.308453\pi\)
\(998\) −58.1407 + 18.5603i −1.84041 + 0.587515i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.ed.e.19.12 56
3.2 odd 2 312.2.bt.d.19.3 56
8.3 odd 2 inner 936.2.ed.e.19.5 56
13.11 odd 12 inner 936.2.ed.e.739.5 56
24.11 even 2 312.2.bt.d.19.10 yes 56
39.11 even 12 312.2.bt.d.115.10 yes 56
104.11 even 12 inner 936.2.ed.e.739.12 56
312.11 odd 12 312.2.bt.d.115.3 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bt.d.19.3 56 3.2 odd 2
312.2.bt.d.19.10 yes 56 24.11 even 2
312.2.bt.d.115.3 yes 56 312.11 odd 12
312.2.bt.d.115.10 yes 56 39.11 even 12
936.2.ed.e.19.5 56 8.3 odd 2 inner
936.2.ed.e.19.12 56 1.1 even 1 trivial
936.2.ed.e.739.5 56 13.11 odd 12 inner
936.2.ed.e.739.12 56 104.11 even 12 inner