Properties

Label 936.2.ed.e.19.5
Level $936$
Weight $2$
Character 936.19
Analytic conductor $7.474$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(19,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.ed (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 19.5
Character \(\chi\) \(=\) 936.19
Dual form 936.2.ed.e.739.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.764112 + 1.19001i) q^{2} +(-0.832266 - 1.81861i) q^{4} +(0.513065 + 0.513065i) q^{5} +(-1.43100 - 0.383434i) q^{7} +(2.80011 + 0.399211i) q^{8} +(-1.00259 + 0.218515i) q^{10} +(-1.43129 + 0.383513i) q^{11} +(-0.967164 - 3.47341i) q^{13} +(1.54973 - 1.40992i) q^{14} +(-2.61467 + 3.02713i) q^{16} +(-1.08804 + 0.628178i) q^{17} +(6.19113 + 1.65891i) q^{19} +(0.506057 - 1.36007i) q^{20} +(0.637280 - 1.99630i) q^{22} +(1.68941 - 2.92615i) q^{23} -4.47353i q^{25} +(4.87243 + 1.50314i) q^{26} +(0.493654 + 2.92154i) q^{28} +(-5.98829 - 3.45734i) q^{29} +(1.65000 + 1.65000i) q^{31} +(-1.60443 - 5.42455i) q^{32} +(0.0838407 - 1.77478i) q^{34} +(-0.537467 - 0.930920i) q^{35} +(-0.944898 - 3.52641i) q^{37} +(-6.70484 + 6.09994i) q^{38} +(1.23182 + 1.64146i) q^{40} +(-0.503062 - 1.87745i) q^{41} +(7.93214 - 4.57963i) q^{43} +(1.88867 + 2.28377i) q^{44} +(2.19126 + 4.24633i) q^{46} +(2.96711 - 2.96711i) q^{47} +(-4.16145 - 2.40261i) q^{49} +(5.32356 + 3.41828i) q^{50} +(-5.51184 + 4.64970i) q^{52} +0.513310i q^{53} +(-0.931112 - 0.537578i) q^{55} +(-3.85388 - 1.64493i) q^{56} +(8.69000 - 4.48435i) q^{58} +(3.60773 - 13.4642i) q^{59} +(12.2267 - 7.05906i) q^{61} +(-3.22431 + 0.702740i) q^{62} +(7.68126 + 2.23567i) q^{64} +(1.28587 - 2.27830i) q^{65} +(1.88176 + 7.02284i) q^{67} +(2.04795 + 1.45590i) q^{68} +(1.51849 + 0.0717338i) q^{70} +(-0.979852 + 3.65686i) q^{71} +(-4.42114 - 4.42114i) q^{73} +(4.91848 + 1.57013i) q^{74} +(-2.13577 - 12.6399i) q^{76} +2.19522 q^{77} +3.24902i q^{79} +(-2.89461 + 0.211622i) q^{80} +(2.61859 + 0.835933i) q^{82} +(2.89926 - 2.89926i) q^{83} +(-0.880529 - 0.235937i) q^{85} +(-0.611226 + 12.9387i) q^{86} +(-4.16088 + 0.502494i) q^{88} +(2.05252 - 0.549972i) q^{89} +(0.0521823 + 5.34128i) q^{91} +(-6.72756 - 0.637043i) q^{92} +(1.26370 + 5.79811i) q^{94} +(2.32532 + 4.02758i) q^{95} +(1.09430 + 0.293217i) q^{97} +(6.03896 - 3.11632i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 12 q^{8} + 28 q^{14} + 12 q^{16} - 8 q^{19} + 4 q^{20} + 10 q^{22} - 34 q^{26} - 14 q^{28} + 30 q^{32} + 56 q^{34} - 28 q^{40} - 40 q^{41} + 44 q^{44} - 18 q^{46} + 24 q^{49} + 72 q^{50} + 32 q^{52}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.764112 + 1.19001i −0.540309 + 0.841467i
\(3\) 0 0
\(4\) −0.832266 1.81861i −0.416133 0.909304i
\(5\) 0.513065 + 0.513065i 0.229449 + 0.229449i 0.812463 0.583013i \(-0.198126\pi\)
−0.583013 + 0.812463i \(0.698126\pi\)
\(6\) 0 0
\(7\) −1.43100 0.383434i −0.540866 0.144925i −0.0219645 0.999759i \(-0.506992\pi\)
−0.518901 + 0.854834i \(0.673659\pi\)
\(8\) 2.80011 + 0.399211i 0.989989 + 0.141142i
\(9\) 0 0
\(10\) −1.00259 + 0.218515i −0.317048 + 0.0691006i
\(11\) −1.43129 + 0.383513i −0.431550 + 0.115634i −0.468054 0.883700i \(-0.655045\pi\)
0.0365035 + 0.999334i \(0.488378\pi\)
\(12\) 0 0
\(13\) −0.967164 3.47341i −0.268243 0.963351i
\(14\) 1.54973 1.40992i 0.414184 0.376817i
\(15\) 0 0
\(16\) −2.61467 + 3.02713i −0.653666 + 0.756783i
\(17\) −1.08804 + 0.628178i −0.263888 + 0.152356i −0.626107 0.779737i \(-0.715353\pi\)
0.362219 + 0.932093i \(0.382019\pi\)
\(18\) 0 0
\(19\) 6.19113 + 1.65891i 1.42034 + 0.380580i 0.885605 0.464439i \(-0.153744\pi\)
0.534737 + 0.845018i \(0.320411\pi\)
\(20\) 0.506057 1.36007i 0.113158 0.304121i
\(21\) 0 0
\(22\) 0.637280 1.99630i 0.135869 0.425613i
\(23\) 1.68941 2.92615i 0.352267 0.610144i −0.634379 0.773022i \(-0.718744\pi\)
0.986646 + 0.162878i \(0.0520776\pi\)
\(24\) 0 0
\(25\) 4.47353i 0.894706i
\(26\) 4.87243 + 1.50314i 0.955562 + 0.294789i
\(27\) 0 0
\(28\) 0.493654 + 2.92154i 0.0932918 + 0.552119i
\(29\) −5.98829 3.45734i −1.11200 0.642012i −0.172651 0.984983i \(-0.555233\pi\)
−0.939346 + 0.342971i \(0.888567\pi\)
\(30\) 0 0
\(31\) 1.65000 + 1.65000i 0.296349 + 0.296349i 0.839582 0.543233i \(-0.182800\pi\)
−0.543233 + 0.839582i \(0.682800\pi\)
\(32\) −1.60443 5.42455i −0.283626 0.958935i
\(33\) 0 0
\(34\) 0.0838407 1.77478i 0.0143786 0.304372i
\(35\) −0.537467 0.930920i −0.0908485 0.157354i
\(36\) 0 0
\(37\) −0.944898 3.52641i −0.155340 0.579738i −0.999076 0.0429788i \(-0.986315\pi\)
0.843736 0.536759i \(-0.180351\pi\)
\(38\) −6.70484 + 6.09994i −1.08767 + 0.989541i
\(39\) 0 0
\(40\) 1.23182 + 1.64146i 0.194768 + 0.259538i
\(41\) −0.503062 1.87745i −0.0785651 0.293209i 0.915453 0.402425i \(-0.131833\pi\)
−0.994018 + 0.109216i \(0.965166\pi\)
\(42\) 0 0
\(43\) 7.93214 4.57963i 1.20964 0.698386i 0.246960 0.969026i \(-0.420568\pi\)
0.962681 + 0.270639i \(0.0872351\pi\)
\(44\) 1.88867 + 2.28377i 0.284728 + 0.344291i
\(45\) 0 0
\(46\) 2.19126 + 4.24633i 0.323083 + 0.626087i
\(47\) 2.96711 2.96711i 0.432797 0.432797i −0.456781 0.889579i \(-0.650998\pi\)
0.889579 + 0.456781i \(0.150998\pi\)
\(48\) 0 0
\(49\) −4.16145 2.40261i −0.594493 0.343231i
\(50\) 5.32356 + 3.41828i 0.752865 + 0.483417i
\(51\) 0 0
\(52\) −5.51184 + 4.64970i −0.764354 + 0.644797i
\(53\) 0.513310i 0.0705086i 0.999378 + 0.0352543i \(0.0112241\pi\)
−0.999378 + 0.0352543i \(0.988776\pi\)
\(54\) 0 0
\(55\) −0.931112 0.537578i −0.125551 0.0724869i
\(56\) −3.85388 1.64493i −0.514996 0.219813i
\(57\) 0 0
\(58\) 8.69000 4.48435i 1.14105 0.588824i
\(59\) 3.60773 13.4642i 0.469687 1.75290i −0.171176 0.985241i \(-0.554757\pi\)
0.640863 0.767655i \(-0.278577\pi\)
\(60\) 0 0
\(61\) 12.2267 7.05906i 1.56546 0.903820i 0.568775 0.822493i \(-0.307417\pi\)
0.996687 0.0813276i \(-0.0259160\pi\)
\(62\) −3.22431 + 0.702740i −0.409488 + 0.0892481i
\(63\) 0 0
\(64\) 7.68126 + 2.23567i 0.960158 + 0.279459i
\(65\) 1.28587 2.27830i 0.159492 0.282589i
\(66\) 0 0
\(67\) 1.88176 + 7.02284i 0.229894 + 0.857977i 0.980384 + 0.197095i \(0.0631507\pi\)
−0.750490 + 0.660881i \(0.770183\pi\)
\(68\) 2.04795 + 1.45590i 0.248350 + 0.176554i
\(69\) 0 0
\(70\) 1.51849 + 0.0717338i 0.181495 + 0.00857383i
\(71\) −0.979852 + 3.65686i −0.116287 + 0.433989i −0.999380 0.0352090i \(-0.988790\pi\)
0.883093 + 0.469198i \(0.155457\pi\)
\(72\) 0 0
\(73\) −4.42114 4.42114i −0.517455 0.517455i 0.399345 0.916801i \(-0.369237\pi\)
−0.916801 + 0.399345i \(0.869237\pi\)
\(74\) 4.91848 + 1.57013i 0.571762 + 0.182524i
\(75\) 0 0
\(76\) −2.13577 12.6399i −0.244989 1.44989i
\(77\) 2.19522 0.250169
\(78\) 0 0
\(79\) 3.24902i 0.365543i 0.983155 + 0.182771i \(0.0585068\pi\)
−0.983155 + 0.182771i \(0.941493\pi\)
\(80\) −2.89461 + 0.211622i −0.323627 + 0.0236600i
\(81\) 0 0
\(82\) 2.61859 + 0.835933i 0.289175 + 0.0923134i
\(83\) 2.89926 2.89926i 0.318235 0.318235i −0.529854 0.848089i \(-0.677753\pi\)
0.848089 + 0.529854i \(0.177753\pi\)
\(84\) 0 0
\(85\) −0.880529 0.235937i −0.0955068 0.0255910i
\(86\) −0.611226 + 12.9387i −0.0659102 + 1.39522i
\(87\) 0 0
\(88\) −4.16088 + 0.502494i −0.443551 + 0.0535660i
\(89\) 2.05252 0.549972i 0.217567 0.0582969i −0.148389 0.988929i \(-0.547409\pi\)
0.365956 + 0.930632i \(0.380742\pi\)
\(90\) 0 0
\(91\) 0.0521823 + 5.34128i 0.00547019 + 0.559919i
\(92\) −6.72756 0.637043i −0.701396 0.0664163i
\(93\) 0 0
\(94\) 1.26370 + 5.79811i 0.130341 + 0.598029i
\(95\) 2.32532 + 4.02758i 0.238573 + 0.413221i
\(96\) 0 0
\(97\) 1.09430 + 0.293217i 0.111109 + 0.0297716i 0.313945 0.949441i \(-0.398349\pi\)
−0.202836 + 0.979213i \(0.565016\pi\)
\(98\) 6.03896 3.11632i 0.610027 0.314796i
\(99\) 0 0
\(100\) −8.13559 + 3.72317i −0.813559 + 0.372317i
\(101\) −5.72724 + 9.91986i −0.569881 + 0.987063i 0.426696 + 0.904395i \(0.359677\pi\)
−0.996577 + 0.0826680i \(0.973656\pi\)
\(102\) 0 0
\(103\) 2.48901 0.245249 0.122625 0.992453i \(-0.460869\pi\)
0.122625 + 0.992453i \(0.460869\pi\)
\(104\) −1.32154 10.1120i −0.129588 0.991568i
\(105\) 0 0
\(106\) −0.610846 0.392226i −0.0593307 0.0380964i
\(107\) 5.13018 8.88572i 0.495953 0.859015i −0.504036 0.863682i \(-0.668152\pi\)
0.999989 + 0.00466706i \(0.00148558\pi\)
\(108\) 0 0
\(109\) 7.21056 + 7.21056i 0.690646 + 0.690646i 0.962374 0.271728i \(-0.0875951\pi\)
−0.271728 + 0.962374i \(0.587595\pi\)
\(110\) 1.35120 0.697266i 0.128832 0.0664817i
\(111\) 0 0
\(112\) 4.90228 3.32926i 0.463222 0.314586i
\(113\) 2.37145 + 4.10748i 0.223088 + 0.386399i 0.955744 0.294200i \(-0.0950531\pi\)
−0.732656 + 0.680599i \(0.761720\pi\)
\(114\) 0 0
\(115\) 2.36808 0.634526i 0.220825 0.0591698i
\(116\) −1.30369 + 13.7678i −0.121045 + 1.27831i
\(117\) 0 0
\(118\) 13.2659 + 14.5814i 1.22123 + 1.34233i
\(119\) 1.79784 0.481730i 0.164808 0.0441601i
\(120\) 0 0
\(121\) −7.62477 + 4.40216i −0.693161 + 0.400197i
\(122\) −0.942148 + 19.9438i −0.0852981 + 1.80563i
\(123\) 0 0
\(124\) 1.62747 4.37395i 0.146151 0.392792i
\(125\) 4.86053 4.86053i 0.434739 0.434739i
\(126\) 0 0
\(127\) −9.40686 + 16.2932i −0.834724 + 1.44578i 0.0595311 + 0.998226i \(0.481039\pi\)
−0.894255 + 0.447558i \(0.852294\pi\)
\(128\) −8.52982 + 7.43251i −0.753937 + 0.656947i
\(129\) 0 0
\(130\) 1.72867 + 3.27108i 0.151614 + 0.286893i
\(131\) 1.40105 0.122410 0.0612050 0.998125i \(-0.480506\pi\)
0.0612050 + 0.998125i \(0.480506\pi\)
\(132\) 0 0
\(133\) −8.22340 4.74778i −0.713059 0.411685i
\(134\) −9.79516 3.12691i −0.846173 0.270124i
\(135\) 0 0
\(136\) −3.29740 + 1.32461i −0.282750 + 0.113585i
\(137\) 4.33906 16.1936i 0.370711 1.38351i −0.488800 0.872396i \(-0.662565\pi\)
0.859511 0.511117i \(-0.170768\pi\)
\(138\) 0 0
\(139\) −7.57593 13.1219i −0.642582 1.11298i −0.984854 0.173384i \(-0.944530\pi\)
0.342273 0.939601i \(-0.388803\pi\)
\(140\) −1.24566 + 1.75221i −0.105278 + 0.148089i
\(141\) 0 0
\(142\) −3.60299 3.96028i −0.302357 0.332340i
\(143\) 2.71639 + 4.60054i 0.227156 + 0.384717i
\(144\) 0 0
\(145\) −1.29854 4.84622i −0.107838 0.402456i
\(146\) 8.63946 1.88297i 0.715007 0.155836i
\(147\) 0 0
\(148\) −5.62674 + 4.65331i −0.462515 + 0.382499i
\(149\) 2.01396 7.51621i 0.164990 0.615752i −0.833051 0.553196i \(-0.813408\pi\)
0.998041 0.0625561i \(-0.0199252\pi\)
\(150\) 0 0
\(151\) −6.96070 + 6.96070i −0.566453 + 0.566453i −0.931133 0.364680i \(-0.881178\pi\)
0.364680 + 0.931133i \(0.381178\pi\)
\(152\) 16.6736 + 7.11669i 1.35241 + 0.577240i
\(153\) 0 0
\(154\) −1.67740 + 2.61235i −0.135168 + 0.210509i
\(155\) 1.69312i 0.135994i
\(156\) 0 0
\(157\) 10.6185i 0.847450i −0.905791 0.423725i \(-0.860722\pi\)
0.905791 0.423725i \(-0.139278\pi\)
\(158\) −3.86637 2.48261i −0.307592 0.197506i
\(159\) 0 0
\(160\) 1.95997 3.60632i 0.154949 0.285105i
\(161\) −3.53953 + 3.53953i −0.278954 + 0.278954i
\(162\) 0 0
\(163\) 2.99986 11.1956i 0.234967 0.876908i −0.743197 0.669073i \(-0.766692\pi\)
0.978164 0.207835i \(-0.0666418\pi\)
\(164\) −2.99567 + 2.47741i −0.233922 + 0.193453i
\(165\) 0 0
\(166\) 1.23480 + 5.66552i 0.0958391 + 0.439729i
\(167\) 2.32855 + 8.69026i 0.180189 + 0.672473i 0.995609 + 0.0936043i \(0.0298389\pi\)
−0.815421 + 0.578868i \(0.803494\pi\)
\(168\) 0 0
\(169\) −11.1292 + 6.71872i −0.856091 + 0.516824i
\(170\) 0.953591 0.867560i 0.0731371 0.0665388i
\(171\) 0 0
\(172\) −14.9302 10.6140i −1.13842 0.809309i
\(173\) −6.97351 12.0785i −0.530186 0.918309i −0.999380 0.0352137i \(-0.988789\pi\)
0.469194 0.883095i \(-0.344545\pi\)
\(174\) 0 0
\(175\) −1.71530 + 6.40160i −0.129665 + 0.483916i
\(176\) 2.58140 5.33546i 0.194580 0.402176i
\(177\) 0 0
\(178\) −0.913883 + 2.86277i −0.0684984 + 0.214574i
\(179\) 8.03592 + 4.63954i 0.600633 + 0.346776i 0.769291 0.638899i \(-0.220610\pi\)
−0.168658 + 0.985675i \(0.553943\pi\)
\(180\) 0 0
\(181\) −20.7868 −1.54507 −0.772535 0.634973i \(-0.781011\pi\)
−0.772535 + 0.634973i \(0.781011\pi\)
\(182\) −6.39607 4.01924i −0.474109 0.297926i
\(183\) 0 0
\(184\) 5.89870 7.51912i 0.434858 0.554317i
\(185\) 1.32448 2.29407i 0.0973778 0.168663i
\(186\) 0 0
\(187\) 1.31638 1.31638i 0.0962634 0.0962634i
\(188\) −7.86543 2.92658i −0.573646 0.213443i
\(189\) 0 0
\(190\) −6.56968 0.310353i −0.476615 0.0225153i
\(191\) −22.5621 + 13.0262i −1.63254 + 0.942545i −0.649228 + 0.760593i \(0.724908\pi\)
−0.983307 + 0.181952i \(0.941759\pi\)
\(192\) 0 0
\(193\) −14.5165 + 3.88969i −1.04492 + 0.279986i −0.740152 0.672439i \(-0.765247\pi\)
−0.304771 + 0.952426i \(0.598580\pi\)
\(194\) −1.18510 + 1.07818i −0.0850851 + 0.0774089i
\(195\) 0 0
\(196\) −0.905977 + 9.56766i −0.0647126 + 0.683404i
\(197\) 19.2785 5.16566i 1.37354 0.368038i 0.504767 0.863255i \(-0.331578\pi\)
0.868769 + 0.495217i \(0.164912\pi\)
\(198\) 0 0
\(199\) 5.62998 + 9.75141i 0.399098 + 0.691259i 0.993615 0.112825i \(-0.0359898\pi\)
−0.594516 + 0.804083i \(0.702656\pi\)
\(200\) 1.78588 12.5264i 0.126281 0.885749i
\(201\) 0 0
\(202\) −7.42853 14.3954i −0.522669 1.01285i
\(203\) 7.24355 + 7.24355i 0.508398 + 0.508398i
\(204\) 0 0
\(205\) 0.705151 1.22136i 0.0492499 0.0853033i
\(206\) −1.90188 + 2.96196i −0.132510 + 0.206369i
\(207\) 0 0
\(208\) 13.0433 + 6.15408i 0.904389 + 0.426709i
\(209\) −9.49752 −0.656957
\(210\) 0 0
\(211\) 0.571787 0.990365i 0.0393635 0.0681795i −0.845672 0.533702i \(-0.820800\pi\)
0.885036 + 0.465523i \(0.154134\pi\)
\(212\) 0.933510 0.427211i 0.0641137 0.0293410i
\(213\) 0 0
\(214\) 6.65411 + 12.8947i 0.454865 + 0.881461i
\(215\) 6.41935 + 1.72006i 0.437796 + 0.117307i
\(216\) 0 0
\(217\) −1.72848 2.99382i −0.117337 0.203233i
\(218\) −14.0903 + 3.07099i −0.954318 + 0.207994i
\(219\) 0 0
\(220\) −0.202710 + 2.14073i −0.0136667 + 0.144328i
\(221\) 3.23423 + 3.17165i 0.217558 + 0.213348i
\(222\) 0 0
\(223\) 14.1824 3.80017i 0.949726 0.254478i 0.249480 0.968380i \(-0.419740\pi\)
0.700246 + 0.713902i \(0.253074\pi\)
\(224\) 0.215976 + 8.37771i 0.0144305 + 0.559759i
\(225\) 0 0
\(226\) −6.70001 0.316509i −0.445678 0.0210539i
\(227\) 8.65489 + 2.31907i 0.574445 + 0.153922i 0.534334 0.845273i \(-0.320562\pi\)
0.0401107 + 0.999195i \(0.487229\pi\)
\(228\) 0 0
\(229\) 1.63656 1.63656i 0.108147 0.108147i −0.650963 0.759110i \(-0.725635\pi\)
0.759110 + 0.650963i \(0.225635\pi\)
\(230\) −1.05438 + 3.30290i −0.0695241 + 0.217787i
\(231\) 0 0
\(232\) −15.3877 12.0715i −1.01025 0.792534i
\(233\) 15.2245i 0.997391i 0.866777 + 0.498695i \(0.166187\pi\)
−0.866777 + 0.498695i \(0.833813\pi\)
\(234\) 0 0
\(235\) 3.04464 0.198610
\(236\) −27.4888 + 4.64479i −1.78937 + 0.302350i
\(237\) 0 0
\(238\) −0.800486 + 2.50755i −0.0518878 + 0.162540i
\(239\) −20.1260 20.1260i −1.30184 1.30184i −0.927149 0.374693i \(-0.877748\pi\)
−0.374693 0.927149i \(-0.622252\pi\)
\(240\) 0 0
\(241\) 0.968043 3.61278i 0.0623571 0.232720i −0.927713 0.373294i \(-0.878228\pi\)
0.990070 + 0.140574i \(0.0448949\pi\)
\(242\) 0.587541 12.4373i 0.0377686 0.799502i
\(243\) 0 0
\(244\) −23.0135 16.3605i −1.47329 1.04737i
\(245\) −0.902396 3.36779i −0.0576520 0.215160i
\(246\) 0 0
\(247\) −0.225764 23.1088i −0.0143650 1.47038i
\(248\) 3.96150 + 5.27889i 0.251555 + 0.335210i
\(249\) 0 0
\(250\) 2.07011 + 9.49809i 0.130925 + 0.600712i
\(251\) −19.4389 + 11.2231i −1.22697 + 0.708393i −0.966395 0.257060i \(-0.917246\pi\)
−0.260577 + 0.965453i \(0.583913\pi\)
\(252\) 0 0
\(253\) −1.29582 + 4.83608i −0.0814678 + 0.304042i
\(254\) −12.2012 23.6441i −0.765571 1.48356i
\(255\) 0 0
\(256\) −2.32705 15.8299i −0.145441 0.989367i
\(257\) −25.8091 14.9009i −1.60993 0.929494i −0.989384 0.145324i \(-0.953578\pi\)
−0.620546 0.784170i \(-0.713089\pi\)
\(258\) 0 0
\(259\) 5.40858i 0.336073i
\(260\) −5.21352 0.442333i −0.323329 0.0274324i
\(261\) 0 0
\(262\) −1.07056 + 1.66727i −0.0661392 + 0.103004i
\(263\) 2.11644 + 1.22193i 0.130506 + 0.0753474i 0.563831 0.825890i \(-0.309327\pi\)
−0.433326 + 0.901237i \(0.642660\pi\)
\(264\) 0 0
\(265\) −0.263361 + 0.263361i −0.0161782 + 0.0161782i
\(266\) 11.9335 6.15812i 0.731691 0.377579i
\(267\) 0 0
\(268\) 11.2057 9.26706i 0.684495 0.566076i
\(269\) −22.9614 + 13.2568i −1.39998 + 0.808280i −0.994390 0.105774i \(-0.966268\pi\)
−0.405592 + 0.914054i \(0.632935\pi\)
\(270\) 0 0
\(271\) 1.72024 + 6.42004i 0.104497 + 0.389990i 0.998288 0.0584956i \(-0.0186304\pi\)
−0.893790 + 0.448485i \(0.851964\pi\)
\(272\) 0.943273 4.93610i 0.0571943 0.299295i
\(273\) 0 0
\(274\) 15.9551 + 17.5373i 0.963882 + 1.05946i
\(275\) 1.71566 + 6.40292i 0.103458 + 0.386111i
\(276\) 0 0
\(277\) −0.878646 1.52186i −0.0527927 0.0914397i 0.838421 0.545023i \(-0.183479\pi\)
−0.891214 + 0.453583i \(0.850146\pi\)
\(278\) 21.4041 + 1.01113i 1.28373 + 0.0606437i
\(279\) 0 0
\(280\) −1.13333 2.82124i −0.0677297 0.168602i
\(281\) −17.3570 17.3570i −1.03543 1.03543i −0.999349 0.0360826i \(-0.988512\pi\)
−0.0360826 0.999349i \(-0.511488\pi\)
\(282\) 0 0
\(283\) −3.46233 1.99897i −0.205814 0.118827i 0.393551 0.919303i \(-0.371247\pi\)
−0.599364 + 0.800476i \(0.704580\pi\)
\(284\) 7.46588 1.26151i 0.443019 0.0748570i
\(285\) 0 0
\(286\) −7.55034 0.282785i −0.446461 0.0167214i
\(287\) 2.87952i 0.169973i
\(288\) 0 0
\(289\) −7.71078 + 13.3555i −0.453576 + 0.785616i
\(290\) 6.75929 + 2.15777i 0.396919 + 0.126709i
\(291\) 0 0
\(292\) −4.36075 + 11.7199i −0.255194 + 0.685854i
\(293\) 20.3123 + 5.44266i 1.18666 + 0.317963i 0.797563 0.603235i \(-0.206122\pi\)
0.389093 + 0.921199i \(0.372789\pi\)
\(294\) 0 0
\(295\) 8.75903 5.05703i 0.509971 0.294432i
\(296\) −1.23804 10.2515i −0.0719597 0.595859i
\(297\) 0 0
\(298\) 7.40550 + 8.13987i 0.428989 + 0.471530i
\(299\) −11.7977 3.03796i −0.682276 0.175690i
\(300\) 0 0
\(301\) −13.1069 + 3.51197i −0.755466 + 0.202427i
\(302\) −2.96458 13.6021i −0.170592 0.782711i
\(303\) 0 0
\(304\) −21.2095 + 14.4039i −1.21645 + 0.826119i
\(305\) 9.89482 + 2.65131i 0.566576 + 0.151814i
\(306\) 0 0
\(307\) −1.73231 1.73231i −0.0988683 0.0988683i 0.655943 0.754811i \(-0.272271\pi\)
−0.754811 + 0.655943i \(0.772271\pi\)
\(308\) −1.82701 3.99225i −0.104104 0.227479i
\(309\) 0 0
\(310\) −2.01483 1.29373i −0.114435 0.0734790i
\(311\) −2.28061 −0.129321 −0.0646606 0.997907i \(-0.520596\pi\)
−0.0646606 + 0.997907i \(0.520596\pi\)
\(312\) 0 0
\(313\) 32.2565 1.82325 0.911623 0.411028i \(-0.134830\pi\)
0.911623 + 0.411028i \(0.134830\pi\)
\(314\) 12.6362 + 8.11373i 0.713101 + 0.457884i
\(315\) 0 0
\(316\) 5.90868 2.70405i 0.332389 0.152115i
\(317\) −17.9781 17.9781i −1.00975 1.00975i −0.999952 0.00979695i \(-0.996881\pi\)
−0.00979695 0.999952i \(-0.503119\pi\)
\(318\) 0 0
\(319\) 9.89691 + 2.65187i 0.554121 + 0.148476i
\(320\) 2.79394 + 5.08803i 0.156186 + 0.284429i
\(321\) 0 0
\(322\) −1.50749 6.91668i −0.0840093 0.385452i
\(323\) −7.77826 + 2.08418i −0.432794 + 0.115967i
\(324\) 0 0
\(325\) −15.5384 + 4.32664i −0.861916 + 0.239999i
\(326\) 11.0307 + 12.1246i 0.610934 + 0.671518i
\(327\) 0 0
\(328\) −0.659131 5.45791i −0.0363944 0.301362i
\(329\) −5.38361 + 3.10823i −0.296808 + 0.171362i
\(330\) 0 0
\(331\) 28.0985 + 7.52896i 1.54443 + 0.413829i 0.927694 0.373341i \(-0.121788\pi\)
0.616736 + 0.787170i \(0.288454\pi\)
\(332\) −7.68557 2.85966i −0.421800 0.156944i
\(333\) 0 0
\(334\) −12.1208 3.86933i −0.663221 0.211720i
\(335\) −2.63770 + 4.56864i −0.144113 + 0.249611i
\(336\) 0 0
\(337\) 13.9376i 0.759229i 0.925145 + 0.379615i \(0.123943\pi\)
−0.925145 + 0.379615i \(0.876057\pi\)
\(338\) 0.508576 18.3777i 0.0276629 0.999617i
\(339\) 0 0
\(340\) 0.303758 + 1.79770i 0.0164736 + 0.0974939i
\(341\) −2.99443 1.72884i −0.162158 0.0936217i
\(342\) 0 0
\(343\) 12.3667 + 12.3667i 0.667739 + 0.667739i
\(344\) 24.0391 9.65687i 1.29610 0.520664i
\(345\) 0 0
\(346\) 19.7021 + 0.930729i 1.05919 + 0.0500363i
\(347\) 14.4501 + 25.0283i 0.775720 + 1.34359i 0.934389 + 0.356255i \(0.115947\pi\)
−0.158668 + 0.987332i \(0.550720\pi\)
\(348\) 0 0
\(349\) 5.08095 + 18.9624i 0.271977 + 1.01503i 0.957840 + 0.287302i \(0.0927583\pi\)
−0.685863 + 0.727731i \(0.740575\pi\)
\(350\) −6.30731 6.93278i −0.337140 0.370572i
\(351\) 0 0
\(352\) 4.37680 + 7.14879i 0.233284 + 0.381032i
\(353\) 4.83344 + 18.0387i 0.257258 + 0.960101i 0.966820 + 0.255458i \(0.0822262\pi\)
−0.709562 + 0.704643i \(0.751107\pi\)
\(354\) 0 0
\(355\) −2.37893 + 1.37348i −0.126261 + 0.0728966i
\(356\) −2.70843 3.27501i −0.143546 0.173575i
\(357\) 0 0
\(358\) −11.6615 + 6.01773i −0.616327 + 0.318047i
\(359\) 16.3844 16.3844i 0.864734 0.864734i −0.127149 0.991884i \(-0.540583\pi\)
0.991884 + 0.127149i \(0.0405827\pi\)
\(360\) 0 0
\(361\) 19.1236 + 11.0410i 1.00651 + 0.581107i
\(362\) 15.8834 24.7366i 0.834814 1.30012i
\(363\) 0 0
\(364\) 9.67027 4.54027i 0.506860 0.237975i
\(365\) 4.53666i 0.237460i
\(366\) 0 0
\(367\) −25.4992 14.7220i −1.33105 0.768480i −0.345587 0.938387i \(-0.612320\pi\)
−0.985460 + 0.169907i \(0.945653\pi\)
\(368\) 4.44059 + 12.7650i 0.231482 + 0.665420i
\(369\) 0 0
\(370\) 1.71792 + 3.32907i 0.0893105 + 0.173070i
\(371\) 0.196821 0.734545i 0.0102184 0.0381357i
\(372\) 0 0
\(373\) 20.6658 11.9314i 1.07003 0.617785i 0.141844 0.989889i \(-0.454697\pi\)
0.928191 + 0.372104i \(0.121364\pi\)
\(374\) 0.560650 + 2.57238i 0.0289905 + 0.133014i
\(375\) 0 0
\(376\) 9.49274 7.12374i 0.489551 0.367379i
\(377\) −6.21711 + 24.1436i −0.320197 + 1.24346i
\(378\) 0 0
\(379\) 3.24058 + 12.0940i 0.166457 + 0.621227i 0.997850 + 0.0655416i \(0.0208775\pi\)
−0.831393 + 0.555686i \(0.812456\pi\)
\(380\) 5.38929 7.58087i 0.276465 0.388890i
\(381\) 0 0
\(382\) 1.73856 36.8027i 0.0889527 1.88299i
\(383\) −8.74431 + 32.6342i −0.446814 + 1.66753i 0.264290 + 0.964443i \(0.414862\pi\)
−0.711103 + 0.703088i \(0.751804\pi\)
\(384\) 0 0
\(385\) 1.12629 + 1.12629i 0.0574011 + 0.0574011i
\(386\) 6.46347 20.2470i 0.328982 1.03055i
\(387\) 0 0
\(388\) −0.377503 2.23414i −0.0191648 0.113421i
\(389\) 29.5448 1.49798 0.748990 0.662581i \(-0.230539\pi\)
0.748990 + 0.662581i \(0.230539\pi\)
\(390\) 0 0
\(391\) 4.24501i 0.214679i
\(392\) −10.6934 8.38889i −0.540097 0.423703i
\(393\) 0 0
\(394\) −8.58372 + 26.8888i −0.432442 + 1.35464i
\(395\) −1.66696 + 1.66696i −0.0838736 + 0.0838736i
\(396\) 0 0
\(397\) 28.0508 + 7.51619i 1.40783 + 0.377227i 0.881150 0.472838i \(-0.156770\pi\)
0.526679 + 0.850064i \(0.323437\pi\)
\(398\) −15.9062 0.751413i −0.797308 0.0376649i
\(399\) 0 0
\(400\) 13.5420 + 11.6968i 0.677098 + 0.584839i
\(401\) 5.34143 1.43123i 0.266738 0.0714723i −0.122971 0.992410i \(-0.539242\pi\)
0.389709 + 0.920938i \(0.372576\pi\)
\(402\) 0 0
\(403\) 4.13532 7.32697i 0.205995 0.364982i
\(404\) 22.8069 + 2.15962i 1.13469 + 0.107445i
\(405\) 0 0
\(406\) −14.1548 + 3.08504i −0.702491 + 0.153108i
\(407\) 2.70485 + 4.68493i 0.134074 + 0.232223i
\(408\) 0 0
\(409\) −17.8385 4.77981i −0.882056 0.236346i −0.210762 0.977537i \(-0.567595\pi\)
−0.671294 + 0.741191i \(0.734261\pi\)
\(410\) 0.914619 + 1.77239i 0.0451698 + 0.0875323i
\(411\) 0 0
\(412\) −2.07152 4.52653i −0.102056 0.223006i
\(413\) −10.3253 + 17.8840i −0.508075 + 0.880012i
\(414\) 0 0
\(415\) 2.97501 0.146038
\(416\) −17.2900 + 10.8193i −0.847710 + 0.530459i
\(417\) 0 0
\(418\) 7.25716 11.3022i 0.354960 0.552808i
\(419\) −14.1415 + 24.4939i −0.690859 + 1.19660i 0.280698 + 0.959796i \(0.409434\pi\)
−0.971557 + 0.236807i \(0.923899\pi\)
\(420\) 0 0
\(421\) −19.6915 19.6915i −0.959704 0.959704i 0.0395149 0.999219i \(-0.487419\pi\)
−0.999219 + 0.0395149i \(0.987419\pi\)
\(422\) 0.741639 + 1.43718i 0.0361024 + 0.0699611i
\(423\) 0 0
\(424\) −0.204919 + 1.43733i −0.00995174 + 0.0698028i
\(425\) 2.81017 + 4.86736i 0.136313 + 0.236102i
\(426\) 0 0
\(427\) −20.2030 + 5.41337i −0.977691 + 0.261971i
\(428\) −20.4293 1.93448i −0.987488 0.0935068i
\(429\) 0 0
\(430\) −6.95199 + 6.32479i −0.335255 + 0.305009i
\(431\) 30.7854 8.24891i 1.48288 0.397336i 0.575553 0.817764i \(-0.304787\pi\)
0.907326 + 0.420428i \(0.138120\pi\)
\(432\) 0 0
\(433\) 13.1701 7.60376i 0.632915 0.365414i −0.148965 0.988842i \(-0.547594\pi\)
0.781880 + 0.623429i \(0.214261\pi\)
\(434\) 4.88344 + 0.230694i 0.234412 + 0.0110737i
\(435\) 0 0
\(436\) 7.11207 19.1143i 0.340606 0.915408i
\(437\) 15.3136 15.3136i 0.732548 0.732548i
\(438\) 0 0
\(439\) −1.65131 + 2.86016i −0.0788129 + 0.136508i −0.902738 0.430191i \(-0.858446\pi\)
0.823925 + 0.566699i \(0.191780\pi\)
\(440\) −2.39261 1.87699i −0.114063 0.0894819i
\(441\) 0 0
\(442\) −6.24562 + 1.42529i −0.297074 + 0.0677940i
\(443\) 12.1161 0.575654 0.287827 0.957682i \(-0.407067\pi\)
0.287827 + 0.957682i \(0.407067\pi\)
\(444\) 0 0
\(445\) 1.33525 + 0.770906i 0.0632968 + 0.0365444i
\(446\) −6.31471 + 19.7810i −0.299010 + 0.936660i
\(447\) 0 0
\(448\) −10.1346 6.14449i −0.478816 0.290300i
\(449\) −2.46287 + 9.19155i −0.116230 + 0.433776i −0.999376 0.0353221i \(-0.988754\pi\)
0.883146 + 0.469098i \(0.155421\pi\)
\(450\) 0 0
\(451\) 1.44006 + 2.49425i 0.0678096 + 0.117450i
\(452\) 5.49621 7.73126i 0.258520 0.363648i
\(453\) 0 0
\(454\) −9.37303 + 8.52741i −0.439898 + 0.400211i
\(455\) −2.71365 + 2.76720i −0.127218 + 0.129728i
\(456\) 0 0
\(457\) −3.13824 11.7121i −0.146800 0.547867i −0.999669 0.0257405i \(-0.991806\pi\)
0.852868 0.522126i \(-0.174861\pi\)
\(458\) 0.697013 + 3.19804i 0.0325693 + 0.149434i
\(459\) 0 0
\(460\) −3.12483 3.77852i −0.145696 0.176174i
\(461\) −6.26259 + 23.3723i −0.291678 + 1.08856i 0.652142 + 0.758097i \(0.273871\pi\)
−0.943820 + 0.330460i \(0.892796\pi\)
\(462\) 0 0
\(463\) −12.7547 + 12.7547i −0.592763 + 0.592763i −0.938377 0.345614i \(-0.887671\pi\)
0.345614 + 0.938377i \(0.387671\pi\)
\(464\) 26.1232 9.08755i 1.21274 0.421879i
\(465\) 0 0
\(466\) −18.1174 11.6332i −0.839271 0.538899i
\(467\) 18.1587i 0.840286i −0.907458 0.420143i \(-0.861980\pi\)
0.907458 0.420143i \(-0.138020\pi\)
\(468\) 0 0
\(469\) 10.7712i 0.497367i
\(470\) −2.32644 + 3.62316i −0.107311 + 0.167124i
\(471\) 0 0
\(472\) 15.4771 36.2612i 0.712393 1.66906i
\(473\) −9.59686 + 9.59686i −0.441264 + 0.441264i
\(474\) 0 0
\(475\) 7.42117 27.6962i 0.340507 1.27079i
\(476\) −2.37236 2.86864i −0.108737 0.131484i
\(477\) 0 0
\(478\) 39.3287 8.57170i 1.79885 0.392061i
\(479\) 4.24253 + 15.8334i 0.193846 + 0.723444i 0.992562 + 0.121736i \(0.0388463\pi\)
−0.798716 + 0.601708i \(0.794487\pi\)
\(480\) 0 0
\(481\) −11.3348 + 6.69263i −0.516822 + 0.305158i
\(482\) 3.55957 + 3.91256i 0.162134 + 0.178212i
\(483\) 0 0
\(484\) 14.3516 + 10.2027i 0.652347 + 0.463759i
\(485\) 0.411007 + 0.711885i 0.0186629 + 0.0323251i
\(486\) 0 0
\(487\) 9.33917 34.8542i 0.423198 1.57940i −0.344629 0.938739i \(-0.611995\pi\)
0.767827 0.640658i \(-0.221338\pi\)
\(488\) 37.0541 14.8852i 1.67736 0.673820i
\(489\) 0 0
\(490\) 4.69725 + 1.49950i 0.212200 + 0.0677406i
\(491\) 12.9846 + 7.49664i 0.585985 + 0.338319i 0.763508 0.645798i \(-0.223475\pi\)
−0.177523 + 0.984117i \(0.556808\pi\)
\(492\) 0 0
\(493\) 8.68730 0.391256
\(494\) 27.6723 + 17.3890i 1.24503 + 0.782369i
\(495\) 0 0
\(496\) −9.30899 + 0.680571i −0.417986 + 0.0305585i
\(497\) 2.80433 4.85724i 0.125791 0.217877i
\(498\) 0 0
\(499\) −30.5157 + 30.5157i −1.36607 + 1.36607i −0.500105 + 0.865965i \(0.666705\pi\)
−0.865965 + 0.500105i \(0.833295\pi\)
\(500\) −12.8847 4.79414i −0.576219 0.214401i
\(501\) 0 0
\(502\) 1.49790 31.7082i 0.0668546 1.41521i
\(503\) 30.7732 17.7669i 1.37211 0.792187i 0.380914 0.924610i \(-0.375609\pi\)
0.991193 + 0.132424i \(0.0422760\pi\)
\(504\) 0 0
\(505\) −8.02797 + 2.15109i −0.357240 + 0.0957222i
\(506\) −4.76485 5.23736i −0.211823 0.232829i
\(507\) 0 0
\(508\) 37.4599 + 3.54714i 1.66201 + 0.157379i
\(509\) 17.3479 4.64835i 0.768931 0.206034i 0.147032 0.989132i \(-0.453028\pi\)
0.621899 + 0.783097i \(0.286361\pi\)
\(510\) 0 0
\(511\) 4.63141 + 8.02185i 0.204882 + 0.354866i
\(512\) 20.6159 + 9.32657i 0.911102 + 0.412180i
\(513\) 0 0
\(514\) 37.4534 19.3273i 1.65200 0.852490i
\(515\) 1.27702 + 1.27702i 0.0562724 + 0.0562724i
\(516\) 0 0
\(517\) −3.10887 + 5.38472i −0.136728 + 0.236820i
\(518\) −6.43628 4.13276i −0.282794 0.181583i
\(519\) 0 0
\(520\) 4.51010 5.86617i 0.197781 0.257249i
\(521\) 33.0188 1.44658 0.723289 0.690545i \(-0.242629\pi\)
0.723289 + 0.690545i \(0.242629\pi\)
\(522\) 0 0
\(523\) 0.905353 1.56812i 0.0395883 0.0685690i −0.845552 0.533893i \(-0.820729\pi\)
0.885141 + 0.465324i \(0.154062\pi\)
\(524\) −1.16604 2.54796i −0.0509389 0.111308i
\(525\) 0 0
\(526\) −3.07131 + 1.58491i −0.133916 + 0.0691053i
\(527\) −2.83176 0.758768i −0.123353 0.0330524i
\(528\) 0 0
\(529\) 5.79177 + 10.0316i 0.251816 + 0.436158i
\(530\) −0.112166 0.514641i −0.00487219 0.0223546i
\(531\) 0 0
\(532\) −1.79029 + 18.9066i −0.0776190 + 0.819703i
\(533\) −6.03462 + 3.56315i −0.261389 + 0.154337i
\(534\) 0 0
\(535\) 7.19106 1.92684i 0.310897 0.0833045i
\(536\) 2.46556 + 20.4160i 0.106496 + 0.881835i
\(537\) 0 0
\(538\) 1.76934 37.4541i 0.0762815 1.61476i
\(539\) 6.87768 + 1.84287i 0.296243 + 0.0793780i
\(540\) 0 0
\(541\) 27.7884 27.7884i 1.19472 1.19472i 0.218990 0.975727i \(-0.429724\pi\)
0.975727 0.218990i \(-0.0702761\pi\)
\(542\) −8.95439 2.85851i −0.384624 0.122784i
\(543\) 0 0
\(544\) 5.15327 + 4.89424i 0.220945 + 0.209839i
\(545\) 7.39896i 0.316937i
\(546\) 0 0
\(547\) 6.37762 0.272687 0.136344 0.990662i \(-0.456465\pi\)
0.136344 + 0.990662i \(0.456465\pi\)
\(548\) −33.0611 + 5.58634i −1.41230 + 0.238637i
\(549\) 0 0
\(550\) −8.93052 2.85089i −0.380799 0.121562i
\(551\) −31.3388 31.3388i −1.33508 1.33508i
\(552\) 0 0
\(553\) 1.24578 4.64933i 0.0529761 0.197710i
\(554\) 2.48242 + 0.117270i 0.105468 + 0.00498231i
\(555\) 0 0
\(556\) −17.5584 + 24.6985i −0.744641 + 1.04745i
\(557\) −1.53541 5.73023i −0.0650574 0.242798i 0.925738 0.378166i \(-0.123445\pi\)
−0.990795 + 0.135368i \(0.956778\pi\)
\(558\) 0 0
\(559\) −23.5786 23.1224i −0.997269 0.977972i
\(560\) 4.22331 + 0.807061i 0.178468 + 0.0341046i
\(561\) 0 0
\(562\) 33.9177 7.39238i 1.43073 0.311829i
\(563\) −5.39506 + 3.11484i −0.227375 + 0.131275i −0.609360 0.792893i \(-0.708574\pi\)
0.381986 + 0.924168i \(0.375240\pi\)
\(564\) 0 0
\(565\) −0.890693 + 3.32411i −0.0374717 + 0.139846i
\(566\) 5.02441 2.59278i 0.211192 0.108982i
\(567\) 0 0
\(568\) −4.20355 + 9.84844i −0.176377 + 0.413232i
\(569\) 1.68213 + 0.971181i 0.0705187 + 0.0407140i 0.534845 0.844950i \(-0.320370\pi\)
−0.464326 + 0.885664i \(0.653703\pi\)
\(570\) 0 0
\(571\) 31.5350i 1.31970i 0.751398 + 0.659850i \(0.229380\pi\)
−0.751398 + 0.659850i \(0.770620\pi\)
\(572\) 6.10582 8.76893i 0.255297 0.366647i
\(573\) 0 0
\(574\) −3.42667 2.20027i −0.143026 0.0918377i
\(575\) −13.0902 7.55764i −0.545900 0.315175i
\(576\) 0 0
\(577\) 17.6927 17.6927i 0.736558 0.736558i −0.235352 0.971910i \(-0.575624\pi\)
0.971910 + 0.235352i \(0.0756242\pi\)
\(578\) −10.0013 19.3810i −0.415999 0.806144i
\(579\) 0 0
\(580\) −7.73263 + 6.39488i −0.321080 + 0.265533i
\(581\) −5.26050 + 3.03715i −0.218242 + 0.126002i
\(582\) 0 0
\(583\) −0.196861 0.734696i −0.00815316 0.0304280i
\(584\) −10.6147 14.1446i −0.439240 0.585310i
\(585\) 0 0
\(586\) −21.9977 + 20.0131i −0.908716 + 0.826733i
\(587\) −7.64218 28.5210i −0.315427 1.17719i −0.923592 0.383377i \(-0.874761\pi\)
0.608165 0.793810i \(-0.291906\pi\)
\(588\) 0 0
\(589\) 7.47818 + 12.9526i 0.308133 + 0.533702i
\(590\) −0.674944 + 14.2875i −0.0277870 + 0.588207i
\(591\) 0 0
\(592\) 13.1455 + 6.36004i 0.540276 + 0.261396i
\(593\) 20.5469 + 20.5469i 0.843759 + 0.843759i 0.989346 0.145586i \(-0.0465069\pi\)
−0.145586 + 0.989346i \(0.546507\pi\)
\(594\) 0 0
\(595\) 1.16957 + 0.675250i 0.0479476 + 0.0276825i
\(596\) −15.3452 + 2.59288i −0.628563 + 0.106209i
\(597\) 0 0
\(598\) 12.6300 11.7180i 0.516477 0.479186i
\(599\) 28.2451i 1.15407i −0.816721 0.577033i \(-0.804211\pi\)
0.816721 0.577033i \(-0.195789\pi\)
\(600\) 0 0
\(601\) −2.74994 + 4.76304i −0.112172 + 0.194288i −0.916646 0.399700i \(-0.869114\pi\)
0.804473 + 0.593989i \(0.202448\pi\)
\(602\) 5.83581 18.2809i 0.237850 0.745073i
\(603\) 0 0
\(604\) 18.4519 + 6.86562i 0.750798 + 0.279358i
\(605\) −6.17059 1.65341i −0.250870 0.0672205i
\(606\) 0 0
\(607\) 1.25794 0.726274i 0.0510584 0.0294786i −0.474254 0.880388i \(-0.657282\pi\)
0.525312 + 0.850910i \(0.323949\pi\)
\(608\) −0.934410 36.2457i −0.0378953 1.46996i
\(609\) 0 0
\(610\) −10.7158 + 9.74908i −0.433872 + 0.394729i
\(611\) −13.1757 7.43632i −0.533031 0.300841i
\(612\) 0 0
\(613\) −30.9474 + 8.29232i −1.24995 + 0.334924i −0.822318 0.569028i \(-0.807319\pi\)
−0.427634 + 0.903952i \(0.640653\pi\)
\(614\) 3.38516 0.737796i 0.136614 0.0297750i
\(615\) 0 0
\(616\) 6.14687 + 0.876356i 0.247665 + 0.0353094i
\(617\) 4.26824 + 1.14367i 0.171833 + 0.0460425i 0.343710 0.939076i \(-0.388316\pi\)
−0.171877 + 0.985118i \(0.554983\pi\)
\(618\) 0 0
\(619\) −8.69550 8.69550i −0.349502 0.349502i 0.510422 0.859924i \(-0.329489\pi\)
−0.859924 + 0.510422i \(0.829489\pi\)
\(620\) 3.07912 1.40912i 0.123660 0.0565918i
\(621\) 0 0
\(622\) 1.74264 2.71395i 0.0698734 0.108820i
\(623\) −3.14803 −0.126123
\(624\) 0 0
\(625\) −17.3801 −0.695204
\(626\) −24.6476 + 38.3857i −0.985115 + 1.53420i
\(627\) 0 0
\(628\) −19.3109 + 8.83743i −0.770589 + 0.352652i
\(629\) 3.24329 + 3.24329i 0.129319 + 0.129319i
\(630\) 0 0
\(631\) 9.04870 + 2.42459i 0.360223 + 0.0965215i 0.434391 0.900724i \(-0.356963\pi\)
−0.0741682 + 0.997246i \(0.523630\pi\)
\(632\) −1.29704 + 9.09761i −0.0515935 + 0.361884i
\(633\) 0 0
\(634\) 35.1314 7.65690i 1.39525 0.304094i
\(635\) −13.1858 + 3.53312i −0.523261 + 0.140207i
\(636\) 0 0
\(637\) −4.32047 + 16.7782i −0.171183 + 0.664775i
\(638\) −10.7181 + 9.75114i −0.424334 + 0.386051i
\(639\) 0 0
\(640\) −8.18971 0.562992i −0.323727 0.0222542i
\(641\) 31.6965 18.3000i 1.25194 0.722805i 0.280442 0.959871i \(-0.409519\pi\)
0.971494 + 0.237066i \(0.0761856\pi\)
\(642\) 0 0
\(643\) −13.8446 3.70965i −0.545977 0.146294i −0.0247210 0.999694i \(-0.507870\pi\)
−0.521256 + 0.853400i \(0.674536\pi\)
\(644\) 9.38284 + 3.49118i 0.369736 + 0.137572i
\(645\) 0 0
\(646\) 3.46326 10.8488i 0.136260 0.426840i
\(647\) 16.5697 28.6996i 0.651422 1.12830i −0.331356 0.943506i \(-0.607506\pi\)
0.982778 0.184790i \(-0.0591606\pi\)
\(648\) 0 0
\(649\) 20.6549i 0.810774i
\(650\) 6.72433 21.7970i 0.263750 0.854947i
\(651\) 0 0
\(652\) −22.8571 + 3.86217i −0.895153 + 0.151254i
\(653\) −35.8657 20.7071i −1.40353 0.810330i −0.408780 0.912633i \(-0.634046\pi\)
−0.994753 + 0.102303i \(0.967379\pi\)
\(654\) 0 0
\(655\) 0.718828 + 0.718828i 0.0280869 + 0.0280869i
\(656\) 6.99864 + 3.38608i 0.273251 + 0.132204i
\(657\) 0 0
\(658\) 0.414845 8.78161i 0.0161723 0.342343i
\(659\) −14.1419 24.4945i −0.550889 0.954168i −0.998211 0.0597950i \(-0.980955\pi\)
0.447321 0.894373i \(-0.352378\pi\)
\(660\) 0 0
\(661\) 6.42654 + 23.9842i 0.249963 + 0.932876i 0.970823 + 0.239796i \(0.0770804\pi\)
−0.720860 + 0.693081i \(0.756253\pi\)
\(662\) −30.4299 + 27.6846i −1.18269 + 1.07599i
\(663\) 0 0
\(664\) 9.27567 6.96084i 0.359966 0.270133i
\(665\) −1.78322 6.65505i −0.0691502 0.258072i
\(666\) 0 0
\(667\) −20.2334 + 11.6817i −0.783440 + 0.452319i
\(668\) 13.8662 11.4673i 0.536500 0.443684i
\(669\) 0 0
\(670\) −3.42124 6.62985i −0.132174 0.256134i
\(671\) −14.7927 + 14.7927i −0.571064 + 0.571064i
\(672\) 0 0
\(673\) 19.3181 + 11.1533i 0.744658 + 0.429929i 0.823761 0.566938i \(-0.191872\pi\)
−0.0791022 + 0.996867i \(0.525205\pi\)
\(674\) −16.5859 10.6499i −0.638866 0.410218i
\(675\) 0 0
\(676\) 21.4812 + 14.6479i 0.826198 + 0.563379i
\(677\) 7.36423i 0.283030i 0.989936 + 0.141515i \(0.0451974\pi\)
−0.989936 + 0.141515i \(0.954803\pi\)
\(678\) 0 0
\(679\) −1.45351 0.839184i −0.0557805 0.0322049i
\(680\) −2.37139 1.01217i −0.0909387 0.0388148i
\(681\) 0 0
\(682\) 4.34542 2.24239i 0.166395 0.0858656i
\(683\) −1.34151 + 5.00660i −0.0513316 + 0.191572i −0.986831 0.161757i \(-0.948284\pi\)
0.935499 + 0.353329i \(0.114951\pi\)
\(684\) 0 0
\(685\) 10.5346 6.08214i 0.402506 0.232387i
\(686\) −24.1661 + 5.26701i −0.922666 + 0.201095i
\(687\) 0 0
\(688\) −6.87677 + 35.9858i −0.262174 + 1.37195i
\(689\) 1.78294 0.496455i 0.0679245 0.0189134i
\(690\) 0 0
\(691\) 6.75090 + 25.1947i 0.256816 + 0.958451i 0.967071 + 0.254506i \(0.0819130\pi\)
−0.710255 + 0.703945i \(0.751420\pi\)
\(692\) −16.1622 + 22.7346i −0.614394 + 0.864239i
\(693\) 0 0
\(694\) −40.8254 1.92860i −1.54971 0.0732086i
\(695\) 2.84544 10.6193i 0.107934 0.402814i
\(696\) 0 0
\(697\) 1.72672 + 1.72672i 0.0654044 + 0.0654044i
\(698\) −26.4479 8.44297i −1.00107 0.319571i
\(699\) 0 0
\(700\) 13.0696 2.20837i 0.493984 0.0834687i
\(701\) −2.13901 −0.0807892 −0.0403946 0.999184i \(-0.512862\pi\)
−0.0403946 + 0.999184i \(0.512862\pi\)
\(702\) 0 0
\(703\) 23.3999i 0.882545i
\(704\) −11.8515 0.254028i −0.446671 0.00957402i
\(705\) 0 0
\(706\) −25.1596 8.03169i −0.946892 0.302277i
\(707\) 11.9993 11.9993i 0.451279 0.451279i
\(708\) 0 0
\(709\) 31.8967 + 8.54671i 1.19791 + 0.320978i 0.802007 0.597315i \(-0.203766\pi\)
0.395901 + 0.918293i \(0.370433\pi\)
\(710\) 0.183313 3.88045i 0.00687962 0.145631i
\(711\) 0 0
\(712\) 5.96685 0.720594i 0.223617 0.0270054i
\(713\) 7.61569 2.04062i 0.285210 0.0764218i
\(714\) 0 0
\(715\) −0.966691 + 3.75406i −0.0361522 + 0.140394i
\(716\) 1.74948 18.4755i 0.0653810 0.690462i
\(717\) 0 0
\(718\) 6.97814 + 32.0171i 0.260422 + 1.19487i
\(719\) 24.1212 + 41.7791i 0.899568 + 1.55810i 0.828047 + 0.560659i \(0.189452\pi\)
0.0715216 + 0.997439i \(0.477215\pi\)
\(720\) 0 0
\(721\) −3.56176 0.954371i −0.132647 0.0355426i
\(722\) −27.7516 + 14.3208i −1.03281 + 0.532965i
\(723\) 0 0
\(724\) 17.3001 + 37.8030i 0.642955 + 1.40494i
\(725\) −15.4665 + 26.7888i −0.574412 + 0.994910i
\(726\) 0 0
\(727\) −35.9735 −1.33418 −0.667092 0.744976i \(-0.732461\pi\)
−0.667092 + 0.744976i \(0.732461\pi\)
\(728\) −1.98618 + 14.9770i −0.0736127 + 0.555085i
\(729\) 0 0
\(730\) 5.39869 + 3.46651i 0.199814 + 0.128301i
\(731\) −5.75364 + 9.96560i −0.212806 + 0.368591i
\(732\) 0 0
\(733\) −7.99326 7.99326i −0.295238 0.295238i 0.543907 0.839145i \(-0.316944\pi\)
−0.839145 + 0.543907i \(0.816944\pi\)
\(734\) 37.0036 19.0952i 1.36583 0.704815i
\(735\) 0 0
\(736\) −18.5836 4.46951i −0.685001 0.164748i
\(737\) −5.38670 9.33004i −0.198422 0.343677i
\(738\) 0 0
\(739\) 10.6104 2.84304i 0.390308 0.104583i −0.0583274 0.998298i \(-0.518577\pi\)
0.448636 + 0.893715i \(0.351910\pi\)
\(740\) −5.27433 0.499435i −0.193888 0.0183596i
\(741\) 0 0
\(742\) 0.723726 + 0.795494i 0.0265688 + 0.0292035i
\(743\) 9.10445 2.43953i 0.334010 0.0894977i −0.0879163 0.996128i \(-0.528021\pi\)
0.421926 + 0.906630i \(0.361354\pi\)
\(744\) 0 0
\(745\) 4.88959 2.82301i 0.179141 0.103427i
\(746\) −1.59244 + 33.7095i −0.0583035 + 1.23419i
\(747\) 0 0
\(748\) −3.48956 1.29840i −0.127591 0.0474742i
\(749\) −10.7484 + 10.7484i −0.392736 + 0.392736i
\(750\) 0 0
\(751\) −11.9625 + 20.7197i −0.436519 + 0.756073i −0.997418 0.0718109i \(-0.977122\pi\)
0.560899 + 0.827884i \(0.310456\pi\)
\(752\) 1.22383 + 16.7398i 0.0446286 + 0.610439i
\(753\) 0 0
\(754\) −23.9807 25.8469i −0.873324 0.941287i
\(755\) −7.14257 −0.259945
\(756\) 0 0
\(757\) −4.03960 2.33226i −0.146822 0.0847676i 0.424789 0.905292i \(-0.360348\pi\)
−0.571611 + 0.820525i \(0.693681\pi\)
\(758\) −16.8682 5.38484i −0.612680 0.195586i
\(759\) 0 0
\(760\) 4.90331 + 12.2060i 0.177862 + 0.442757i
\(761\) 5.39526 20.1354i 0.195578 0.729907i −0.796538 0.604588i \(-0.793338\pi\)
0.992116 0.125319i \(-0.0399955\pi\)
\(762\) 0 0
\(763\) −7.55350 13.0831i −0.273455 0.473638i
\(764\) 42.4673 + 30.1903i 1.53641 + 1.09225i
\(765\) 0 0
\(766\) −32.1535 35.3420i −1.16175 1.27696i
\(767\) −50.2562 + 0.490983i −1.81464 + 0.0177284i
\(768\) 0 0
\(769\) −10.2054 38.0871i −0.368016 1.37346i −0.863285 0.504716i \(-0.831597\pi\)
0.495269 0.868740i \(-0.335070\pi\)
\(770\) −2.20091 + 0.479690i −0.0793155 + 0.0172868i
\(771\) 0 0
\(772\) 19.1555 + 23.1626i 0.689420 + 0.833641i
\(773\) −12.6898 + 47.3590i −0.456421 + 1.70339i 0.227456 + 0.973788i \(0.426959\pi\)
−0.683877 + 0.729597i \(0.739707\pi\)
\(774\) 0 0
\(775\) 7.38134 7.38134i 0.265146 0.265146i
\(776\) 2.94711 + 1.25790i 0.105795 + 0.0451558i
\(777\) 0 0
\(778\) −22.5755 + 35.1587i −0.809372 + 1.26050i
\(779\) 12.4581i 0.446357i
\(780\) 0 0
\(781\) 5.60981i 0.200735i
\(782\) −5.05162 3.24366i −0.180646 0.115993i
\(783\) 0 0
\(784\) 18.1538 6.31523i 0.648351 0.225544i
\(785\) 5.44798 5.44798i 0.194447 0.194447i
\(786\) 0 0
\(787\) 4.46886 16.6780i 0.159298 0.594507i −0.839401 0.543512i \(-0.817094\pi\)
0.998699 0.0509947i \(-0.0162392\pi\)
\(788\) −25.4392 30.7608i −0.906232 1.09581i
\(789\) 0 0
\(790\) −0.709960 3.25744i −0.0252592 0.115895i
\(791\) −1.81859 6.78708i −0.0646617 0.241321i
\(792\) 0 0
\(793\) −36.3442 35.6409i −1.29062 1.26565i
\(794\) −30.3783 + 27.6376i −1.07809 + 0.980823i
\(795\) 0 0
\(796\) 13.0483 18.3545i 0.462486 0.650557i
\(797\) −7.88369 13.6550i −0.279255 0.483683i 0.691945 0.721950i \(-0.256754\pi\)
−0.971200 + 0.238267i \(0.923421\pi\)
\(798\) 0 0
\(799\) −1.36445 + 5.09220i −0.0482708 + 0.180149i
\(800\) −24.2669 + 7.17748i −0.857965 + 0.253762i
\(801\) 0 0
\(802\) −2.37826 + 7.45000i −0.0839794 + 0.263069i
\(803\) 8.02350 + 4.63237i 0.283143 + 0.163473i
\(804\) 0 0
\(805\) −3.63201 −0.128012
\(806\) 5.55935 + 10.5197i 0.195820 + 0.370541i
\(807\) 0 0
\(808\) −19.9970 + 25.4904i −0.703493 + 0.896748i
\(809\) −16.1331 + 27.9433i −0.567210 + 0.982436i 0.429631 + 0.903005i \(0.358644\pi\)
−0.996840 + 0.0794311i \(0.974690\pi\)
\(810\) 0 0
\(811\) −2.82597 + 2.82597i −0.0992332 + 0.0992332i −0.754980 0.655747i \(-0.772354\pi\)
0.655747 + 0.754980i \(0.272354\pi\)
\(812\) 7.14461 19.2017i 0.250727 0.673849i
\(813\) 0 0
\(814\) −7.64194 0.361006i −0.267850 0.0126533i
\(815\) 7.28319 4.20495i 0.255119 0.147293i
\(816\) 0 0
\(817\) 56.7061 15.1944i 1.98390 0.531583i
\(818\) 19.3186 17.5757i 0.675460 0.614521i
\(819\) 0 0
\(820\) −2.80804 0.265898i −0.0980612 0.00928557i
\(821\) 25.7200 6.89166i 0.897635 0.240521i 0.219635 0.975582i \(-0.429513\pi\)
0.678000 + 0.735062i \(0.262847\pi\)
\(822\) 0 0
\(823\) 1.80298 + 3.12285i 0.0628478 + 0.108856i 0.895737 0.444584i \(-0.146648\pi\)
−0.832889 + 0.553439i \(0.813315\pi\)
\(824\) 6.96951 + 0.993639i 0.242794 + 0.0346151i
\(825\) 0 0
\(826\) −13.3925 25.9526i −0.465984 0.903007i
\(827\) −18.5758 18.5758i −0.645943 0.645943i 0.306067 0.952010i \(-0.400987\pi\)
−0.952010 + 0.306067i \(0.900987\pi\)
\(828\) 0 0
\(829\) −0.283646 + 0.491289i −0.00985143 + 0.0170632i −0.870909 0.491444i \(-0.836469\pi\)
0.861058 + 0.508507i \(0.169803\pi\)
\(830\) −2.27324 + 3.54031i −0.0789054 + 0.122886i
\(831\) 0 0
\(832\) 0.336364 28.8424i 0.0116613 0.999932i
\(833\) 6.03708 0.209172
\(834\) 0 0
\(835\) −3.26397 + 5.65336i −0.112954 + 0.195643i
\(836\) 7.90446 + 17.2723i 0.273382 + 0.597373i
\(837\) 0 0
\(838\) −18.3423 35.5447i −0.633625 1.22787i
\(839\) 32.7243 + 8.76844i 1.12977 + 0.302720i 0.774830 0.632170i \(-0.217836\pi\)
0.354937 + 0.934890i \(0.384502\pi\)
\(840\) 0 0
\(841\) 9.40638 + 16.2923i 0.324358 + 0.561805i
\(842\) 38.4796 8.38665i 1.32610 0.289023i
\(843\) 0 0
\(844\) −2.27696 0.215609i −0.0783764 0.00742158i
\(845\) −9.15713 2.26286i −0.315015 0.0778446i
\(846\) 0 0
\(847\) 12.5990 3.37588i 0.432905 0.115997i
\(848\) −1.55386 1.34213i −0.0533597 0.0460891i
\(849\) 0 0
\(850\) −7.93952 0.375064i −0.272323 0.0128646i
\(851\) −11.9151 3.19264i −0.408445 0.109442i
\(852\) 0 0
\(853\) −15.4913 + 15.4913i −0.530411 + 0.530411i −0.920695 0.390283i \(-0.872377\pi\)
0.390283 + 0.920695i \(0.372377\pi\)
\(854\) 8.99535 28.1783i 0.307814 0.964240i
\(855\) 0 0
\(856\) 17.9123 22.8330i 0.612231 0.780416i
\(857\) 17.3171i 0.591540i 0.955259 + 0.295770i \(0.0955762\pi\)
−0.955259 + 0.295770i \(0.904424\pi\)
\(858\) 0 0
\(859\) −22.9629 −0.783484 −0.391742 0.920075i \(-0.628127\pi\)
−0.391742 + 0.920075i \(0.628127\pi\)
\(860\) −2.21450 13.1058i −0.0755137 0.446905i
\(861\) 0 0
\(862\) −13.7071 + 42.9381i −0.466867 + 1.46248i
\(863\) −18.9344 18.9344i −0.644536 0.644536i 0.307131 0.951667i \(-0.400631\pi\)
−0.951667 + 0.307131i \(0.900631\pi\)
\(864\) 0 0
\(865\) 2.61917 9.77489i 0.0890546 0.332356i
\(866\) −1.01485 + 21.4827i −0.0344859 + 0.730013i
\(867\) 0 0
\(868\) −4.00602 + 5.63508i −0.135973 + 0.191267i
\(869\) −1.24604 4.65029i −0.0422690 0.157750i
\(870\) 0 0
\(871\) 22.5732 13.3284i 0.764865 0.451615i
\(872\) 17.3118 + 23.0689i 0.586253 + 0.781212i
\(873\) 0 0
\(874\) 6.52209 + 29.9247i 0.220613 + 1.01222i
\(875\) −8.81910 + 5.09171i −0.298140 + 0.172131i
\(876\) 0 0
\(877\) −11.6288 + 43.3992i −0.392676 + 1.46549i 0.433027 + 0.901381i \(0.357446\pi\)
−0.825703 + 0.564106i \(0.809221\pi\)
\(878\) −2.14184 4.15057i −0.0722837 0.140075i
\(879\) 0 0
\(880\) 4.06186 1.41301i 0.136925 0.0476326i
\(881\) −2.13057 1.23009i −0.0717808 0.0414427i 0.463680 0.886003i \(-0.346529\pi\)
−0.535461 + 0.844560i \(0.679862\pi\)
\(882\) 0 0
\(883\) 39.7470i 1.33759i −0.743446 0.668796i \(-0.766810\pi\)
0.743446 0.668796i \(-0.233190\pi\)
\(884\) 3.07624 8.52145i 0.103465 0.286607i
\(885\) 0 0
\(886\) −9.25807 + 14.4184i −0.311031 + 0.484394i
\(887\) 17.1497 + 9.90141i 0.575832 + 0.332457i 0.759475 0.650536i \(-0.225456\pi\)
−0.183643 + 0.982993i \(0.558789\pi\)
\(888\) 0 0
\(889\) 19.7085 19.7085i 0.661003 0.661003i
\(890\) −1.93767 + 0.999906i −0.0649508 + 0.0335169i
\(891\) 0 0
\(892\) −18.7146 22.6295i −0.626610 0.757692i
\(893\) 23.2919 13.4476i 0.779435 0.450007i
\(894\) 0 0
\(895\) 1.74256 + 6.50333i 0.0582474 + 0.217382i
\(896\) 15.0560 7.36526i 0.502986 0.246056i
\(897\) 0 0
\(898\) −9.05616 9.95422i −0.302208 0.332177i
\(899\) −4.17607 15.5853i −0.139280 0.519799i
\(900\) 0 0
\(901\) −0.322450 0.558500i −0.0107424 0.0186063i
\(902\) −4.06855 0.192199i −0.135468 0.00639953i
\(903\) 0 0
\(904\) 5.00059 + 12.4481i 0.166317 + 0.414018i
\(905\) −10.6650 10.6650i −0.354515 0.354515i
\(906\) 0 0
\(907\) −16.4874 9.51900i −0.547455 0.316073i 0.200640 0.979665i \(-0.435698\pi\)
−0.748095 + 0.663592i \(0.769031\pi\)
\(908\) −2.98569 17.6699i −0.0990838 0.586397i
\(909\) 0 0
\(910\) −1.21947 5.34373i −0.0404250 0.177143i
\(911\) 1.28948i 0.0427225i 0.999772 + 0.0213612i \(0.00680001\pi\)
−0.999772 + 0.0213612i \(0.993200\pi\)
\(912\) 0 0
\(913\) −3.03778 + 5.26159i −0.100536 + 0.174133i
\(914\) 16.3355 + 5.21477i 0.540329 + 0.172489i
\(915\) 0 0
\(916\) −4.33830 1.61420i −0.143342 0.0533347i
\(917\) −2.00489 0.537210i −0.0662074 0.0177402i
\(918\) 0 0
\(919\) −23.2515 + 13.4243i −0.766997 + 0.442826i −0.831802 0.555072i \(-0.812691\pi\)
0.0648055 + 0.997898i \(0.479357\pi\)
\(920\) 6.88421 0.831380i 0.226966 0.0274098i
\(921\) 0 0
\(922\) −23.0281 25.3116i −0.758389 0.833595i
\(923\) 13.6494 0.133350i 0.449277 0.00438926i
\(924\) 0 0
\(925\) −15.7755 + 4.22703i −0.518695 + 0.138984i
\(926\) −5.43227 24.9244i −0.178516 0.819066i
\(927\) 0 0
\(928\) −9.14672 + 38.0309i −0.300256 + 1.24842i
\(929\) −37.8024 10.1291i −1.24026 0.332326i −0.421692 0.906739i \(-0.638564\pi\)
−0.818566 + 0.574413i \(0.805230\pi\)
\(930\) 0 0
\(931\) −21.7784 21.7784i −0.713757 0.713757i
\(932\) 27.6874 12.6708i 0.906931 0.415047i
\(933\) 0 0
\(934\) 21.6091 + 13.8753i 0.707073 + 0.454014i
\(935\) 1.35078 0.0441752
\(936\) 0 0
\(937\) 46.1571 1.50789 0.753943 0.656939i \(-0.228149\pi\)
0.753943 + 0.656939i \(0.228149\pi\)
\(938\) 12.8179 + 8.23039i 0.418518 + 0.268732i
\(939\) 0 0
\(940\) −2.53395 5.53700i −0.0826484 0.180597i
\(941\) 35.7367 + 35.7367i 1.16498 + 1.16498i 0.983370 + 0.181611i \(0.0581313\pi\)
0.181611 + 0.983370i \(0.441869\pi\)
\(942\) 0 0
\(943\) −6.34359 1.69976i −0.206576 0.0553518i
\(944\) 31.3250 + 46.1256i 1.01954 + 1.50126i
\(945\) 0 0
\(946\) −4.08732 18.7535i −0.132890 0.609728i
\(947\) −0.723796 + 0.193941i −0.0235202 + 0.00630222i −0.270560 0.962703i \(-0.587209\pi\)
0.247040 + 0.969005i \(0.420542\pi\)
\(948\) 0 0
\(949\) −11.0805 + 19.6324i −0.359687 + 0.637295i
\(950\) 27.2883 + 29.9943i 0.885348 + 0.973143i
\(951\) 0 0
\(952\) 5.22647 0.631181i 0.169391 0.0204567i
\(953\) 41.5062 23.9636i 1.34452 0.776257i 0.357050 0.934085i \(-0.383783\pi\)
0.987467 + 0.157828i \(0.0504492\pi\)
\(954\) 0 0
\(955\) −18.2591 4.89251i −0.590851 0.158318i
\(956\) −19.8511 + 53.3514i −0.642030 + 1.72551i
\(957\) 0 0
\(958\) −22.0837 7.04978i −0.713491 0.227768i
\(959\) −12.4184 + 21.5092i −0.401010 + 0.694569i
\(960\) 0 0
\(961\) 25.5550i 0.824354i
\(962\) 0.696723 18.6025i 0.0224633 0.599768i
\(963\) 0 0
\(964\) −7.37591 + 1.24631i −0.237562 + 0.0401409i
\(965\) −9.44359 5.45226i −0.304000 0.175514i
\(966\) 0 0
\(967\) −8.44481 8.44481i −0.271567 0.271567i 0.558164 0.829731i \(-0.311506\pi\)
−0.829731 + 0.558164i \(0.811506\pi\)
\(968\) −23.1076 + 9.28266i −0.742706 + 0.298356i
\(969\) 0 0
\(970\) −1.16121 0.0548557i −0.0372842 0.00176131i
\(971\) −24.1539 41.8358i −0.775136 1.34257i −0.934718 0.355390i \(-0.884348\pi\)
0.159582 0.987185i \(-0.448985\pi\)
\(972\) 0 0
\(973\) 5.80974 + 21.6822i 0.186252 + 0.695101i
\(974\) 34.3409 + 37.7463i 1.10035 + 1.20947i
\(975\) 0 0
\(976\) −10.5999 + 55.4688i −0.339295 + 1.77551i
\(977\) −8.21436 30.6564i −0.262801 0.980786i −0.963583 0.267410i \(-0.913832\pi\)
0.700782 0.713376i \(-0.252835\pi\)
\(978\) 0 0
\(979\) −2.72683 + 1.57434i −0.0871500 + 0.0503161i
\(980\) −5.37365 + 4.44400i −0.171655 + 0.141958i
\(981\) 0 0
\(982\) −18.8428 + 9.72354i −0.601297 + 0.310291i
\(983\) 18.1345 18.1345i 0.578400 0.578400i −0.356062 0.934462i \(-0.615881\pi\)
0.934462 + 0.356062i \(0.115881\pi\)
\(984\) 0 0
\(985\) 12.5414 + 7.24080i 0.399603 + 0.230711i
\(986\) −6.63807 + 10.3380i −0.211399 + 0.329229i
\(987\) 0 0
\(988\) −41.8379 + 19.6432i −1.33104 + 0.624935i
\(989\) 30.9475i 0.984074i
\(990\) 0 0
\(991\) −15.3411 8.85718i −0.487326 0.281358i 0.236139 0.971719i \(-0.424118\pi\)
−0.723464 + 0.690362i \(0.757451\pi\)
\(992\) 6.30322 11.5979i 0.200127 0.368232i
\(993\) 0 0
\(994\) 3.63736 + 7.04866i 0.115370 + 0.223570i
\(995\) −2.11456 + 7.89164i −0.0670360 + 0.250182i
\(996\) 0 0
\(997\) −4.27051 + 2.46558i −0.135249 + 0.0780858i −0.566098 0.824338i \(-0.691547\pi\)
0.430849 + 0.902424i \(0.358214\pi\)
\(998\) −12.9967 59.6315i −0.411403 1.88760i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.ed.e.19.5 56
3.2 odd 2 312.2.bt.d.19.10 yes 56
8.3 odd 2 inner 936.2.ed.e.19.12 56
13.11 odd 12 inner 936.2.ed.e.739.12 56
24.11 even 2 312.2.bt.d.19.3 56
39.11 even 12 312.2.bt.d.115.3 yes 56
104.11 even 12 inner 936.2.ed.e.739.5 56
312.11 odd 12 312.2.bt.d.115.10 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bt.d.19.3 56 24.11 even 2
312.2.bt.d.19.10 yes 56 3.2 odd 2
312.2.bt.d.115.3 yes 56 39.11 even 12
312.2.bt.d.115.10 yes 56 312.11 odd 12
936.2.ed.e.19.5 56 1.1 even 1 trivial
936.2.ed.e.19.12 56 8.3 odd 2 inner
936.2.ed.e.739.5 56 104.11 even 12 inner
936.2.ed.e.739.12 56 13.11 odd 12 inner