Properties

Label 936.2.ed.e.19.4
Level $936$
Weight $2$
Character 936.19
Analytic conductor $7.474$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(19,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.ed (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 19.4
Character \(\chi\) \(=\) 936.19
Dual form 936.2.ed.e.739.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.13656 - 0.841559i) q^{2} +(0.583557 + 1.91297i) q^{4} +(-0.00433170 - 0.00433170i) q^{5} +(1.57369 + 0.421669i) q^{7} +(0.946628 - 2.66531i) q^{8} +(0.00127787 + 0.00856863i) q^{10} +(-3.23180 + 0.865959i) q^{11} +(-3.04585 + 1.92946i) q^{13} +(-1.43374 - 1.80361i) q^{14} +(-3.31892 + 2.23266i) q^{16} +(-4.80624 + 2.77488i) q^{17} +(-3.45861 - 0.926732i) q^{19} +(0.00575862 - 0.0108142i) q^{20} +(4.40191 + 1.73554i) q^{22} +(2.76176 - 4.78352i) q^{23} -4.99996i q^{25} +(5.08556 + 0.370304i) q^{26} +(0.111697 + 3.25650i) q^{28} +(1.51783 + 0.876322i) q^{29} +(0.487954 + 0.487954i) q^{31} +(5.65108 + 0.255510i) q^{32} +(7.79783 + 0.890900i) q^{34} +(-0.00499021 - 0.00864330i) q^{35} +(-3.01169 - 11.2398i) q^{37} +(3.15103 + 3.96392i) q^{38} +(-0.0156458 + 0.00744482i) q^{40} +(-1.29226 - 4.82278i) q^{41} +(-9.33754 + 5.39103i) q^{43} +(-3.54250 - 5.67701i) q^{44} +(-7.16454 + 3.11259i) q^{46} +(-2.87499 + 2.87499i) q^{47} +(-3.76348 - 2.17284i) q^{49} +(-4.20776 + 5.68278i) q^{50} +(-5.46843 - 4.70067i) q^{52} +3.71872i q^{53} +(0.0177503 + 0.0102481i) q^{55} +(2.61358 - 3.79522i) q^{56} +(-0.987640 - 2.27334i) q^{58} +(-0.772342 + 2.88242i) q^{59} +(-1.81829 + 1.04979i) q^{61} +(-0.143949 - 0.965233i) q^{62} +(-6.20779 - 5.04612i) q^{64} +(0.0215515 + 0.00483585i) q^{65} +(0.133225 + 0.497203i) q^{67} +(-8.11299 - 7.57490i) q^{68} +(-0.00160215 + 0.0140232i) q^{70} +(0.569550 - 2.12559i) q^{71} +(-1.36174 - 1.36174i) q^{73} +(-6.03597 + 15.3093i) q^{74} +(-0.245485 - 7.15703i) q^{76} -5.45101 q^{77} +12.6705i q^{79} +(0.0240478 + 0.00470537i) q^{80} +(-2.58992 + 6.56891i) q^{82} +(3.55694 - 3.55694i) q^{83} +(0.0328391 + 0.00879922i) q^{85} +(15.1496 + 1.73084i) q^{86} +(-0.751264 + 9.43351i) q^{88} +(-14.4893 + 3.88239i) q^{89} +(-5.60682 + 1.75203i) q^{91} +(10.7624 + 2.49172i) q^{92} +(5.68708 - 0.848136i) q^{94} +(0.0109673 + 0.0189960i) q^{95} +(4.71000 + 1.26204i) q^{97} +(2.44886 + 5.63677i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 12 q^{8} + 28 q^{14} + 12 q^{16} - 8 q^{19} + 4 q^{20} + 10 q^{22} - 34 q^{26} - 14 q^{28} + 30 q^{32} + 56 q^{34} - 28 q^{40} - 40 q^{41} + 44 q^{44} - 18 q^{46} + 24 q^{49} + 72 q^{50} + 32 q^{52}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.13656 0.841559i −0.803672 0.595072i
\(3\) 0 0
\(4\) 0.583557 + 1.91297i 0.291779 + 0.956486i
\(5\) −0.00433170 0.00433170i −0.00193719 0.00193719i 0.706138 0.708075i \(-0.250436\pi\)
−0.708075 + 0.706138i \(0.750436\pi\)
\(6\) 0 0
\(7\) 1.57369 + 0.421669i 0.594800 + 0.159376i 0.543646 0.839315i \(-0.317043\pi\)
0.0511537 + 0.998691i \(0.483710\pi\)
\(8\) 0.946628 2.66531i 0.334684 0.942331i
\(9\) 0 0
\(10\) 0.00127787 + 0.00856863i 0.000404099 + 0.00270964i
\(11\) −3.23180 + 0.865959i −0.974426 + 0.261097i −0.710695 0.703500i \(-0.751620\pi\)
−0.263730 + 0.964596i \(0.584953\pi\)
\(12\) 0 0
\(13\) −3.04585 + 1.92946i −0.844766 + 0.535136i
\(14\) −1.43374 1.80361i −0.383184 0.482035i
\(15\) 0 0
\(16\) −3.31892 + 2.23266i −0.829730 + 0.558164i
\(17\) −4.80624 + 2.77488i −1.16568 + 0.673008i −0.952660 0.304039i \(-0.901665\pi\)
−0.213025 + 0.977047i \(0.568331\pi\)
\(18\) 0 0
\(19\) −3.45861 0.926732i −0.793460 0.212607i −0.160749 0.986995i \(-0.551391\pi\)
−0.632711 + 0.774388i \(0.718058\pi\)
\(20\) 0.00575862 0.0108142i 0.00128767 0.00241813i
\(21\) 0 0
\(22\) 4.40191 + 1.73554i 0.938490 + 0.370017i
\(23\) 2.76176 4.78352i 0.575868 0.997432i −0.420079 0.907488i \(-0.637998\pi\)
0.995947 0.0899447i \(-0.0286690\pi\)
\(24\) 0 0
\(25\) 4.99996i 0.999992i
\(26\) 5.08556 + 0.370304i 0.997359 + 0.0726227i
\(27\) 0 0
\(28\) 0.111697 + 3.25650i 0.0211088 + 0.615420i
\(29\) 1.51783 + 0.876322i 0.281855 + 0.162729i 0.634263 0.773118i \(-0.281304\pi\)
−0.352408 + 0.935846i \(0.614637\pi\)
\(30\) 0 0
\(31\) 0.487954 + 0.487954i 0.0876391 + 0.0876391i 0.749567 0.661928i \(-0.230262\pi\)
−0.661928 + 0.749567i \(0.730262\pi\)
\(32\) 5.65108 + 0.255510i 0.998979 + 0.0451682i
\(33\) 0 0
\(34\) 7.79783 + 0.890900i 1.33732 + 0.152788i
\(35\) −0.00499021 0.00864330i −0.000843500 0.00146098i
\(36\) 0 0
\(37\) −3.01169 11.2398i −0.495119 1.84781i −0.529360 0.848397i \(-0.677568\pi\)
0.0342404 0.999414i \(-0.489099\pi\)
\(38\) 3.15103 + 3.96392i 0.511165 + 0.643032i
\(39\) 0 0
\(40\) −0.0156458 + 0.00744482i −0.00247382 + 0.00117713i
\(41\) −1.29226 4.82278i −0.201817 0.753191i −0.990396 0.138258i \(-0.955850\pi\)
0.788579 0.614933i \(-0.210817\pi\)
\(42\) 0 0
\(43\) −9.33754 + 5.39103i −1.42396 + 0.822125i −0.996635 0.0819721i \(-0.973878\pi\)
−0.427327 + 0.904097i \(0.640545\pi\)
\(44\) −3.54250 5.67701i −0.534052 0.855842i
\(45\) 0 0
\(46\) −7.16454 + 3.11259i −1.05635 + 0.458926i
\(47\) −2.87499 + 2.87499i −0.419360 + 0.419360i −0.884983 0.465623i \(-0.845830\pi\)
0.465623 + 0.884983i \(0.345830\pi\)
\(48\) 0 0
\(49\) −3.76348 2.17284i −0.537640 0.310406i
\(50\) −4.20776 + 5.68278i −0.595068 + 0.803666i
\(51\) 0 0
\(52\) −5.46843 4.70067i −0.758335 0.651866i
\(53\) 3.71872i 0.510805i 0.966835 + 0.255402i \(0.0822080\pi\)
−0.966835 + 0.255402i \(0.917792\pi\)
\(54\) 0 0
\(55\) 0.0177503 + 0.0102481i 0.00239345 + 0.00138186i
\(56\) 2.61358 3.79522i 0.349255 0.507157i
\(57\) 0 0
\(58\) −0.987640 2.27334i −0.129683 0.298505i
\(59\) −0.772342 + 2.88242i −0.100550 + 0.375259i −0.997802 0.0662595i \(-0.978893\pi\)
0.897252 + 0.441519i \(0.145560\pi\)
\(60\) 0 0
\(61\) −1.81829 + 1.04979i −0.232808 + 0.134412i −0.611867 0.790961i \(-0.709581\pi\)
0.379059 + 0.925373i \(0.376248\pi\)
\(62\) −0.143949 0.965233i −0.0182816 0.122585i
\(63\) 0 0
\(64\) −6.20779 5.04612i −0.775974 0.630765i
\(65\) 0.0215515 + 0.00483585i 0.00267314 + 0.000599813i
\(66\) 0 0
\(67\) 0.133225 + 0.497203i 0.0162760 + 0.0607430i 0.973586 0.228320i \(-0.0733231\pi\)
−0.957310 + 0.289063i \(0.906656\pi\)
\(68\) −8.11299 7.57490i −0.983845 0.918591i
\(69\) 0 0
\(70\) −0.00160215 + 0.0140232i −0.000191493 + 0.00167610i
\(71\) 0.569550 2.12559i 0.0675932 0.252261i −0.923859 0.382734i \(-0.874983\pi\)
0.991452 + 0.130472i \(0.0416494\pi\)
\(72\) 0 0
\(73\) −1.36174 1.36174i −0.159380 0.159380i 0.622912 0.782292i \(-0.285949\pi\)
−0.782292 + 0.622912i \(0.785949\pi\)
\(74\) −6.03597 + 15.3093i −0.701667 + 1.77967i
\(75\) 0 0
\(76\) −0.245485 7.15703i −0.0281591 0.820967i
\(77\) −5.45101 −0.621200
\(78\) 0 0
\(79\) 12.6705i 1.42555i 0.701394 + 0.712774i \(0.252561\pi\)
−0.701394 + 0.712774i \(0.747439\pi\)
\(80\) 0.0240478 + 0.00470537i 0.00268862 + 0.000526076i
\(81\) 0 0
\(82\) −2.58992 + 6.56891i −0.286008 + 0.725415i
\(83\) 3.55694 3.55694i 0.390425 0.390425i −0.484414 0.874839i \(-0.660967\pi\)
0.874839 + 0.484414i \(0.160967\pi\)
\(84\) 0 0
\(85\) 0.0328391 + 0.00879922i 0.00356190 + 0.000954409i
\(86\) 15.1496 + 1.73084i 1.63362 + 0.186641i
\(87\) 0 0
\(88\) −0.751264 + 9.43351i −0.0800850 + 1.00562i
\(89\) −14.4893 + 3.88239i −1.53586 + 0.411532i −0.924925 0.380149i \(-0.875873\pi\)
−0.610934 + 0.791682i \(0.709206\pi\)
\(90\) 0 0
\(91\) −5.60682 + 1.75203i −0.587754 + 0.183663i
\(92\) 10.7624 + 2.49172i 1.12206 + 0.259780i
\(93\) 0 0
\(94\) 5.68708 0.848136i 0.586577 0.0874786i
\(95\) 0.0109673 + 0.0189960i 0.00112522 + 0.00194895i
\(96\) 0 0
\(97\) 4.71000 + 1.26204i 0.478228 + 0.128141i 0.489877 0.871791i \(-0.337042\pi\)
−0.0116495 + 0.999932i \(0.503708\pi\)
\(98\) 2.44886 + 5.63677i 0.247372 + 0.569399i
\(99\) 0 0
\(100\) 9.56479 2.91776i 0.956479 0.291776i
\(101\) −7.89450 + 13.6737i −0.785532 + 1.36058i 0.143149 + 0.989701i \(0.454277\pi\)
−0.928681 + 0.370880i \(0.879056\pi\)
\(102\) 0 0
\(103\) 14.3782 1.41673 0.708363 0.705848i \(-0.249434\pi\)
0.708363 + 0.705848i \(0.249434\pi\)
\(104\) 2.25933 + 9.94462i 0.221546 + 0.975150i
\(105\) 0 0
\(106\) 3.12952 4.22656i 0.303966 0.410520i
\(107\) 2.19013 3.79342i 0.211728 0.366724i −0.740527 0.672026i \(-0.765424\pi\)
0.952255 + 0.305302i \(0.0987575\pi\)
\(108\) 0 0
\(109\) −8.41638 8.41638i −0.806143 0.806143i 0.177905 0.984048i \(-0.443068\pi\)
−0.984048 + 0.177905i \(0.943068\pi\)
\(110\) −0.0115499 0.0265855i −0.00110124 0.00253483i
\(111\) 0 0
\(112\) −6.16440 + 2.11403i −0.582481 + 0.199757i
\(113\) −4.02349 6.96890i −0.378498 0.655579i 0.612346 0.790590i \(-0.290226\pi\)
−0.990844 + 0.135012i \(0.956893\pi\)
\(114\) 0 0
\(115\) −0.0326839 + 0.00875762i −0.00304779 + 0.000816652i
\(116\) −0.790636 + 3.41496i −0.0734087 + 0.317071i
\(117\) 0 0
\(118\) 3.30354 2.62609i 0.304116 0.241751i
\(119\) −8.73362 + 2.34017i −0.800610 + 0.214523i
\(120\) 0 0
\(121\) 0.168393 0.0972215i 0.0153084 0.00883832i
\(122\) 2.95006 + 0.337043i 0.267086 + 0.0305145i
\(123\) 0 0
\(124\) −0.648693 + 1.21819i −0.0582544 + 0.109397i
\(125\) −0.0433168 + 0.0433168i −0.00387437 + 0.00387437i
\(126\) 0 0
\(127\) −1.91208 + 3.31182i −0.169670 + 0.293877i −0.938304 0.345812i \(-0.887603\pi\)
0.768634 + 0.639689i \(0.220937\pi\)
\(128\) 2.80895 + 10.9595i 0.248278 + 0.968689i
\(129\) 0 0
\(130\) −0.0204250 0.0236331i −0.00179139 0.00207276i
\(131\) −10.1296 −0.885025 −0.442513 0.896762i \(-0.645913\pi\)
−0.442513 + 0.896762i \(0.645913\pi\)
\(132\) 0 0
\(133\) −5.05201 2.91678i −0.438065 0.252917i
\(134\) 0.267006 0.677219i 0.0230658 0.0585028i
\(135\) 0 0
\(136\) 2.84621 + 15.4369i 0.244061 + 1.32370i
\(137\) 4.42582 16.5174i 0.378123 1.41117i −0.470605 0.882344i \(-0.655964\pi\)
0.848728 0.528830i \(-0.177369\pi\)
\(138\) 0 0
\(139\) 8.51425 + 14.7471i 0.722169 + 1.25083i 0.960129 + 0.279559i \(0.0901882\pi\)
−0.237959 + 0.971275i \(0.576478\pi\)
\(140\) 0.0136223 0.0145900i 0.00115130 0.00123308i
\(141\) 0 0
\(142\) −2.43614 + 1.93656i −0.204436 + 0.162513i
\(143\) 8.17275 8.87322i 0.683439 0.742016i
\(144\) 0 0
\(145\) −0.00277884 0.0103708i −0.000230770 0.000861245i
\(146\) 0.401721 + 2.69369i 0.0332467 + 0.222932i
\(147\) 0 0
\(148\) 19.7439 12.3203i 1.62294 1.01273i
\(149\) 3.12545 11.6643i 0.256047 0.955580i −0.711458 0.702728i \(-0.751965\pi\)
0.967505 0.252852i \(-0.0813685\pi\)
\(150\) 0 0
\(151\) 1.75767 1.75767i 0.143037 0.143037i −0.631962 0.774999i \(-0.717750\pi\)
0.774999 + 0.631962i \(0.217750\pi\)
\(152\) −5.74405 + 8.34101i −0.465904 + 0.676545i
\(153\) 0 0
\(154\) 6.19543 + 4.58735i 0.499242 + 0.369659i
\(155\) 0.00422734i 0.000339548i
\(156\) 0 0
\(157\) 23.1742i 1.84950i 0.380570 + 0.924752i \(0.375728\pi\)
−0.380570 + 0.924752i \(0.624272\pi\)
\(158\) 10.6630 14.4009i 0.848303 1.14567i
\(159\) 0 0
\(160\) −0.0233720 0.0255856i −0.00184772 0.00202272i
\(161\) 6.36323 6.36323i 0.501493 0.501493i
\(162\) 0 0
\(163\) −2.24703 + 8.38602i −0.176001 + 0.656844i 0.820378 + 0.571821i \(0.193763\pi\)
−0.996379 + 0.0850226i \(0.972904\pi\)
\(164\) 8.47173 5.28642i 0.661531 0.412800i
\(165\) 0 0
\(166\) −7.03607 + 1.04932i −0.546105 + 0.0814428i
\(167\) 6.23234 + 23.2594i 0.482273 + 1.79987i 0.592037 + 0.805910i \(0.298324\pi\)
−0.109764 + 0.993958i \(0.535010\pi\)
\(168\) 0 0
\(169\) 5.55437 11.7537i 0.427259 0.904129i
\(170\) −0.0299187 0.0376369i −0.00229466 0.00288662i
\(171\) 0 0
\(172\) −15.7619 14.7165i −1.20183 1.12212i
\(173\) −5.71509 9.89883i −0.434510 0.752594i 0.562745 0.826630i \(-0.309745\pi\)
−0.997256 + 0.0740365i \(0.976412\pi\)
\(174\) 0 0
\(175\) 2.10833 7.86840i 0.159375 0.594795i
\(176\) 8.79272 10.0896i 0.662776 0.760529i
\(177\) 0 0
\(178\) 19.7352 + 7.78099i 1.47922 + 0.583210i
\(179\) −16.6433 9.60904i −1.24398 0.718214i −0.274080 0.961707i \(-0.588373\pi\)
−0.969903 + 0.243493i \(0.921707\pi\)
\(180\) 0 0
\(181\) −9.90437 −0.736186 −0.368093 0.929789i \(-0.619989\pi\)
−0.368093 + 0.929789i \(0.619989\pi\)
\(182\) 7.84695 + 2.72717i 0.581655 + 0.202151i
\(183\) 0 0
\(184\) −10.1352 11.8892i −0.747177 0.876482i
\(185\) −0.0356416 + 0.0617331i −0.00262043 + 0.00453871i
\(186\) 0 0
\(187\) 13.1299 13.1299i 0.960153 0.960153i
\(188\) −7.17748 3.82205i −0.523472 0.278751i
\(189\) 0 0
\(190\) 0.00352115 0.0308198i 0.000255451 0.00223590i
\(191\) 7.28556 4.20632i 0.527165 0.304359i −0.212696 0.977118i \(-0.568225\pi\)
0.739861 + 0.672760i \(0.234891\pi\)
\(192\) 0 0
\(193\) −3.79409 + 1.01662i −0.273105 + 0.0731782i −0.392772 0.919636i \(-0.628484\pi\)
0.119667 + 0.992814i \(0.461817\pi\)
\(194\) −4.29113 5.39813i −0.308085 0.387563i
\(195\) 0 0
\(196\) 1.96039 8.46740i 0.140028 0.604815i
\(197\) −15.3987 + 4.12608i −1.09711 + 0.293971i −0.761589 0.648060i \(-0.775580\pi\)
−0.335525 + 0.942031i \(0.608914\pi\)
\(198\) 0 0
\(199\) 6.41779 + 11.1159i 0.454945 + 0.787988i 0.998685 0.0512659i \(-0.0163256\pi\)
−0.543740 + 0.839254i \(0.682992\pi\)
\(200\) −13.3265 4.73311i −0.942323 0.334681i
\(201\) 0 0
\(202\) 20.4798 8.89732i 1.44095 0.626013i
\(203\) 2.01909 + 2.01909i 0.141712 + 0.141712i
\(204\) 0 0
\(205\) −0.0152931 + 0.0264885i −0.00106812 + 0.00185004i
\(206\) −16.3417 12.1001i −1.13858 0.843054i
\(207\) 0 0
\(208\) 5.80111 13.2041i 0.402234 0.915537i
\(209\) 11.9801 0.828679
\(210\) 0 0
\(211\) −2.73940 + 4.74478i −0.188588 + 0.326644i −0.944780 0.327706i \(-0.893724\pi\)
0.756192 + 0.654350i \(0.227058\pi\)
\(212\) −7.11380 + 2.17008i −0.488578 + 0.149042i
\(213\) 0 0
\(214\) −5.68162 + 2.46834i −0.388387 + 0.168732i
\(215\) 0.0637997 + 0.0170951i 0.00435111 + 0.00116588i
\(216\) 0 0
\(217\) 0.562134 + 0.973645i 0.0381601 + 0.0660953i
\(218\) 2.48288 + 16.6486i 0.168162 + 1.12759i
\(219\) 0 0
\(220\) −0.00924607 + 0.0399361i −0.000623370 + 0.00269249i
\(221\) 9.28504 17.7253i 0.624580 1.19233i
\(222\) 0 0
\(223\) 13.8516 3.71152i 0.927572 0.248542i 0.236753 0.971570i \(-0.423917\pi\)
0.690819 + 0.723028i \(0.257250\pi\)
\(224\) 8.78532 + 2.78498i 0.586994 + 0.186079i
\(225\) 0 0
\(226\) −1.29178 + 11.3066i −0.0859277 + 0.752104i
\(227\) 9.25409 + 2.47963i 0.614215 + 0.164579i 0.552497 0.833515i \(-0.313675\pi\)
0.0617186 + 0.998094i \(0.480342\pi\)
\(228\) 0 0
\(229\) 17.2631 17.2631i 1.14078 1.14078i 0.152467 0.988309i \(-0.451278\pi\)
0.988309 0.152467i \(-0.0487217\pi\)
\(230\) 0.0445174 + 0.0175518i 0.00293539 + 0.00115733i
\(231\) 0 0
\(232\) 3.77250 3.21595i 0.247677 0.211138i
\(233\) 11.8549i 0.776641i −0.921524 0.388320i \(-0.873055\pi\)
0.921524 0.388320i \(-0.126945\pi\)
\(234\) 0 0
\(235\) 0.0249071 0.00162476
\(236\) −5.96470 + 0.204588i −0.388269 + 0.0133176i
\(237\) 0 0
\(238\) 11.8957 + 4.69011i 0.771085 + 0.304015i
\(239\) 8.19428 + 8.19428i 0.530044 + 0.530044i 0.920585 0.390541i \(-0.127712\pi\)
−0.390541 + 0.920585i \(0.627712\pi\)
\(240\) 0 0
\(241\) 5.54758 20.7038i 0.357351 1.33365i −0.520149 0.854075i \(-0.674124\pi\)
0.877500 0.479576i \(-0.159210\pi\)
\(242\) −0.273207 0.0312138i −0.0175624 0.00200650i
\(243\) 0 0
\(244\) −3.06929 2.86572i −0.196491 0.183459i
\(245\) 0.00689014 + 0.0257143i 0.000440195 + 0.00164283i
\(246\) 0 0
\(247\) 12.3225 3.85057i 0.784062 0.245006i
\(248\) 1.76246 0.838639i 0.111916 0.0532537i
\(249\) 0 0
\(250\) 0.0856860 0.0127787i 0.00541926 0.000808196i
\(251\) −6.73491 + 3.88840i −0.425104 + 0.245434i −0.697259 0.716820i \(-0.745597\pi\)
0.272155 + 0.962254i \(0.412264\pi\)
\(252\) 0 0
\(253\) −4.78315 + 17.8510i −0.300714 + 1.12228i
\(254\) 4.96030 2.15497i 0.311237 0.135215i
\(255\) 0 0
\(256\) 6.03049 14.8200i 0.376905 0.926252i
\(257\) 13.3396 + 7.70163i 0.832103 + 0.480415i 0.854572 0.519333i \(-0.173820\pi\)
−0.0224694 + 0.999748i \(0.507153\pi\)
\(258\) 0 0
\(259\) 18.9579i 1.17799i
\(260\) 0.00332570 + 0.0440494i 0.000206251 + 0.00273183i
\(261\) 0 0
\(262\) 11.5129 + 8.52464i 0.711271 + 0.526654i
\(263\) 17.8675 + 10.3158i 1.10176 + 0.636101i 0.936683 0.350180i \(-0.113880\pi\)
0.165077 + 0.986281i \(0.447213\pi\)
\(264\) 0 0
\(265\) 0.0161084 0.0161084i 0.000989528 0.000989528i
\(266\) 3.28730 + 7.56668i 0.201557 + 0.463943i
\(267\) 0 0
\(268\) −0.873390 + 0.545002i −0.0533508 + 0.0332913i
\(269\) 13.8319 7.98587i 0.843348 0.486907i −0.0150527 0.999887i \(-0.504792\pi\)
0.858401 + 0.512979i \(0.171458\pi\)
\(270\) 0 0
\(271\) −6.02478 22.4848i −0.365979 1.36585i −0.866088 0.499891i \(-0.833373\pi\)
0.500109 0.865962i \(-0.333293\pi\)
\(272\) 9.75617 19.9403i 0.591555 1.20906i
\(273\) 0 0
\(274\) −18.9306 + 15.0485i −1.14364 + 0.909111i
\(275\) 4.32976 + 16.1589i 0.261095 + 0.974418i
\(276\) 0 0
\(277\) −3.01247 5.21776i −0.181002 0.313505i 0.761220 0.648494i \(-0.224601\pi\)
−0.942222 + 0.334989i \(0.891267\pi\)
\(278\) 2.73357 23.9263i 0.163949 1.43500i
\(279\) 0 0
\(280\) −0.0277610 + 0.00511849i −0.00165904 + 0.000305888i
\(281\) 20.3774 + 20.3774i 1.21561 + 1.21561i 0.969153 + 0.246461i \(0.0792679\pi\)
0.246461 + 0.969153i \(0.420732\pi\)
\(282\) 0 0
\(283\) 6.85490 + 3.95768i 0.407482 + 0.235260i 0.689707 0.724088i \(-0.257739\pi\)
−0.282225 + 0.959348i \(0.591073\pi\)
\(284\) 4.39856 0.150870i 0.261007 0.00895250i
\(285\) 0 0
\(286\) −16.7562 + 3.20713i −0.990814 + 0.189642i
\(287\) 8.13447i 0.480163i
\(288\) 0 0
\(289\) 6.89996 11.9511i 0.405880 0.703005i
\(290\) −0.00556928 + 0.0141256i −0.000327039 + 0.000829483i
\(291\) 0 0
\(292\) 1.81032 3.39963i 0.105941 0.198948i
\(293\) 1.74094 + 0.466483i 0.101707 + 0.0272522i 0.309313 0.950960i \(-0.399901\pi\)
−0.207607 + 0.978212i \(0.566567\pi\)
\(294\) 0 0
\(295\) 0.0158313 0.00914022i 0.000921735 0.000532164i
\(296\) −32.8085 2.61280i −1.90696 0.151866i
\(297\) 0 0
\(298\) −13.3685 + 10.6270i −0.774417 + 0.615607i
\(299\) 0.817691 + 19.8986i 0.0472883 + 1.15076i
\(300\) 0 0
\(301\) −16.9676 + 4.54647i −0.977999 + 0.262054i
\(302\) −3.47689 + 0.518523i −0.200073 + 0.0298377i
\(303\) 0 0
\(304\) 13.5479 4.64614i 0.777027 0.266474i
\(305\) 0.0124236 + 0.00332890i 0.000711375 + 0.000190612i
\(306\) 0 0
\(307\) 14.6289 + 14.6289i 0.834914 + 0.834914i 0.988184 0.153270i \(-0.0489804\pi\)
−0.153270 + 0.988184i \(0.548980\pi\)
\(308\) −3.18098 10.4276i −0.181253 0.594169i
\(309\) 0 0
\(310\) −0.00355755 + 0.00480464i −0.000202055 + 0.000272885i
\(311\) −25.6430 −1.45408 −0.727040 0.686595i \(-0.759105\pi\)
−0.727040 + 0.686595i \(0.759105\pi\)
\(312\) 0 0
\(313\) −19.4022 −1.09668 −0.548340 0.836256i \(-0.684740\pi\)
−0.548340 + 0.836256i \(0.684740\pi\)
\(314\) 19.5025 26.3390i 1.10059 1.48640i
\(315\) 0 0
\(316\) −24.2384 + 7.39399i −1.36352 + 0.415944i
\(317\) 11.2646 + 11.2646i 0.632682 + 0.632682i 0.948740 0.316058i \(-0.102359\pi\)
−0.316058 + 0.948740i \(0.602359\pi\)
\(318\) 0 0
\(319\) −5.66420 1.51772i −0.317134 0.0849759i
\(320\) 0.00503200 + 0.0487485i 0.000281297 + 0.00272513i
\(321\) 0 0
\(322\) −12.5873 + 1.87719i −0.701460 + 0.104612i
\(323\) 19.1945 5.14315i 1.06801 0.286172i
\(324\) 0 0
\(325\) 9.64723 + 15.2291i 0.535132 + 0.844760i
\(326\) 9.61122 7.64025i 0.532316 0.423154i
\(327\) 0 0
\(328\) −14.0775 1.12110i −0.777300 0.0619024i
\(329\) −5.73663 + 3.31205i −0.316271 + 0.182599i
\(330\) 0 0
\(331\) −3.11057 0.833475i −0.170972 0.0458119i 0.172317 0.985042i \(-0.444875\pi\)
−0.343290 + 0.939230i \(0.611541\pi\)
\(332\) 8.88001 + 4.72865i 0.487354 + 0.259518i
\(333\) 0 0
\(334\) 12.4907 31.6807i 0.683461 1.73349i
\(335\) 0.00157664 0.00273082i 8.61411e−5 0.000149201i
\(336\) 0 0
\(337\) 14.3103i 0.779534i 0.920914 + 0.389767i \(0.127444\pi\)
−0.920914 + 0.389767i \(0.872556\pi\)
\(338\) −16.2043 + 8.68449i −0.881398 + 0.472374i
\(339\) 0 0
\(340\) 0.00233085 + 0.0679552i 0.000126408 + 0.00368539i
\(341\) −1.99952 1.15442i −0.108280 0.0625155i
\(342\) 0 0
\(343\) −13.0705 13.0705i −0.705740 0.705740i
\(344\) 5.52961 + 29.9908i 0.298137 + 1.61699i
\(345\) 0 0
\(346\) −1.83488 + 16.0602i −0.0986437 + 0.863404i
\(347\) −0.895267 1.55065i −0.0480604 0.0832431i 0.840994 0.541044i \(-0.181971\pi\)
−0.889055 + 0.457801i \(0.848637\pi\)
\(348\) 0 0
\(349\) 2.69383 + 10.0535i 0.144197 + 0.538151i 0.999790 + 0.0205016i \(0.00652631\pi\)
−0.855593 + 0.517650i \(0.826807\pi\)
\(350\) −9.01798 + 7.16866i −0.482031 + 0.383181i
\(351\) 0 0
\(352\) −18.4844 + 4.06785i −0.985224 + 0.216817i
\(353\) 2.28519 + 8.52844i 0.121628 + 0.453923i 0.999697 0.0246115i \(-0.00783486\pi\)
−0.878069 + 0.478534i \(0.841168\pi\)
\(354\) 0 0
\(355\) −0.0116745 + 0.00674030i −0.000619620 + 0.000357738i
\(356\) −15.8822 25.4520i −0.841756 1.34895i
\(357\) 0 0
\(358\) 10.8297 + 24.9277i 0.572365 + 1.31747i
\(359\) 6.93284 6.93284i 0.365901 0.365901i −0.500079 0.865980i \(-0.666696\pi\)
0.865980 + 0.500079i \(0.166696\pi\)
\(360\) 0 0
\(361\) −5.35132 3.08959i −0.281648 0.162610i
\(362\) 11.2570 + 8.33511i 0.591652 + 0.438084i
\(363\) 0 0
\(364\) −6.62349 9.70327i −0.347165 0.508590i
\(365\) 0.0117973i 0.000617499i
\(366\) 0 0
\(367\) −12.8657 7.42801i −0.671583 0.387739i 0.125093 0.992145i \(-0.460077\pi\)
−0.796676 + 0.604406i \(0.793410\pi\)
\(368\) 1.51387 + 22.0422i 0.0789159 + 1.14903i
\(369\) 0 0
\(370\) 0.0924611 0.0401691i 0.00480682 0.00208829i
\(371\) −1.56807 + 5.85211i −0.0814101 + 0.303827i
\(372\) 0 0
\(373\) 18.4652 10.6609i 0.956090 0.551999i 0.0611226 0.998130i \(-0.480532\pi\)
0.894967 + 0.446131i \(0.147199\pi\)
\(374\) −25.9725 + 3.87339i −1.34301 + 0.200288i
\(375\) 0 0
\(376\) 4.94119 + 10.3843i 0.254823 + 0.535528i
\(377\) −6.31392 + 0.259458i −0.325183 + 0.0133627i
\(378\) 0 0
\(379\) −6.98578 26.0713i −0.358835 1.33919i −0.875589 0.483058i \(-0.839526\pi\)
0.516753 0.856134i \(-0.327141\pi\)
\(380\) −0.0299387 + 0.0320654i −0.00153582 + 0.00164492i
\(381\) 0 0
\(382\) −11.8204 1.35047i −0.604783 0.0690963i
\(383\) 5.60173 20.9059i 0.286235 1.06824i −0.661697 0.749771i \(-0.730163\pi\)
0.947932 0.318473i \(-0.103170\pi\)
\(384\) 0 0
\(385\) 0.0236121 + 0.0236121i 0.00120339 + 0.00120339i
\(386\) 5.16778 + 2.03749i 0.263033 + 0.103706i
\(387\) 0 0
\(388\) 0.334306 + 9.74656i 0.0169718 + 0.494807i
\(389\) −25.5925 −1.29759 −0.648797 0.760962i \(-0.724727\pi\)
−0.648797 + 0.760962i \(0.724727\pi\)
\(390\) 0 0
\(391\) 30.6543i 1.55025i
\(392\) −9.35392 + 7.97397i −0.472445 + 0.402746i
\(393\) 0 0
\(394\) 20.9740 + 8.26939i 1.05665 + 0.416606i
\(395\) 0.0548849 0.0548849i 0.00276156 0.00276156i
\(396\) 0 0
\(397\) −7.13276 1.91122i −0.357983 0.0959212i 0.0753451 0.997158i \(-0.475994\pi\)
−0.433328 + 0.901236i \(0.642661\pi\)
\(398\) 2.06048 18.0349i 0.103283 0.904009i
\(399\) 0 0
\(400\) 11.1632 + 16.5945i 0.558160 + 0.829724i
\(401\) 0.0510228 0.0136715i 0.00254796 0.000682723i −0.257545 0.966266i \(-0.582914\pi\)
0.260093 + 0.965584i \(0.416247\pi\)
\(402\) 0 0
\(403\) −2.42772 0.544746i −0.120933 0.0271357i
\(404\) −30.7642 7.12258i −1.53058 0.354362i
\(405\) 0 0
\(406\) −0.595641 3.99400i −0.0295612 0.198219i
\(407\) 19.4664 + 33.7168i 0.964914 + 1.67128i
\(408\) 0 0
\(409\) 9.42392 + 2.52513i 0.465983 + 0.124860i 0.484168 0.874975i \(-0.339122\pi\)
−0.0181853 + 0.999835i \(0.505789\pi\)
\(410\) 0.0396733 0.0172358i 0.00195932 0.000851215i
\(411\) 0 0
\(412\) 8.39050 + 27.5051i 0.413370 + 1.35508i
\(413\) −2.43086 + 4.21037i −0.119615 + 0.207179i
\(414\) 0 0
\(415\) −0.0308152 −0.00151266
\(416\) −17.7053 + 10.1253i −0.868075 + 0.496433i
\(417\) 0 0
\(418\) −13.6161 10.0819i −0.665986 0.493123i
\(419\) −4.74183 + 8.21309i −0.231654 + 0.401236i −0.958295 0.285781i \(-0.907747\pi\)
0.726641 + 0.687017i \(0.241080\pi\)
\(420\) 0 0
\(421\) −15.6320 15.6320i −0.761859 0.761859i 0.214799 0.976658i \(-0.431090\pi\)
−0.976658 + 0.214799i \(0.931090\pi\)
\(422\) 7.10651 3.08738i 0.345940 0.150291i
\(423\) 0 0
\(424\) 9.91154 + 3.52024i 0.481347 + 0.170958i
\(425\) 13.8743 + 24.0310i 0.673003 + 1.16568i
\(426\) 0 0
\(427\) −3.30409 + 0.885327i −0.159896 + 0.0428440i
\(428\) 8.53478 + 1.97598i 0.412544 + 0.0955128i
\(429\) 0 0
\(430\) −0.0581260 0.0731209i −0.00280308 0.00352620i
\(431\) −37.8715 + 10.1476i −1.82421 + 0.488795i −0.997293 0.0735317i \(-0.976573\pi\)
−0.826915 + 0.562327i \(0.809906\pi\)
\(432\) 0 0
\(433\) −5.12070 + 2.95644i −0.246085 + 0.142077i −0.617970 0.786201i \(-0.712045\pi\)
0.371885 + 0.928279i \(0.378712\pi\)
\(434\) 0.180478 1.57968i 0.00866321 0.0758270i
\(435\) 0 0
\(436\) 11.1889 21.0117i 0.535849 1.00628i
\(437\) −13.9849 + 13.9849i −0.668989 + 0.668989i
\(438\) 0 0
\(439\) −3.69569 + 6.40112i −0.176385 + 0.305509i −0.940640 0.339406i \(-0.889774\pi\)
0.764254 + 0.644915i \(0.223107\pi\)
\(440\) 0.0441174 0.0376089i 0.00210321 0.00179293i
\(441\) 0 0
\(442\) −25.4700 + 12.3321i −1.21148 + 0.586576i
\(443\) 27.3664 1.30022 0.650109 0.759841i \(-0.274723\pi\)
0.650109 + 0.759841i \(0.274723\pi\)
\(444\) 0 0
\(445\) 0.0795804 + 0.0459458i 0.00377247 + 0.00217804i
\(446\) −18.8667 7.43855i −0.893364 0.352226i
\(447\) 0 0
\(448\) −7.64135 10.5587i −0.361020 0.498850i
\(449\) −4.34105 + 16.2010i −0.204867 + 0.764573i 0.784623 + 0.619973i \(0.212856\pi\)
−0.989490 + 0.144600i \(0.953810\pi\)
\(450\) 0 0
\(451\) 8.35266 + 14.4672i 0.393311 + 0.681235i
\(452\) 10.9834 11.7636i 0.516614 0.553312i
\(453\) 0 0
\(454\) −8.43112 10.6061i −0.395692 0.497770i
\(455\) 0.0318763 + 0.0166978i 0.00149438 + 0.000782803i
\(456\) 0 0
\(457\) 7.41678 + 27.6798i 0.346942 + 1.29481i 0.890327 + 0.455322i \(0.150476\pi\)
−0.543385 + 0.839484i \(0.682858\pi\)
\(458\) −34.1485 + 5.09270i −1.59565 + 0.237966i
\(459\) 0 0
\(460\) −0.0358260 0.0574128i −0.00167040 0.00267688i
\(461\) 9.47325 35.3546i 0.441213 1.64663i −0.284532 0.958666i \(-0.591838\pi\)
0.725745 0.687963i \(-0.241495\pi\)
\(462\) 0 0
\(463\) 9.62736 9.62736i 0.447422 0.447422i −0.447075 0.894497i \(-0.647534\pi\)
0.894497 + 0.447075i \(0.147534\pi\)
\(464\) −6.99410 + 0.480359i −0.324693 + 0.0223001i
\(465\) 0 0
\(466\) −9.97660 + 13.4739i −0.462157 + 0.624165i
\(467\) 26.0667i 1.20622i 0.797658 + 0.603110i \(0.206072\pi\)
−0.797658 + 0.603110i \(0.793928\pi\)
\(468\) 0 0
\(469\) 0.838620i 0.0387239i
\(470\) −0.0283086 0.0209608i −0.00130578 0.000966850i
\(471\) 0 0
\(472\) 6.95143 + 4.78711i 0.319966 + 0.220345i
\(473\) 25.5087 25.5087i 1.17289 1.17289i
\(474\) 0 0
\(475\) −4.63363 + 17.2929i −0.212605 + 0.793454i
\(476\) −9.57324 15.3416i −0.438789 0.703179i
\(477\) 0 0
\(478\) −2.41736 16.2093i −0.110567 0.741396i
\(479\) −8.72017 32.5441i −0.398435 1.48698i −0.815850 0.578263i \(-0.803731\pi\)
0.417415 0.908716i \(-0.362936\pi\)
\(480\) 0 0
\(481\) 30.8599 + 28.4238i 1.40709 + 1.29601i
\(482\) −23.7287 + 18.8626i −1.08081 + 0.859170i
\(483\) 0 0
\(484\) 0.284249 + 0.265396i 0.0129204 + 0.0120635i
\(485\) −0.0149355 0.0258691i −0.000678186 0.00117465i
\(486\) 0 0
\(487\) −6.44555 + 24.0551i −0.292076 + 1.09004i 0.651436 + 0.758703i \(0.274167\pi\)
−0.943512 + 0.331338i \(0.892500\pi\)
\(488\) 1.07677 + 5.84006i 0.0487432 + 0.264367i
\(489\) 0 0
\(490\) 0.0138091 0.0350245i 0.000623829 0.00158224i
\(491\) −31.9925 18.4709i −1.44380 0.833578i −0.445699 0.895183i \(-0.647045\pi\)
−0.998101 + 0.0616050i \(0.980378\pi\)
\(492\) 0 0
\(493\) −9.72677 −0.438072
\(494\) −17.2458 5.99369i −0.775925 0.269669i
\(495\) 0 0
\(496\) −2.70892 0.530047i −0.121634 0.0237998i
\(497\) 1.79259 3.10486i 0.0804088 0.139272i
\(498\) 0 0
\(499\) −15.6264 + 15.6264i −0.699534 + 0.699534i −0.964310 0.264776i \(-0.914702\pi\)
0.264776 + 0.964310i \(0.414702\pi\)
\(500\) −0.108142 0.0575860i −0.00483624 0.00257532i
\(501\) 0 0
\(502\) 10.9270 + 1.24840i 0.487695 + 0.0557190i
\(503\) 29.7238 17.1610i 1.32532 0.765173i 0.340747 0.940155i \(-0.389320\pi\)
0.984572 + 0.174982i \(0.0559866\pi\)
\(504\) 0 0
\(505\) 0.0934268 0.0250336i 0.00415744 0.00111398i
\(506\) 20.4590 16.2635i 0.909513 0.722999i
\(507\) 0 0
\(508\) −7.45124 1.72512i −0.330595 0.0765399i
\(509\) −10.3675 + 2.77797i −0.459533 + 0.123131i −0.481156 0.876635i \(-0.659783\pi\)
0.0216237 + 0.999766i \(0.493116\pi\)
\(510\) 0 0
\(511\) −1.56876 2.71717i −0.0693977 0.120200i
\(512\) −19.3260 + 11.7689i −0.854095 + 0.520117i
\(513\) 0 0
\(514\) −8.67996 19.9795i −0.382857 0.881257i
\(515\) −0.0622820 0.0622820i −0.00274447 0.00274447i
\(516\) 0 0
\(517\) 6.80177 11.7810i 0.299141 0.518128i
\(518\) −15.9542 + 21.5469i −0.700987 + 0.946716i
\(519\) 0 0
\(520\) 0.0332903 0.0528638i 0.00145988 0.00231823i
\(521\) −36.1876 −1.58541 −0.792704 0.609607i \(-0.791327\pi\)
−0.792704 + 0.609607i \(0.791327\pi\)
\(522\) 0 0
\(523\) 5.07033 8.78207i 0.221710 0.384013i −0.733617 0.679563i \(-0.762170\pi\)
0.955327 + 0.295550i \(0.0955028\pi\)
\(524\) −5.91119 19.3776i −0.258231 0.846514i
\(525\) 0 0
\(526\) −11.6262 26.7612i −0.506928 1.16684i
\(527\) −3.69924 0.991208i −0.161141 0.0431777i
\(528\) 0 0
\(529\) −3.75469 6.50332i −0.163247 0.282753i
\(530\) −0.0318643 + 0.00475205i −0.00138410 + 0.000206416i
\(531\) 0 0
\(532\) 2.63158 11.3665i 0.114094 0.492799i
\(533\) 13.2414 + 12.1961i 0.573548 + 0.528271i
\(534\) 0 0
\(535\) −0.0259190 + 0.00694496i −0.00112057 + 0.000300257i
\(536\) 1.45132 + 0.115579i 0.0626873 + 0.00499227i
\(537\) 0 0
\(538\) −22.4415 2.56393i −0.967521 0.110539i
\(539\) 14.0444 + 3.76319i 0.604936 + 0.162092i
\(540\) 0 0
\(541\) 16.6100 16.6100i 0.714119 0.714119i −0.253276 0.967394i \(-0.581508\pi\)
0.967394 + 0.253276i \(0.0815079\pi\)
\(542\) −12.0747 + 30.6256i −0.518654 + 1.31548i
\(543\) 0 0
\(544\) −27.8695 + 14.4531i −1.19489 + 0.619669i
\(545\) 0.0729144i 0.00312331i
\(546\) 0 0
\(547\) 31.5052 1.34706 0.673532 0.739158i \(-0.264776\pi\)
0.673532 + 0.739158i \(0.264776\pi\)
\(548\) 34.1800 1.17237i 1.46010 0.0500811i
\(549\) 0 0
\(550\) 8.67761 22.0094i 0.370015 0.938483i
\(551\) −4.43748 4.43748i −0.189043 0.189043i
\(552\) 0 0
\(553\) −5.34278 + 19.9395i −0.227198 + 0.847915i
\(554\) −0.967180 + 8.46549i −0.0410915 + 0.359664i
\(555\) 0 0
\(556\) −23.2423 + 24.8933i −0.985692 + 1.05571i
\(557\) −3.98647 14.8777i −0.168912 0.630389i −0.997509 0.0705430i \(-0.977527\pi\)
0.828596 0.559846i \(-0.189140\pi\)
\(558\) 0 0
\(559\) 18.0389 34.4367i 0.762966 1.45652i
\(560\) 0.0358596 + 0.0175450i 0.00151535 + 0.000741412i
\(561\) 0 0
\(562\) −6.01145 40.3090i −0.253578 1.70033i
\(563\) 36.0452 20.8107i 1.51912 0.877067i 0.519379 0.854544i \(-0.326163\pi\)
0.999746 0.0225229i \(-0.00716986\pi\)
\(564\) 0 0
\(565\) −0.0127586 + 0.0476157i −0.000536758 + 0.00200321i
\(566\) −4.46042 10.2670i −0.187485 0.431553i
\(567\) 0 0
\(568\) −5.12621 3.53017i −0.215091 0.148123i
\(569\) 1.73040 + 0.999049i 0.0725423 + 0.0418823i 0.535832 0.844324i \(-0.319998\pi\)
−0.463290 + 0.886207i \(0.653331\pi\)
\(570\) 0 0
\(571\) 42.3453i 1.77210i 0.463592 + 0.886049i \(0.346560\pi\)
−0.463592 + 0.886049i \(0.653440\pi\)
\(572\) 21.7435 + 10.4562i 0.909140 + 0.437196i
\(573\) 0 0
\(574\) −6.84564 + 9.24535i −0.285731 + 0.385893i
\(575\) −23.9174 13.8087i −0.997425 0.575863i
\(576\) 0 0
\(577\) −17.1186 + 17.1186i −0.712659 + 0.712659i −0.967091 0.254432i \(-0.918111\pi\)
0.254432 + 0.967091i \(0.418111\pi\)
\(578\) −17.8998 + 7.77645i −0.744533 + 0.323458i
\(579\) 0 0
\(580\) 0.0182174 0.0113678i 0.000756435 0.000472021i
\(581\) 7.09739 4.09768i 0.294449 0.170000i
\(582\) 0 0
\(583\) −3.22026 12.0182i −0.133369 0.497741i
\(584\) −4.91853 + 2.34041i −0.203530 + 0.0968467i
\(585\) 0 0
\(586\) −1.58611 1.99529i −0.0655218 0.0824246i
\(587\) −1.99421 7.44249i −0.0823098 0.307185i 0.912481 0.409118i \(-0.134164\pi\)
−0.994791 + 0.101934i \(0.967497\pi\)
\(588\) 0 0
\(589\) −1.23544 2.13985i −0.0509054 0.0881708i
\(590\) −0.0256854 0.00293454i −0.00105745 0.000120813i
\(591\) 0 0
\(592\) 35.0902 + 30.5799i 1.44220 + 1.25683i
\(593\) −11.8828 11.8828i −0.487967 0.487967i 0.419697 0.907664i \(-0.362136\pi\)
−0.907664 + 0.419697i \(0.862136\pi\)
\(594\) 0 0
\(595\) 0.0479683 + 0.0276945i 0.00196651 + 0.00113536i
\(596\) 24.1374 0.827911i 0.988708 0.0339126i
\(597\) 0 0
\(598\) 15.8165 23.3041i 0.646783 0.952978i
\(599\) 45.8502i 1.87339i 0.350151 + 0.936693i \(0.386130\pi\)
−0.350151 + 0.936693i \(0.613870\pi\)
\(600\) 0 0
\(601\) 12.4138 21.5013i 0.506368 0.877056i −0.493605 0.869686i \(-0.664321\pi\)
0.999973 0.00736919i \(-0.00234571\pi\)
\(602\) 23.1109 + 9.11192i 0.941932 + 0.371374i
\(603\) 0 0
\(604\) 4.38808 + 2.33668i 0.178549 + 0.0950780i
\(605\) −0.00115056 0.000308292i −4.67769e−5 1.25338e-5i
\(606\) 0 0
\(607\) −40.6484 + 23.4684i −1.64987 + 0.952551i −0.672744 + 0.739876i \(0.734884\pi\)
−0.977123 + 0.212675i \(0.931782\pi\)
\(608\) −19.3081 6.12075i −0.783047 0.248229i
\(609\) 0 0
\(610\) −0.0113188 0.0142387i −0.000458284 0.000576509i
\(611\) 3.20960 14.3039i 0.129846 0.578675i
\(612\) 0 0
\(613\) −7.13914 + 1.91293i −0.288347 + 0.0772624i −0.400093 0.916474i \(-0.631022\pi\)
0.111746 + 0.993737i \(0.464356\pi\)
\(614\) −4.31560 28.9377i −0.174163 1.16783i
\(615\) 0 0
\(616\) −5.16008 + 14.5287i −0.207906 + 0.585376i
\(617\) 3.43254 + 0.919746i 0.138189 + 0.0370276i 0.327250 0.944938i \(-0.393878\pi\)
−0.189062 + 0.981965i \(0.560545\pi\)
\(618\) 0 0
\(619\) −16.7707 16.7707i −0.674072 0.674072i 0.284580 0.958652i \(-0.408146\pi\)
−0.958652 + 0.284580i \(0.908146\pi\)
\(620\) 0.00808678 0.00246689i 0.000324773 9.90728e-5i
\(621\) 0 0
\(622\) 29.1449 + 21.5801i 1.16860 + 0.865283i
\(623\) −24.4387 −0.979117
\(624\) 0 0
\(625\) −24.9994 −0.999977
\(626\) 22.0519 + 16.3281i 0.881371 + 0.652603i
\(627\) 0 0
\(628\) −44.3316 + 13.5235i −1.76902 + 0.539646i
\(629\) 45.6641 + 45.6641i 1.82074 + 1.82074i
\(630\) 0 0
\(631\) 13.1022 + 3.51071i 0.521589 + 0.139759i 0.510001 0.860174i \(-0.329645\pi\)
0.0115873 + 0.999933i \(0.496312\pi\)
\(632\) 33.7710 + 11.9943i 1.34334 + 0.477107i
\(633\) 0 0
\(634\) −3.32312 22.2828i −0.131978 0.884961i
\(635\) 0.0226284 0.00606326i 0.000897980 0.000240613i
\(636\) 0 0
\(637\) 15.6554 0.643326i 0.620289 0.0254895i
\(638\) 5.16048 + 6.49174i 0.204305 + 0.257011i
\(639\) 0 0
\(640\) 0.0353056 0.0596406i 0.00139558 0.00235750i
\(641\) −19.1888 + 11.0787i −0.757912 + 0.437581i −0.828546 0.559921i \(-0.810831\pi\)
0.0706333 + 0.997502i \(0.477498\pi\)
\(642\) 0 0
\(643\) −23.0119 6.16601i −0.907499 0.243164i −0.225265 0.974298i \(-0.572325\pi\)
−0.682234 + 0.731134i \(0.738991\pi\)
\(644\) 15.8860 + 8.45937i 0.625996 + 0.333346i
\(645\) 0 0
\(646\) −26.1440 10.3078i −1.02862 0.405554i
\(647\) 16.5037 28.5853i 0.648829 1.12380i −0.334574 0.942370i \(-0.608592\pi\)
0.983403 0.181435i \(-0.0580743\pi\)
\(648\) 0 0
\(649\) 9.98424i 0.391916i
\(650\) 1.85151 25.4276i 0.0726221 0.997352i
\(651\) 0 0
\(652\) −17.3535 + 0.595223i −0.679615 + 0.0233107i
\(653\) −6.90829 3.98850i −0.270342 0.156082i 0.358701 0.933453i \(-0.383220\pi\)
−0.629043 + 0.777370i \(0.716553\pi\)
\(654\) 0 0
\(655\) 0.0438783 + 0.0438783i 0.00171447 + 0.00171447i
\(656\) 15.0565 + 13.1213i 0.587858 + 0.512299i
\(657\) 0 0
\(658\) 9.30734 + 1.06336i 0.362838 + 0.0414541i
\(659\) −4.00689 6.94014i −0.156086 0.270350i 0.777368 0.629046i \(-0.216554\pi\)
−0.933454 + 0.358697i \(0.883221\pi\)
\(660\) 0 0
\(661\) −4.42854 16.5276i −0.172250 0.642847i −0.997004 0.0773545i \(-0.975353\pi\)
0.824753 0.565493i \(-0.191314\pi\)
\(662\) 2.83395 + 3.56503i 0.110144 + 0.138559i
\(663\) 0 0
\(664\) −6.11327 12.8475i −0.237241 0.498578i
\(665\) 0.00924918 + 0.0345184i 0.000358668 + 0.00133857i
\(666\) 0 0
\(667\) 8.38380 4.84039i 0.324622 0.187421i
\(668\) −40.8577 + 25.4955i −1.58083 + 0.986451i
\(669\) 0 0
\(670\) −0.00409010 + 0.00177692i −0.000158014 + 6.86483e-5i
\(671\) 4.96727 4.96727i 0.191759 0.191759i
\(672\) 0 0
\(673\) −40.8080 23.5605i −1.57303 0.908190i −0.995795 0.0916142i \(-0.970797\pi\)
−0.577237 0.816576i \(-0.695869\pi\)
\(674\) 12.0430 16.2646i 0.463879 0.626490i
\(675\) 0 0
\(676\) 25.7257 + 3.76641i 0.989452 + 0.144862i
\(677\) 29.4037i 1.13008i 0.825065 + 0.565038i \(0.191138\pi\)
−0.825065 + 0.565038i \(0.808862\pi\)
\(678\) 0 0
\(679\) 6.87992 + 3.97212i 0.264027 + 0.152436i
\(680\) 0.0545391 0.0791970i 0.00209148 0.00303707i
\(681\) 0 0
\(682\) 1.30107 + 2.99479i 0.0498205 + 0.114676i
\(683\) 6.46547 24.1295i 0.247394 0.923288i −0.724771 0.688990i \(-0.758054\pi\)
0.972165 0.234298i \(-0.0752791\pi\)
\(684\) 0 0
\(685\) −0.0907195 + 0.0523769i −0.00346621 + 0.00200122i
\(686\) 3.85587 + 25.8550i 0.147218 + 0.987150i
\(687\) 0 0
\(688\) 18.9543 38.7399i 0.722624 1.47695i
\(689\) −7.17511 11.3266i −0.273350 0.431511i
\(690\) 0 0
\(691\) −10.1307 37.8084i −0.385391 1.43830i −0.837549 0.546362i \(-0.816012\pi\)
0.452158 0.891938i \(-0.350654\pi\)
\(692\) 15.6011 16.7093i 0.593065 0.635194i
\(693\) 0 0
\(694\) −0.287433 + 2.51583i −0.0109108 + 0.0954996i
\(695\) 0.0269989 0.100761i 0.00102413 0.00382209i
\(696\) 0 0
\(697\) 19.5936 + 19.5936i 0.742159 + 0.742159i
\(698\) 5.39890 13.6935i 0.204351 0.518305i
\(699\) 0 0
\(700\) 16.2824 0.558483i 0.615415 0.0211087i
\(701\) 43.6308 1.64791 0.823956 0.566654i \(-0.191762\pi\)
0.823956 + 0.566654i \(0.191762\pi\)
\(702\) 0 0
\(703\) 41.6651i 1.57143i
\(704\) 24.4321 + 10.9324i 0.920819 + 0.412030i
\(705\) 0 0
\(706\) 4.57992 11.6162i 0.172368 0.437183i
\(707\) −18.1893 + 18.1893i −0.684078 + 0.684078i
\(708\) 0 0
\(709\) 47.8263 + 12.8150i 1.79615 + 0.481278i 0.993367 0.114987i \(-0.0366827\pi\)
0.802787 + 0.596265i \(0.203349\pi\)
\(710\) 0.0189412 + 0.00216403i 0.000710851 + 8.12146e-5i
\(711\) 0 0
\(712\) −3.36817 + 42.2936i −0.126227 + 1.58502i
\(713\) 3.68175 0.986522i 0.137883 0.0369455i
\(714\) 0 0
\(715\) −0.0738379 + 0.00303422i −0.00276138 + 0.000113473i
\(716\) 8.66948 37.4457i 0.323994 1.39941i
\(717\) 0 0
\(718\) −13.7140 + 2.04523i −0.511802 + 0.0763271i
\(719\) −10.6542 18.4536i −0.397334 0.688202i 0.596062 0.802938i \(-0.296731\pi\)
−0.993396 + 0.114736i \(0.963398\pi\)
\(720\) 0 0
\(721\) 22.6268 + 6.06285i 0.842668 + 0.225792i
\(722\) 3.48205 + 8.01497i 0.129589 + 0.298286i
\(723\) 0 0
\(724\) −5.77976 18.9468i −0.214803 0.704151i
\(725\) 4.38158 7.58911i 0.162728 0.281853i
\(726\) 0 0
\(727\) −38.5908 −1.43125 −0.715626 0.698484i \(-0.753859\pi\)
−0.715626 + 0.698484i \(0.753859\pi\)
\(728\) −0.637851 + 16.6025i −0.0236403 + 0.615328i
\(729\) 0 0
\(730\) 0.00992813 0.0134084i 0.000367457 0.000496267i
\(731\) 29.9190 51.8212i 1.10659 1.91668i
\(732\) 0 0
\(733\) −2.88135 2.88135i −0.106425 0.106425i 0.651889 0.758314i \(-0.273977\pi\)
−0.758314 + 0.651889i \(0.773977\pi\)
\(734\) 8.37157 + 19.2696i 0.309000 + 0.711255i
\(735\) 0 0
\(736\) 16.8292 26.3264i 0.620332 0.970403i
\(737\) −0.861114 1.49149i −0.0317196 0.0549399i
\(738\) 0 0
\(739\) −25.1494 + 6.73876i −0.925136 + 0.247889i −0.689779 0.724020i \(-0.742292\pi\)
−0.235357 + 0.971909i \(0.575626\pi\)
\(740\) −0.138893 0.0321566i −0.00510580 0.00118210i
\(741\) 0 0
\(742\) 6.70711 5.33168i 0.246226 0.195732i
\(743\) −21.0093 + 5.62943i −0.770756 + 0.206524i −0.622706 0.782456i \(-0.713967\pi\)
−0.148051 + 0.988980i \(0.547300\pi\)
\(744\) 0 0
\(745\) −0.0640649 + 0.0369879i −0.00234716 + 0.00135513i
\(746\) −29.9586 3.42276i −1.09686 0.125316i
\(747\) 0 0
\(748\) 32.7791 + 17.4551i 1.19852 + 0.638220i
\(749\) 5.04617 5.04617i 0.184383 0.184383i
\(750\) 0 0
\(751\) 2.57328 4.45706i 0.0939004 0.162640i −0.815249 0.579111i \(-0.803400\pi\)
0.909149 + 0.416471i \(0.136733\pi\)
\(752\) 3.12300 15.9607i 0.113884 0.582027i
\(753\) 0 0
\(754\) 7.39453 + 5.01865i 0.269293 + 0.182768i
\(755\) −0.0152274 −0.000554182
\(756\) 0 0
\(757\) 44.0303 + 25.4209i 1.60031 + 0.923939i 0.991425 + 0.130680i \(0.0417162\pi\)
0.608885 + 0.793259i \(0.291617\pi\)
\(758\) −14.0007 + 35.5106i −0.508530 + 1.28980i
\(759\) 0 0
\(760\) 0.0610122 0.0112493i 0.00221315 0.000408053i
\(761\) −9.04510 + 33.7568i −0.327885 + 1.22368i 0.583496 + 0.812116i \(0.301685\pi\)
−0.911380 + 0.411565i \(0.864982\pi\)
\(762\) 0 0
\(763\) −9.69586 16.7937i −0.351014 0.607973i
\(764\) 12.2981 + 11.4824i 0.444930 + 0.415420i
\(765\) 0 0
\(766\) −23.9603 + 19.0468i −0.865721 + 0.688188i
\(767\) −3.20908 10.2696i −0.115873 0.370814i
\(768\) 0 0
\(769\) 11.4952 + 42.9007i 0.414528 + 1.54704i 0.785779 + 0.618507i \(0.212262\pi\)
−0.371251 + 0.928533i \(0.621071\pi\)
\(770\) −0.00696571 0.0467077i −0.000251027 0.00168323i
\(771\) 0 0
\(772\) −4.15884 6.66474i −0.149680 0.239869i
\(773\) −12.8446 + 47.9367i −0.461988 + 1.72416i 0.204699 + 0.978825i \(0.434379\pi\)
−0.666687 + 0.745338i \(0.732288\pi\)
\(774\) 0 0
\(775\) 2.43975 2.43975i 0.0876385 0.0876385i
\(776\) 7.82235 11.3589i 0.280806 0.407762i
\(777\) 0 0
\(778\) 29.0876 + 21.5376i 1.04284 + 0.772161i
\(779\) 17.8777i 0.640535i
\(780\) 0 0
\(781\) 7.36270i 0.263458i
\(782\) 25.7974 34.8406i 0.922513 1.24590i
\(783\) 0 0
\(784\) 17.3419 1.19105i 0.619354 0.0425376i
\(785\) 0.100384 0.100384i 0.00358285 0.00358285i
\(786\) 0 0
\(787\) 1.12108 4.18392i 0.0399621 0.149141i −0.943062 0.332617i \(-0.892068\pi\)
0.983024 + 0.183476i \(0.0587351\pi\)
\(788\) −16.8791 27.0495i −0.601293 0.963600i
\(789\) 0 0
\(790\) −0.108569 + 0.0161914i −0.00386272 + 0.000576063i
\(791\) −3.39317 12.6635i −0.120647 0.450261i
\(792\) 0 0
\(793\) 3.51270 6.70581i 0.124740 0.238130i
\(794\) 6.49844 + 8.17486i 0.230621 + 0.290115i
\(795\) 0 0
\(796\) −17.5193 + 18.7638i −0.620956 + 0.665066i
\(797\) −9.64544 16.7064i −0.341659 0.591771i 0.643082 0.765797i \(-0.277655\pi\)
−0.984741 + 0.174027i \(0.944322\pi\)
\(798\) 0 0
\(799\) 5.84012 21.7956i 0.206609 0.771074i
\(800\) 1.27754 28.2552i 0.0451679 0.998972i
\(801\) 0 0
\(802\) −0.0694961 0.0274001i −0.00245399 0.000967532i
\(803\) 5.58010 + 3.22167i 0.196917 + 0.113690i
\(804\) 0 0
\(805\) −0.0551272 −0.00194298
\(806\) 2.30083 + 2.66221i 0.0810431 + 0.0937723i
\(807\) 0 0
\(808\) 28.9715 + 33.9852i 1.01921 + 1.19559i
\(809\) −14.4841 + 25.0872i −0.509233 + 0.882018i 0.490709 + 0.871323i \(0.336738\pi\)
−0.999943 + 0.0106948i \(0.996596\pi\)
\(810\) 0 0
\(811\) 35.5730 35.5730i 1.24914 1.24914i 0.293033 0.956102i \(-0.405335\pi\)
0.956102 0.293033i \(-0.0946647\pi\)
\(812\) −2.68420 + 5.04070i −0.0941970 + 0.176894i
\(813\) 0 0
\(814\) 6.24985 54.7035i 0.219057 1.91736i
\(815\) 0.0460591 0.0265923i 0.00161338 0.000931486i
\(816\) 0 0
\(817\) 37.2910 9.99209i 1.30465 0.349579i
\(818\) −8.58585 10.8008i −0.300197 0.377640i
\(819\) 0 0
\(820\) −0.0595961 0.0137978i −0.00208119 0.000481840i
\(821\) −12.8376 + 3.43981i −0.448034 + 0.120050i −0.475779 0.879565i \(-0.657834\pi\)
0.0277455 + 0.999615i \(0.491167\pi\)
\(822\) 0 0
\(823\) −11.2358 19.4610i −0.391656 0.678367i 0.601013 0.799240i \(-0.294764\pi\)
−0.992668 + 0.120872i \(0.961431\pi\)
\(824\) 13.6108 38.3224i 0.474155 1.33502i
\(825\) 0 0
\(826\) 6.30610 2.73965i 0.219417 0.0953245i
\(827\) −2.97912 2.97912i −0.103594 0.103594i 0.653410 0.757004i \(-0.273338\pi\)
−0.757004 + 0.653410i \(0.773338\pi\)
\(828\) 0 0
\(829\) 7.48252 12.9601i 0.259879 0.450123i −0.706331 0.707882i \(-0.749651\pi\)
0.966209 + 0.257759i \(0.0829841\pi\)
\(830\) 0.0350235 + 0.0259328i 0.00121568 + 0.000900141i
\(831\) 0 0
\(832\) 28.6443 + 3.39203i 0.993061 + 0.117597i
\(833\) 24.1176 0.835624
\(834\) 0 0
\(835\) 0.0737561 0.127749i 0.00255244 0.00442095i
\(836\) 6.99105 + 22.9175i 0.241791 + 0.792619i
\(837\) 0 0
\(838\) 12.3012 5.34418i 0.424938 0.184612i
\(839\) 9.03430 + 2.42073i 0.311899 + 0.0835730i 0.411373 0.911467i \(-0.365049\pi\)
−0.0994743 + 0.995040i \(0.531716\pi\)
\(840\) 0 0
\(841\) −12.9641 22.4545i −0.447039 0.774294i
\(842\) 4.61154 + 30.9221i 0.158924 + 1.06565i
\(843\) 0 0
\(844\) −10.6752 2.47154i −0.367456 0.0850740i
\(845\) −0.0749732 + 0.0268535i −0.00257916 + 0.000923790i
\(846\) 0 0
\(847\) 0.305993 0.0819907i 0.0105141 0.00281723i
\(848\) −8.30262 12.3421i −0.285113 0.423830i
\(849\) 0 0
\(850\) 4.45447 38.9889i 0.152787 1.33731i
\(851\) −62.0833 16.6352i −2.12819 0.570247i
\(852\) 0 0
\(853\) −7.92636 + 7.92636i −0.271393 + 0.271393i −0.829661 0.558268i \(-0.811466\pi\)
0.558268 + 0.829661i \(0.311466\pi\)
\(854\) 4.50036 + 1.77435i 0.153999 + 0.0607171i
\(855\) 0 0
\(856\) −8.03742 9.42835i −0.274713 0.322254i
\(857\) 38.4399i 1.31308i −0.754291 0.656541i \(-0.772019\pi\)
0.754291 0.656541i \(-0.227981\pi\)
\(858\) 0 0
\(859\) 1.82343 0.0622145 0.0311072 0.999516i \(-0.490097\pi\)
0.0311072 + 0.999516i \(0.490097\pi\)
\(860\) 0.00452837 + 0.132023i 0.000154416 + 0.00450195i
\(861\) 0 0
\(862\) 51.5833 + 20.3377i 1.75693 + 0.692704i
\(863\) −25.6067 25.6067i −0.871661 0.871661i 0.120993 0.992653i \(-0.461392\pi\)
−0.992653 + 0.120993i \(0.961392\pi\)
\(864\) 0 0
\(865\) −0.0181227 + 0.0676348i −0.000616190 + 0.00229965i
\(866\) 8.30802 + 0.949189i 0.282318 + 0.0322548i
\(867\) 0 0
\(868\) −1.53452 + 1.64352i −0.0520849 + 0.0557848i
\(869\) −10.9722 40.9487i −0.372205 1.38909i
\(870\) 0 0
\(871\) −1.36512 1.25735i −0.0462552 0.0426037i
\(872\) −30.3995 + 14.4651i −1.02946 + 0.489850i
\(873\) 0 0
\(874\) 27.6639 4.12563i 0.935745 0.139551i
\(875\) −0.0864327 + 0.0499019i −0.00292196 + 0.00168699i
\(876\) 0 0
\(877\) −2.98286 + 11.1322i −0.100724 + 0.375907i −0.997825 0.0659183i \(-0.979002\pi\)
0.897101 + 0.441826i \(0.145669\pi\)
\(878\) 9.58730 4.16514i 0.323556 0.140567i
\(879\) 0 0
\(880\) −0.0817923 + 0.00561754i −0.00275722 + 0.000189367i
\(881\) −11.9623 6.90643i −0.403020 0.232684i 0.284766 0.958597i \(-0.408084\pi\)
−0.687786 + 0.725913i \(0.741417\pi\)
\(882\) 0 0
\(883\) 46.3198i 1.55879i −0.626536 0.779393i \(-0.715528\pi\)
0.626536 0.779393i \(-0.284472\pi\)
\(884\) 39.3264 + 7.41829i 1.32269 + 0.249504i
\(885\) 0 0
\(886\) −31.1037 23.0305i −1.04495 0.773723i
\(887\) 40.2976 + 23.2659i 1.35306 + 0.781191i 0.988677 0.150058i \(-0.0479459\pi\)
0.364385 + 0.931248i \(0.381279\pi\)
\(888\) 0 0
\(889\) −4.40552 + 4.40552i −0.147757 + 0.147757i
\(890\) −0.0517822 0.119192i −0.00173574 0.00399532i
\(891\) 0 0
\(892\) 15.1832 + 24.3318i 0.508373 + 0.814690i
\(893\) 12.6078 7.27912i 0.421904 0.243586i
\(894\) 0 0
\(895\) 0.0304705 + 0.113717i 0.00101852 + 0.00380115i
\(896\) −0.200856 + 18.4313i −0.00671014 + 0.615745i
\(897\) 0 0
\(898\) 18.5680 14.7602i 0.619622 0.492556i
\(899\) 0.313029 + 1.16824i 0.0104401 + 0.0389629i
\(900\) 0 0
\(901\) −10.3190 17.8730i −0.343776 0.595437i
\(902\) 2.68169 23.4722i 0.0892905 0.781538i
\(903\) 0 0
\(904\) −22.3830 + 4.12692i −0.744449 + 0.137259i
\(905\) 0.0429027 + 0.0429027i 0.00142613 + 0.00142613i
\(906\) 0 0
\(907\) −23.2692 13.4345i −0.772642 0.446085i 0.0611745 0.998127i \(-0.480515\pi\)
−0.833816 + 0.552042i \(0.813849\pi\)
\(908\) 0.656836 + 19.1498i 0.0217979 + 0.635509i
\(909\) 0 0
\(910\) −0.0221773 0.0458039i −0.000735172 0.00151838i
\(911\) 34.1859i 1.13263i 0.824189 + 0.566315i \(0.191632\pi\)
−0.824189 + 0.566315i \(0.808368\pi\)
\(912\) 0 0
\(913\) −8.41517 + 14.5755i −0.278502 + 0.482379i
\(914\) 14.8645 37.7015i 0.491675 1.24706i
\(915\) 0 0
\(916\) 43.0977 + 22.9498i 1.42399 + 0.758282i
\(917\) −15.9408 4.27133i −0.526413 0.141052i
\(918\) 0 0
\(919\) −12.0258 + 6.94309i −0.396694 + 0.229031i −0.685057 0.728490i \(-0.740223\pi\)
0.288362 + 0.957521i \(0.406889\pi\)
\(920\) −0.00759768 + 0.0954030i −0.000250488 + 0.00314534i
\(921\) 0 0
\(922\) −40.5200 + 32.2105i −1.33445 + 1.06080i
\(923\) 2.36648 + 7.57315i 0.0778936 + 0.249273i
\(924\) 0 0
\(925\) −56.1986 + 15.0584i −1.84780 + 0.495116i
\(926\) −19.0441 + 2.84013i −0.625828 + 0.0933323i
\(927\) 0 0
\(928\) 8.35350 + 5.33999i 0.274217 + 0.175294i
\(929\) −26.6246 7.13405i −0.873526 0.234061i −0.205914 0.978570i \(-0.566017\pi\)
−0.667612 + 0.744510i \(0.732683\pi\)
\(930\) 0 0
\(931\) 11.0028 + 11.0028i 0.360601 + 0.360601i
\(932\) 22.6781 6.91802i 0.742846 0.226607i
\(933\) 0 0
\(934\) 21.9366 29.6264i 0.717788 0.969406i
\(935\) −0.113749 −0.00372000
\(936\) 0 0
\(937\) 28.0766 0.917224 0.458612 0.888637i \(-0.348347\pi\)
0.458612 + 0.888637i \(0.348347\pi\)
\(938\) 0.705748 0.953146i 0.0230435 0.0311213i
\(939\) 0 0
\(940\) 0.0145347 + 0.0476466i 0.000474071 + 0.00155406i
\(941\) 4.25969 + 4.25969i 0.138862 + 0.138862i 0.773121 0.634259i \(-0.218695\pi\)
−0.634259 + 0.773121i \(0.718695\pi\)
\(942\) 0 0
\(943\) −26.6388 7.13783i −0.867477 0.232440i
\(944\) −3.87211 11.2909i −0.126027 0.367488i
\(945\) 0 0
\(946\) −50.4593 + 7.52520i −1.64057 + 0.244666i
\(947\) −6.23584 + 1.67089i −0.202637 + 0.0542965i −0.358710 0.933449i \(-0.616783\pi\)
0.156073 + 0.987746i \(0.450117\pi\)
\(948\) 0 0
\(949\) 6.77508 + 1.52023i 0.219929 + 0.0493488i
\(950\) 19.8194 15.7551i 0.643027 0.511162i
\(951\) 0 0
\(952\) −2.03021 + 25.4931i −0.0657996 + 0.826236i
\(953\) −14.7203 + 8.49878i −0.476838 + 0.275302i −0.719098 0.694909i \(-0.755445\pi\)
0.242260 + 0.970211i \(0.422111\pi\)
\(954\) 0 0
\(955\) −0.0497794 0.0133383i −0.00161082 0.000431618i
\(956\) −10.8936 + 20.4573i −0.352324 + 0.661635i
\(957\) 0 0
\(958\) −17.4768 + 44.3270i −0.564649 + 1.43214i
\(959\) 13.9297 24.1270i 0.449815 0.779102i
\(960\) 0 0
\(961\) 30.5238i 0.984639i
\(962\) −11.1540 58.2758i −0.359619 1.87889i
\(963\) 0 0
\(964\) 42.8432 1.46952i 1.37989 0.0473299i
\(965\) 0.0208386 + 0.0120312i 0.000670817 + 0.000387297i
\(966\) 0 0
\(967\) 14.8731 + 14.8731i 0.478288 + 0.478288i 0.904584 0.426296i \(-0.140182\pi\)
−0.426296 + 0.904584i \(0.640182\pi\)
\(968\) −0.0997206 0.540852i −0.00320514 0.0173836i
\(969\) 0 0
\(970\) −0.00479517 + 0.0419710i −0.000153964 + 0.00134761i
\(971\) 7.95576 + 13.7798i 0.255313 + 0.442214i 0.964980 0.262322i \(-0.0844883\pi\)
−0.709668 + 0.704536i \(0.751155\pi\)
\(972\) 0 0
\(973\) 7.18040 + 26.7976i 0.230193 + 0.859092i
\(974\) 27.5696 21.9159i 0.883387 0.702230i
\(975\) 0 0
\(976\) 3.69093 7.54378i 0.118144 0.241470i
\(977\) 2.13713 + 7.97588i 0.0683729 + 0.255171i 0.991649 0.128966i \(-0.0411658\pi\)
−0.923276 + 0.384137i \(0.874499\pi\)
\(978\) 0 0
\(979\) 43.4645 25.0942i 1.38913 0.802015i
\(980\) −0.0451700 + 0.0281864i −0.00144290 + 0.000900383i
\(981\) 0 0
\(982\) 20.8172 + 47.9169i 0.664303 + 1.52909i
\(983\) −30.1467 + 30.1467i −0.961530 + 0.961530i −0.999287 0.0377570i \(-0.987979\pi\)
0.0377570 + 0.999287i \(0.487979\pi\)
\(984\) 0 0
\(985\) 0.0845755 + 0.0488297i 0.00269480 + 0.00155584i
\(986\) 11.0551 + 8.18565i 0.352066 + 0.260684i
\(987\) 0 0
\(988\) 14.5569 + 21.3256i 0.463117 + 0.678456i
\(989\) 59.5551i 1.89374i
\(990\) 0 0
\(991\) −2.25938 1.30446i −0.0717717 0.0414374i 0.463685 0.886000i \(-0.346527\pi\)
−0.535456 + 0.844563i \(0.679860\pi\)
\(992\) 2.63279 + 2.88214i 0.0835912 + 0.0915082i
\(993\) 0 0
\(994\) −4.65032 + 2.02030i −0.147499 + 0.0640802i
\(995\) 0.0203509 0.0759508i 0.000645168 0.00240780i
\(996\) 0 0
\(997\) 21.3384 12.3197i 0.675794 0.390170i −0.122475 0.992472i \(-0.539083\pi\)
0.798268 + 0.602302i \(0.205750\pi\)
\(998\) 30.9110 4.60988i 0.978469 0.145923i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.ed.e.19.4 56
3.2 odd 2 312.2.bt.d.19.11 yes 56
8.3 odd 2 inner 936.2.ed.e.19.10 56
13.11 odd 12 inner 936.2.ed.e.739.10 56
24.11 even 2 312.2.bt.d.19.5 56
39.11 even 12 312.2.bt.d.115.5 yes 56
104.11 even 12 inner 936.2.ed.e.739.4 56
312.11 odd 12 312.2.bt.d.115.11 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bt.d.19.5 56 24.11 even 2
312.2.bt.d.19.11 yes 56 3.2 odd 2
312.2.bt.d.115.5 yes 56 39.11 even 12
312.2.bt.d.115.11 yes 56 312.11 odd 12
936.2.ed.e.19.4 56 1.1 even 1 trivial
936.2.ed.e.19.10 56 8.3 odd 2 inner
936.2.ed.e.739.4 56 104.11 even 12 inner
936.2.ed.e.739.10 56 13.11 odd 12 inner