Properties

Label 936.2.ed.e.739.10
Level $936$
Weight $2$
Character 936.739
Analytic conductor $7.474$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(19,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.ed (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 739.10
Character \(\chi\) \(=\) 936.739
Dual form 936.2.ed.e.19.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.563514 + 1.29709i) q^{2} +(-1.36490 + 1.46186i) q^{4} +(0.00433170 - 0.00433170i) q^{5} +(-1.57369 + 0.421669i) q^{7} +(-2.66531 - 0.946628i) q^{8} +(0.00805959 + 0.00317764i) q^{10} +(-3.23180 - 0.865959i) q^{11} +(3.04585 + 1.92946i) q^{13} +(-1.43374 - 1.80361i) q^{14} +(-0.274077 - 3.99060i) q^{16} +(-4.80624 - 2.77488i) q^{17} +(-3.45861 + 0.926732i) q^{19} +(0.000419991 + 0.0122447i) q^{20} +(-0.697937 - 4.67993i) q^{22} +(-2.76176 - 4.78352i) q^{23} +4.99996i q^{25} +(-0.786312 + 5.03803i) q^{26} +(1.53152 - 2.87606i) q^{28} +(-1.51783 + 0.876322i) q^{29} +(-0.487954 + 0.487954i) q^{31} +(5.02173 - 2.60426i) q^{32} +(0.890900 - 7.79783i) q^{34} +(-0.00499021 + 0.00864330i) q^{35} +(3.01169 - 11.2398i) q^{37} +(-3.15103 - 3.96392i) q^{38} +(-0.0156458 + 0.00744482i) q^{40} +(-1.29226 + 4.82278i) q^{41} +(-9.33754 - 5.39103i) q^{43} +(5.67701 - 3.54250i) q^{44} +(4.64838 - 6.27785i) q^{46} +(2.87499 + 2.87499i) q^{47} +(-3.76348 + 2.17284i) q^{49} +(-6.48542 + 2.81755i) q^{50} +(-6.97789 + 1.81908i) q^{52} +3.71872i q^{53} +(-0.0177503 + 0.0102481i) q^{55} +(4.59355 + 0.365820i) q^{56} +(-1.99199 - 1.47495i) q^{58} +(-0.772342 - 2.88242i) q^{59} +(1.81829 + 1.04979i) q^{61} +(-0.907891 - 0.357953i) q^{62} +(6.20779 + 5.04612i) q^{64} +(0.0215515 - 0.00483585i) q^{65} +(0.133225 - 0.497203i) q^{67} +(10.6165 - 3.23861i) q^{68} +(-0.0140232 - 0.00160215i) q^{70} +(-0.569550 - 2.12559i) q^{71} +(-1.36174 + 1.36174i) q^{73} +(16.2762 - 2.42733i) q^{74} +(3.36592 - 6.32091i) q^{76} +5.45101 q^{77} +12.6705i q^{79} +(-0.0184733 - 0.0160988i) q^{80} +(-6.98380 + 1.04152i) q^{82} +(3.55694 + 3.55694i) q^{83} +(-0.0328391 + 0.00879922i) q^{85} +(1.73084 - 15.1496i) q^{86} +(7.79403 + 5.36737i) q^{88} +(-14.4893 - 3.88239i) q^{89} +(-5.60682 - 1.75203i) q^{91} +(10.7624 + 2.49172i) q^{92} +(-2.10903 + 5.34922i) q^{94} +(-0.0109673 + 0.0189960i) q^{95} +(4.71000 - 1.26204i) q^{97} +(-4.93916 - 3.65715i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 12 q^{8} + 28 q^{14} + 12 q^{16} - 8 q^{19} + 4 q^{20} + 10 q^{22} - 34 q^{26} - 14 q^{28} + 30 q^{32} + 56 q^{34} - 28 q^{40} - 40 q^{41} + 44 q^{44} - 18 q^{46} + 24 q^{49} + 72 q^{50} + 32 q^{52}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.563514 + 1.29709i 0.398465 + 0.917184i
\(3\) 0 0
\(4\) −1.36490 + 1.46186i −0.682452 + 0.730931i
\(5\) 0.00433170 0.00433170i 0.00193719 0.00193719i −0.706138 0.708075i \(-0.749564\pi\)
0.708075 + 0.706138i \(0.249564\pi\)
\(6\) 0 0
\(7\) −1.57369 + 0.421669i −0.594800 + 0.159376i −0.543646 0.839315i \(-0.682957\pi\)
−0.0511537 + 0.998691i \(0.516290\pi\)
\(8\) −2.66531 0.946628i −0.942331 0.334684i
\(9\) 0 0
\(10\) 0.00805959 + 0.00317764i 0.00254867 + 0.00100486i
\(11\) −3.23180 0.865959i −0.974426 0.261097i −0.263730 0.964596i \(-0.584953\pi\)
−0.710695 + 0.703500i \(0.751620\pi\)
\(12\) 0 0
\(13\) 3.04585 + 1.92946i 0.844766 + 0.535136i
\(14\) −1.43374 1.80361i −0.383184 0.482035i
\(15\) 0 0
\(16\) −0.274077 3.99060i −0.0685191 0.997650i
\(17\) −4.80624 2.77488i −1.16568 0.673008i −0.213025 0.977047i \(-0.568331\pi\)
−0.952660 + 0.304039i \(0.901665\pi\)
\(18\) 0 0
\(19\) −3.45861 + 0.926732i −0.793460 + 0.212607i −0.632711 0.774388i \(-0.718058\pi\)
−0.160749 + 0.986995i \(0.551391\pi\)
\(20\) 0.000419991 0.0122447i 9.39129e−5 0.00273800i
\(21\) 0 0
\(22\) −0.697937 4.67993i −0.148801 0.997765i
\(23\) −2.76176 4.78352i −0.575868 0.997432i −0.995947 0.0899447i \(-0.971331\pi\)
0.420079 0.907488i \(-0.362002\pi\)
\(24\) 0 0
\(25\) 4.99996i 0.999992i
\(26\) −0.786312 + 5.03803i −0.154208 + 0.988038i
\(27\) 0 0
\(28\) 1.53152 2.87606i 0.289429 0.543524i
\(29\) −1.51783 + 0.876322i −0.281855 + 0.162729i −0.634263 0.773118i \(-0.718696\pi\)
0.352408 + 0.935846i \(0.385363\pi\)
\(30\) 0 0
\(31\) −0.487954 + 0.487954i −0.0876391 + 0.0876391i −0.749567 0.661928i \(-0.769738\pi\)
0.661928 + 0.749567i \(0.269738\pi\)
\(32\) 5.02173 2.60426i 0.887726 0.460373i
\(33\) 0 0
\(34\) 0.890900 7.79783i 0.152788 1.33732i
\(35\) −0.00499021 + 0.00864330i −0.000843500 + 0.00146098i
\(36\) 0 0
\(37\) 3.01169 11.2398i 0.495119 1.84781i −0.0342404 0.999414i \(-0.510901\pi\)
0.529360 0.848397i \(-0.322432\pi\)
\(38\) −3.15103 3.96392i −0.511165 0.643032i
\(39\) 0 0
\(40\) −0.0156458 + 0.00744482i −0.00247382 + 0.00117713i
\(41\) −1.29226 + 4.82278i −0.201817 + 0.753191i 0.788579 + 0.614933i \(0.210817\pi\)
−0.990396 + 0.138258i \(0.955850\pi\)
\(42\) 0 0
\(43\) −9.33754 5.39103i −1.42396 0.822125i −0.427327 0.904097i \(-0.640545\pi\)
−0.996635 + 0.0819721i \(0.973878\pi\)
\(44\) 5.67701 3.54250i 0.855842 0.534052i
\(45\) 0 0
\(46\) 4.64838 6.27785i 0.685366 0.925618i
\(47\) 2.87499 + 2.87499i 0.419360 + 0.419360i 0.884983 0.465623i \(-0.154170\pi\)
−0.465623 + 0.884983i \(0.654170\pi\)
\(48\) 0 0
\(49\) −3.76348 + 2.17284i −0.537640 + 0.310406i
\(50\) −6.48542 + 2.81755i −0.917177 + 0.398462i
\(51\) 0 0
\(52\) −6.97789 + 1.81908i −0.967659 + 0.252261i
\(53\) 3.71872i 0.510805i 0.966835 + 0.255402i \(0.0822080\pi\)
−0.966835 + 0.255402i \(0.917792\pi\)
\(54\) 0 0
\(55\) −0.0177503 + 0.0102481i −0.00239345 + 0.00138186i
\(56\) 4.59355 + 0.365820i 0.613838 + 0.0488847i
\(57\) 0 0
\(58\) −1.99199 1.47495i −0.261561 0.193671i
\(59\) −0.772342 2.88242i −0.100550 0.375259i 0.897252 0.441519i \(-0.145560\pi\)
−0.997802 + 0.0662595i \(0.978893\pi\)
\(60\) 0 0
\(61\) 1.81829 + 1.04979i 0.232808 + 0.134412i 0.611867 0.790961i \(-0.290419\pi\)
−0.379059 + 0.925373i \(0.623752\pi\)
\(62\) −0.907891 0.357953i −0.115302 0.0454601i
\(63\) 0 0
\(64\) 6.20779 + 5.04612i 0.775974 + 0.630765i
\(65\) 0.0215515 0.00483585i 0.00267314 0.000599813i
\(66\) 0 0
\(67\) 0.133225 0.497203i 0.0162760 0.0607430i −0.957310 0.289063i \(-0.906656\pi\)
0.973586 + 0.228320i \(0.0733231\pi\)
\(68\) 10.6165 3.23861i 1.28745 0.392739i
\(69\) 0 0
\(70\) −0.0140232 0.00160215i −0.00167610 0.000191493i
\(71\) −0.569550 2.12559i −0.0675932 0.252261i 0.923859 0.382734i \(-0.125017\pi\)
−0.991452 + 0.130472i \(0.958351\pi\)
\(72\) 0 0
\(73\) −1.36174 + 1.36174i −0.159380 + 0.159380i −0.782292 0.622912i \(-0.785949\pi\)
0.622912 + 0.782292i \(0.285949\pi\)
\(74\) 16.2762 2.42733i 1.89207 0.282172i
\(75\) 0 0
\(76\) 3.36592 6.32091i 0.386097 0.725058i
\(77\) 5.45101 0.621200
\(78\) 0 0
\(79\) 12.6705i 1.42555i 0.701394 + 0.712774i \(0.252561\pi\)
−0.701394 + 0.712774i \(0.747439\pi\)
\(80\) −0.0184733 0.0160988i −0.00206538 0.00179991i
\(81\) 0 0
\(82\) −6.98380 + 1.04152i −0.771232 + 0.115017i
\(83\) 3.55694 + 3.55694i 0.390425 + 0.390425i 0.874839 0.484414i \(-0.160967\pi\)
−0.484414 + 0.874839i \(0.660967\pi\)
\(84\) 0 0
\(85\) −0.0328391 + 0.00879922i −0.00356190 + 0.000954409i
\(86\) 1.73084 15.1496i 0.186641 1.63362i
\(87\) 0 0
\(88\) 7.79403 + 5.36737i 0.830846 + 0.572164i
\(89\) −14.4893 3.88239i −1.53586 0.411532i −0.610934 0.791682i \(-0.709206\pi\)
−0.924925 + 0.380149i \(0.875873\pi\)
\(90\) 0 0
\(91\) −5.60682 1.75203i −0.587754 0.183663i
\(92\) 10.7624 + 2.49172i 1.12206 + 0.259780i
\(93\) 0 0
\(94\) −2.10903 + 5.34922i −0.217530 + 0.551730i
\(95\) −0.0109673 + 0.0189960i −0.00112522 + 0.00194895i
\(96\) 0 0
\(97\) 4.71000 1.26204i 0.478228 0.128141i −0.0116495 0.999932i \(-0.503708\pi\)
0.489877 + 0.871791i \(0.337042\pi\)
\(98\) −4.93916 3.65715i −0.498930 0.369428i
\(99\) 0 0
\(100\) −7.30925 6.82447i −0.730925 0.682447i
\(101\) 7.89450 + 13.6737i 0.785532 + 1.36058i 0.928681 + 0.370880i \(0.120944\pi\)
−0.143149 + 0.989701i \(0.545723\pi\)
\(102\) 0 0
\(103\) −14.3782 −1.41673 −0.708363 0.705848i \(-0.750566\pi\)
−0.708363 + 0.705848i \(0.750566\pi\)
\(104\) −6.29166 8.02590i −0.616948 0.787004i
\(105\) 0 0
\(106\) −4.82352 + 2.09555i −0.468502 + 0.203538i
\(107\) 2.19013 + 3.79342i 0.211728 + 0.366724i 0.952255 0.305302i \(-0.0987575\pi\)
−0.740527 + 0.672026i \(0.765424\pi\)
\(108\) 0 0
\(109\) 8.41638 8.41638i 0.806143 0.806143i −0.177905 0.984048i \(-0.556932\pi\)
0.984048 + 0.177905i \(0.0569319\pi\)
\(110\) −0.0232953 0.0172488i −0.00222112 0.00164461i
\(111\) 0 0
\(112\) 2.11403 + 6.16440i 0.199757 + 0.582481i
\(113\) −4.02349 + 6.96890i −0.378498 + 0.655579i −0.990844 0.135012i \(-0.956893\pi\)
0.612346 + 0.790590i \(0.290226\pi\)
\(114\) 0 0
\(115\) −0.0326839 0.00875762i −0.00304779 0.000816652i
\(116\) 0.790636 3.41496i 0.0734087 0.317071i
\(117\) 0 0
\(118\) 3.30354 2.62609i 0.304116 0.241751i
\(119\) 8.73362 + 2.34017i 0.800610 + 0.214523i
\(120\) 0 0
\(121\) 0.168393 + 0.0972215i 0.0153084 + 0.00883832i
\(122\) −0.337043 + 2.95006i −0.0305145 + 0.267086i
\(123\) 0 0
\(124\) −0.0473109 1.37933i −0.00424864 0.123868i
\(125\) 0.0433168 + 0.0433168i 0.00387437 + 0.00387437i
\(126\) 0 0
\(127\) 1.91208 + 3.31182i 0.169670 + 0.293877i 0.938304 0.345812i \(-0.112397\pi\)
−0.768634 + 0.639689i \(0.779063\pi\)
\(128\) −3.04711 + 10.8956i −0.269329 + 0.963048i
\(129\) 0 0
\(130\) 0.0184171 + 0.0252293i 0.00161529 + 0.00221275i
\(131\) −10.1296 −0.885025 −0.442513 0.896762i \(-0.645913\pi\)
−0.442513 + 0.896762i \(0.645913\pi\)
\(132\) 0 0
\(133\) 5.05201 2.91678i 0.438065 0.252917i
\(134\) 0.719992 0.107375i 0.0621979 0.00927582i
\(135\) 0 0
\(136\) 10.1834 + 11.9457i 0.873215 + 1.02433i
\(137\) 4.42582 + 16.5174i 0.378123 + 1.41117i 0.848728 + 0.528830i \(0.177369\pi\)
−0.470605 + 0.882344i \(0.655964\pi\)
\(138\) 0 0
\(139\) 8.51425 14.7471i 0.722169 1.25083i −0.237959 0.971275i \(-0.576478\pi\)
0.960129 0.279559i \(-0.0901882\pi\)
\(140\) −0.00582415 0.0190923i −0.000492230 0.00161359i
\(141\) 0 0
\(142\) 2.43614 1.93656i 0.204436 0.162513i
\(143\) −8.17275 8.87322i −0.683439 0.742016i
\(144\) 0 0
\(145\) −0.00277884 + 0.0103708i −0.000230770 + 0.000861245i
\(146\) −2.53367 0.998946i −0.209688 0.0826734i
\(147\) 0 0
\(148\) 12.3203 + 19.7439i 1.01273 + 1.62294i
\(149\) −3.12545 11.6643i −0.256047 0.955580i −0.967505 0.252852i \(-0.918632\pi\)
0.711458 0.702728i \(-0.248035\pi\)
\(150\) 0 0
\(151\) −1.75767 1.75767i −0.143037 0.143037i 0.631962 0.774999i \(-0.282250\pi\)
−0.774999 + 0.631962i \(0.782250\pi\)
\(152\) 10.0956 + 0.803987i 0.818858 + 0.0652120i
\(153\) 0 0
\(154\) 3.07172 + 7.07047i 0.247526 + 0.569755i
\(155\) 0.00422734i 0.000339548i
\(156\) 0 0
\(157\) 23.1742i 1.84950i 0.380570 + 0.924752i \(0.375728\pi\)
−0.380570 + 0.924752i \(0.624272\pi\)
\(158\) −16.4349 + 7.14003i −1.30749 + 0.568030i
\(159\) 0 0
\(160\) 0.0104718 0.0330335i 0.000827865 0.00261153i
\(161\) 6.36323 + 6.36323i 0.501493 + 0.501493i
\(162\) 0 0
\(163\) −2.24703 8.38602i −0.176001 0.656844i −0.996379 0.0850226i \(-0.972904\pi\)
0.820378 0.571821i \(-0.193763\pi\)
\(164\) −5.28642 8.47173i −0.412800 0.661531i
\(165\) 0 0
\(166\) −2.60930 + 6.61808i −0.202521 + 0.513662i
\(167\) −6.23234 + 23.2594i −0.482273 + 1.79987i 0.109764 + 0.993958i \(0.464990\pi\)
−0.592037 + 0.805910i \(0.701676\pi\)
\(168\) 0 0
\(169\) 5.55437 + 11.7537i 0.427259 + 0.904129i
\(170\) −0.0299187 0.0376369i −0.00229466 0.00288662i
\(171\) 0 0
\(172\) 20.6258 6.29195i 1.57270 0.479757i
\(173\) 5.71509 9.89883i 0.434510 0.752594i −0.562745 0.826630i \(-0.690255\pi\)
0.997256 + 0.0740365i \(0.0235881\pi\)
\(174\) 0 0
\(175\) −2.10833 7.86840i −0.159375 0.594795i
\(176\) −2.56993 + 13.1342i −0.193716 + 0.990026i
\(177\) 0 0
\(178\) −3.12909 20.9817i −0.234535 1.57265i
\(179\) −16.6433 + 9.60904i −1.24398 + 0.718214i −0.969903 0.243493i \(-0.921707\pi\)
−0.274080 + 0.961707i \(0.588373\pi\)
\(180\) 0 0
\(181\) 9.90437 0.736186 0.368093 0.929789i \(-0.380011\pi\)
0.368093 + 0.929789i \(0.380011\pi\)
\(182\) −0.886969 8.25986i −0.0657465 0.612262i
\(183\) 0 0
\(184\) 2.83276 + 15.3639i 0.208834 + 1.13264i
\(185\) −0.0356416 0.0617331i −0.00262043 0.00453871i
\(186\) 0 0
\(187\) 13.1299 + 13.1299i 0.960153 + 0.960153i
\(188\) −8.12691 + 0.278752i −0.592716 + 0.0203301i
\(189\) 0 0
\(190\) −0.0308198 0.00352115i −0.00223590 0.000255451i
\(191\) −7.28556 4.20632i −0.527165 0.304359i 0.212696 0.977118i \(-0.431775\pi\)
−0.739861 + 0.672760i \(0.765109\pi\)
\(192\) 0 0
\(193\) −3.79409 1.01662i −0.273105 0.0731782i 0.119667 0.992814i \(-0.461817\pi\)
−0.392772 + 0.919636i \(0.628484\pi\)
\(194\) 4.29113 + 5.39813i 0.308085 + 0.387563i
\(195\) 0 0
\(196\) 1.96039 8.46740i 0.140028 0.604815i
\(197\) 15.3987 + 4.12608i 1.09711 + 0.293971i 0.761589 0.648060i \(-0.224420\pi\)
0.335525 + 0.942031i \(0.391086\pi\)
\(198\) 0 0
\(199\) −6.41779 + 11.1159i −0.454945 + 0.787988i −0.998685 0.0512659i \(-0.983674\pi\)
0.543740 + 0.839254i \(0.317008\pi\)
\(200\) 4.73311 13.3265i 0.334681 0.942323i
\(201\) 0 0
\(202\) −13.2874 + 17.9452i −0.934896 + 1.26262i
\(203\) 2.01909 2.01909i 0.141712 0.141712i
\(204\) 0 0
\(205\) 0.0152931 + 0.0264885i 0.00106812 + 0.00185004i
\(206\) −8.10232 18.6499i −0.564515 1.29940i
\(207\) 0 0
\(208\) 6.86491 12.6836i 0.475996 0.879448i
\(209\) 11.9801 0.828679
\(210\) 0 0
\(211\) −2.73940 4.74478i −0.188588 0.326644i 0.756192 0.654350i \(-0.227058\pi\)
−0.944780 + 0.327706i \(0.893724\pi\)
\(212\) −5.43625 5.07569i −0.373363 0.348600i
\(213\) 0 0
\(214\) −3.68625 + 4.97846i −0.251987 + 0.340320i
\(215\) −0.0637997 + 0.0170951i −0.00435111 + 0.00116588i
\(216\) 0 0
\(217\) 0.562134 0.973645i 0.0381601 0.0660953i
\(218\) 15.6596 + 6.17408i 1.06060 + 0.418162i
\(219\) 0 0
\(220\) 0.00924607 0.0399361i 0.000623370 0.00269249i
\(221\) −9.28504 17.7253i −0.624580 1.19233i
\(222\) 0 0
\(223\) −13.8516 3.71152i −0.927572 0.248542i −0.236753 0.971570i \(-0.576083\pi\)
−0.690819 + 0.723028i \(0.742750\pi\)
\(224\) −6.80452 + 6.21582i −0.454646 + 0.415312i
\(225\) 0 0
\(226\) −11.3066 1.29178i −0.752104 0.0859277i
\(227\) 9.25409 2.47963i 0.614215 0.164579i 0.0617186 0.998094i \(-0.480342\pi\)
0.552497 + 0.833515i \(0.313675\pi\)
\(228\) 0 0
\(229\) −17.2631 17.2631i −1.14078 1.14078i −0.988309 0.152467i \(-0.951278\pi\)
−0.152467 0.988309i \(-0.548722\pi\)
\(230\) −0.00705838 0.0473291i −0.000465416 0.00312079i
\(231\) 0 0
\(232\) 4.87506 0.898848i 0.320063 0.0590123i
\(233\) 11.8549i 0.776641i 0.921524 + 0.388320i \(0.126945\pi\)
−0.921524 + 0.388320i \(0.873055\pi\)
\(234\) 0 0
\(235\) 0.0249071 0.00162476
\(236\) 5.26787 + 2.80517i 0.342909 + 0.182601i
\(237\) 0 0
\(238\) 1.88610 + 12.6470i 0.122258 + 0.819786i
\(239\) −8.19428 + 8.19428i −0.530044 + 0.530044i −0.920585 0.390541i \(-0.872288\pi\)
0.390541 + 0.920585i \(0.372288\pi\)
\(240\) 0 0
\(241\) 5.54758 + 20.7038i 0.357351 + 1.33365i 0.877500 + 0.479576i \(0.159210\pi\)
−0.520149 + 0.854075i \(0.674124\pi\)
\(242\) −0.0312138 + 0.273207i −0.00200650 + 0.0175624i
\(243\) 0 0
\(244\) −4.01643 + 1.22522i −0.257126 + 0.0784369i
\(245\) −0.00689014 + 0.0257143i −0.000440195 + 0.00164283i
\(246\) 0 0
\(247\) −12.3225 3.85057i −0.784062 0.245006i
\(248\) 1.76246 0.838639i 0.111916 0.0532537i
\(249\) 0 0
\(250\) −0.0317763 + 0.0805956i −0.00200971 + 0.00509731i
\(251\) −6.73491 3.88840i −0.425104 0.245434i 0.272155 0.962254i \(-0.412264\pi\)
−0.697259 + 0.716820i \(0.745597\pi\)
\(252\) 0 0
\(253\) 4.78315 + 17.8510i 0.300714 + 1.12228i
\(254\) −3.21826 + 4.34641i −0.201932 + 0.272718i
\(255\) 0 0
\(256\) −15.8498 + 2.18746i −0.990610 + 0.136716i
\(257\) 13.3396 7.70163i 0.832103 0.480415i −0.0224694 0.999748i \(-0.507153\pi\)
0.854572 + 0.519333i \(0.173820\pi\)
\(258\) 0 0
\(259\) 18.9579i 1.17799i
\(260\) −0.0223464 + 0.0381058i −0.00138587 + 0.00236322i
\(261\) 0 0
\(262\) −5.70816 13.1390i −0.352651 0.811731i
\(263\) −17.8675 + 10.3158i −1.10176 + 0.636101i −0.936683 0.350180i \(-0.886120\pi\)
−0.165077 + 0.986281i \(0.552787\pi\)
\(264\) 0 0
\(265\) 0.0161084 + 0.0161084i 0.000989528 + 0.000989528i
\(266\) 6.63022 + 4.90929i 0.406525 + 0.301008i
\(267\) 0 0
\(268\) 0.545002 + 0.873390i 0.0332913 + 0.0533508i
\(269\) −13.8319 7.98587i −0.843348 0.486907i 0.0150527 0.999887i \(-0.495208\pi\)
−0.858401 + 0.512979i \(0.828542\pi\)
\(270\) 0 0
\(271\) 6.02478 22.4848i 0.365979 1.36585i −0.500109 0.865962i \(-0.666707\pi\)
0.866088 0.499891i \(-0.166627\pi\)
\(272\) −9.75617 + 19.9403i −0.591555 + 1.20906i
\(273\) 0 0
\(274\) −18.9306 + 15.0485i −1.14364 + 0.909111i
\(275\) 4.32976 16.1589i 0.261095 0.974418i
\(276\) 0 0
\(277\) 3.01247 5.21776i 0.181002 0.313505i −0.761220 0.648494i \(-0.775399\pi\)
0.942222 + 0.334989i \(0.108733\pi\)
\(278\) 23.9263 + 2.73357i 1.43500 + 0.163949i
\(279\) 0 0
\(280\) 0.0214825 0.0183132i 0.00128382 0.00109442i
\(281\) 20.3774 20.3774i 1.21561 1.21561i 0.246461 0.969153i \(-0.420732\pi\)
0.969153 0.246461i \(-0.0792679\pi\)
\(282\) 0 0
\(283\) 6.85490 3.95768i 0.407482 0.235260i −0.282225 0.959348i \(-0.591073\pi\)
0.689707 + 0.724088i \(0.257739\pi\)
\(284\) 3.88470 + 2.06862i 0.230515 + 0.122750i
\(285\) 0 0
\(286\) 6.90393 15.6010i 0.408238 0.922507i
\(287\) 8.13447i 0.480163i
\(288\) 0 0
\(289\) 6.89996 + 11.9511i 0.405880 + 0.703005i
\(290\) −0.0150178 + 0.00223966i −0.000881873 + 0.000131517i
\(291\) 0 0
\(292\) −0.132031 3.84932i −0.00772655 0.225265i
\(293\) −1.74094 + 0.466483i −0.101707 + 0.0272522i −0.309313 0.950960i \(-0.600099\pi\)
0.207607 + 0.978212i \(0.433433\pi\)
\(294\) 0 0
\(295\) −0.0158313 0.00914022i −0.000921735 0.000532164i
\(296\) −18.6670 + 27.1066i −1.08500 + 1.57554i
\(297\) 0 0
\(298\) 13.3685 10.6270i 0.774417 0.615607i
\(299\) 0.817691 19.8986i 0.0472883 1.15076i
\(300\) 0 0
\(301\) 16.9676 + 4.54647i 0.977999 + 0.262054i
\(302\) 1.28939 3.27034i 0.0741962 0.188187i
\(303\) 0 0
\(304\) 4.64614 + 13.5479i 0.266474 + 0.777027i
\(305\) 0.0124236 0.00332890i 0.000711375 0.000190612i
\(306\) 0 0
\(307\) 14.6289 14.6289i 0.834914 0.834914i −0.153270 0.988184i \(-0.548980\pi\)
0.988184 + 0.153270i \(0.0489804\pi\)
\(308\) −7.44011 + 7.96862i −0.423939 + 0.454054i
\(309\) 0 0
\(310\) −0.00548325 + 0.00238216i −0.000311428 + 0.000135298i
\(311\) 25.6430 1.45408 0.727040 0.686595i \(-0.240895\pi\)
0.727040 + 0.686595i \(0.240895\pi\)
\(312\) 0 0
\(313\) −19.4022 −1.09668 −0.548340 0.836256i \(-0.684740\pi\)
−0.548340 + 0.836256i \(0.684740\pi\)
\(314\) −30.0591 + 13.0590i −1.69633 + 0.736962i
\(315\) 0 0
\(316\) −18.5226 17.2941i −1.04198 0.972867i
\(317\) −11.2646 + 11.2646i −0.632682 + 0.632682i −0.948740 0.316058i \(-0.897641\pi\)
0.316058 + 0.948740i \(0.397641\pi\)
\(318\) 0 0
\(319\) 5.66420 1.51772i 0.317134 0.0849759i
\(320\) 0.0487485 0.00503200i 0.00272513 0.000281297i
\(321\) 0 0
\(322\) −4.66793 + 11.8395i −0.260134 + 0.659788i
\(323\) 19.1945 + 5.14315i 1.06801 + 0.286172i
\(324\) 0 0
\(325\) −9.64723 + 15.2291i −0.535132 + 0.844760i
\(326\) 9.61122 7.64025i 0.532316 0.423154i
\(327\) 0 0
\(328\) 8.00965 11.6309i 0.442259 0.642210i
\(329\) −5.73663 3.31205i −0.316271 0.182599i
\(330\) 0 0
\(331\) −3.11057 + 0.833475i −0.170972 + 0.0458119i −0.343290 0.939230i \(-0.611541\pi\)
0.172317 + 0.985042i \(0.444875\pi\)
\(332\) −10.0546 + 0.344873i −0.551820 + 0.0189274i
\(333\) 0 0
\(334\) −33.6817 + 5.02308i −1.84298 + 0.274851i
\(335\) −0.00157664 0.00273082i −8.61411e−5 0.000149201i
\(336\) 0 0
\(337\) 14.3103i 0.779534i −0.920914 0.389767i \(-0.872556\pi\)
0.920914 0.389767i \(-0.127444\pi\)
\(338\) −12.1157 + 13.8279i −0.659005 + 0.752139i
\(339\) 0 0
\(340\) 0.0319590 0.0600163i 0.00173322 0.00325484i
\(341\) 1.99952 1.15442i 0.108280 0.0625155i
\(342\) 0 0
\(343\) 13.0705 13.0705i 0.705740 0.705740i
\(344\) 19.7842 + 23.2080i 1.06669 + 1.25129i
\(345\) 0 0
\(346\) 16.0602 + 1.83488i 0.863404 + 0.0986437i
\(347\) −0.895267 + 1.55065i −0.0480604 + 0.0832431i −0.889055 0.457801i \(-0.848637\pi\)
0.840994 + 0.541044i \(0.181971\pi\)
\(348\) 0 0
\(349\) −2.69383 + 10.0535i −0.144197 + 0.538151i 0.855593 + 0.517650i \(0.173193\pi\)
−0.999790 + 0.0205016i \(0.993474\pi\)
\(350\) 9.01798 7.16866i 0.482031 0.383181i
\(351\) 0 0
\(352\) −18.4844 + 4.06785i −0.985224 + 0.216817i
\(353\) 2.28519 8.52844i 0.121628 0.453923i −0.878069 0.478534i \(-0.841168\pi\)
0.999697 + 0.0246115i \(0.00783486\pi\)
\(354\) 0 0
\(355\) −0.0116745 0.00674030i −0.000619620 0.000357738i
\(356\) 25.4520 15.8822i 1.34895 0.841756i
\(357\) 0 0
\(358\) −21.8426 16.1731i −1.15442 0.854778i
\(359\) −6.93284 6.93284i −0.365901 0.365901i 0.500079 0.865980i \(-0.333304\pi\)
−0.865980 + 0.500079i \(0.833304\pi\)
\(360\) 0 0
\(361\) −5.35132 + 3.08959i −0.281648 + 0.162610i
\(362\) 5.58125 + 12.8469i 0.293344 + 0.675218i
\(363\) 0 0
\(364\) 10.2140 5.80503i 0.535359 0.304266i
\(365\) 0.0117973i 0.000617499i
\(366\) 0 0
\(367\) 12.8657 7.42801i 0.671583 0.387739i −0.125093 0.992145i \(-0.539923\pi\)
0.796676 + 0.604406i \(0.206590\pi\)
\(368\) −18.3322 + 12.3321i −0.955630 + 0.642858i
\(369\) 0 0
\(370\) 0.0599891 0.0810180i 0.00311868 0.00421193i
\(371\) −1.56807 5.85211i −0.0814101 0.303827i
\(372\) 0 0
\(373\) −18.4652 10.6609i −0.956090 0.551999i −0.0611226 0.998130i \(-0.519468\pi\)
−0.894967 + 0.446131i \(0.852801\pi\)
\(374\) −9.63182 + 24.4296i −0.498049 + 1.26322i
\(375\) 0 0
\(376\) −4.94119 10.3843i −0.254823 0.535528i
\(377\) −6.31392 0.259458i −0.325183 0.0133627i
\(378\) 0 0
\(379\) −6.98578 + 26.0713i −0.358835 + 1.33919i 0.516753 + 0.856134i \(0.327141\pi\)
−0.875589 + 0.483058i \(0.839526\pi\)
\(380\) −0.0128001 0.0419604i −0.000656633 0.00215252i
\(381\) 0 0
\(382\) 1.35047 11.8204i 0.0690963 0.604783i
\(383\) −5.60173 20.9059i −0.286235 1.06824i −0.947932 0.318473i \(-0.896830\pi\)
0.661697 0.749771i \(-0.269837\pi\)
\(384\) 0 0
\(385\) 0.0236121 0.0236121i 0.00120339 0.00120339i
\(386\) −0.819369 5.49418i −0.0417048 0.279646i
\(387\) 0 0
\(388\) −4.58376 + 8.60793i −0.232705 + 0.437001i
\(389\) 25.5925 1.29759 0.648797 0.760962i \(-0.275273\pi\)
0.648797 + 0.760962i \(0.275273\pi\)
\(390\) 0 0
\(391\) 30.6543i 1.55025i
\(392\) 12.0877 2.22870i 0.610522 0.112566i
\(393\) 0 0
\(394\) 3.32549 + 22.2987i 0.167536 + 1.12339i
\(395\) 0.0548849 + 0.0548849i 0.00276156 + 0.00276156i
\(396\) 0 0
\(397\) 7.13276 1.91122i 0.357983 0.0959212i −0.0753451 0.997158i \(-0.524006\pi\)
0.433328 + 0.901236i \(0.357339\pi\)
\(398\) −18.0349 2.06048i −0.904009 0.103283i
\(399\) 0 0
\(400\) 19.9528 1.37037i 0.997642 0.0685186i
\(401\) 0.0510228 + 0.0136715i 0.00254796 + 0.000682723i 0.260093 0.965584i \(-0.416247\pi\)
−0.257545 + 0.966266i \(0.582914\pi\)
\(402\) 0 0
\(403\) −2.42772 + 0.544746i −0.120933 + 0.0271357i
\(404\) −30.7642 7.12258i −1.53058 0.354362i
\(405\) 0 0
\(406\) 3.75673 + 1.48116i 0.186443 + 0.0735087i
\(407\) −19.4664 + 33.7168i −0.964914 + 1.67128i
\(408\) 0 0
\(409\) 9.42392 2.52513i 0.465983 0.124860i −0.0181853 0.999835i \(-0.505789\pi\)
0.484168 + 0.874975i \(0.339122\pi\)
\(410\) −0.0257401 + 0.0347633i −0.00127122 + 0.00171684i
\(411\) 0 0
\(412\) 19.6249 21.0189i 0.966847 1.03553i
\(413\) 2.43086 + 4.21037i 0.119615 + 0.207179i
\(414\) 0 0
\(415\) 0.0308152 0.00151266
\(416\) 20.3203 + 1.75705i 0.996282 + 0.0861465i
\(417\) 0 0
\(418\) 6.75094 + 15.5393i 0.330199 + 0.760050i
\(419\) −4.74183 8.21309i −0.231654 0.401236i 0.726641 0.687017i \(-0.241080\pi\)
−0.958295 + 0.285781i \(0.907747\pi\)
\(420\) 0 0
\(421\) 15.6320 15.6320i 0.761859 0.761859i −0.214799 0.976658i \(-0.568910\pi\)
0.976658 + 0.214799i \(0.0689097\pi\)
\(422\) 4.61073 6.22701i 0.224447 0.303126i
\(423\) 0 0
\(424\) 3.52024 9.91154i 0.170958 0.481347i
\(425\) 13.8743 24.0310i 0.673003 1.16568i
\(426\) 0 0
\(427\) −3.30409 0.885327i −0.159896 0.0428440i
\(428\) −8.53478 1.97598i −0.412544 0.0955128i
\(429\) 0 0
\(430\) −0.0581260 0.0731209i −0.00280308 0.00352620i
\(431\) 37.8715 + 10.1476i 1.82421 + 0.488795i 0.997293 0.0735317i \(-0.0234270\pi\)
0.826915 + 0.562327i \(0.190094\pi\)
\(432\) 0 0
\(433\) −5.12070 2.95644i −0.246085 0.142077i 0.371885 0.928279i \(-0.378712\pi\)
−0.617970 + 0.786201i \(0.712045\pi\)
\(434\) 1.57968 + 0.180478i 0.0758270 + 0.00866321i
\(435\) 0 0
\(436\) 0.816033 + 23.7911i 0.0390809 + 1.13939i
\(437\) 13.9849 + 13.9849i 0.668989 + 0.668989i
\(438\) 0 0
\(439\) 3.69569 + 6.40112i 0.176385 + 0.305509i 0.940640 0.339406i \(-0.110226\pi\)
−0.764254 + 0.644915i \(0.776893\pi\)
\(440\) 0.0570112 0.0105116i 0.00271790 0.000501119i
\(441\) 0 0
\(442\) 17.7591 22.0320i 0.844716 1.04796i
\(443\) 27.3664 1.30022 0.650109 0.759841i \(-0.274723\pi\)
0.650109 + 0.759841i \(0.274723\pi\)
\(444\) 0 0
\(445\) −0.0795804 + 0.0459458i −0.00377247 + 0.00217804i
\(446\) −2.99138 20.0583i −0.141646 0.949789i
\(447\) 0 0
\(448\) −11.8969 5.32340i −0.562078 0.251507i
\(449\) −4.34105 16.2010i −0.204867 0.764573i −0.989490 0.144600i \(-0.953810\pi\)
0.784623 0.619973i \(-0.212856\pi\)
\(450\) 0 0
\(451\) 8.35266 14.4672i 0.393311 0.681235i
\(452\) −4.69588 15.3937i −0.220875 0.724057i
\(453\) 0 0
\(454\) 8.43112 + 10.6061i 0.395692 + 0.497770i
\(455\) −0.0318763 + 0.0166978i −0.00149438 + 0.000782803i
\(456\) 0 0
\(457\) 7.41678 27.6798i 0.346942 1.29481i −0.543385 0.839484i \(-0.682858\pi\)
0.890327 0.455322i \(-0.150476\pi\)
\(458\) 12.6638 32.1198i 0.591742 1.50086i
\(459\) 0 0
\(460\) 0.0574128 0.0358260i 0.00267688 0.00167040i
\(461\) −9.47325 35.3546i −0.441213 1.64663i −0.725745 0.687963i \(-0.758505\pi\)
0.284532 0.958666i \(-0.408162\pi\)
\(462\) 0 0
\(463\) −9.62736 9.62736i −0.447422 0.447422i 0.447075 0.894497i \(-0.352466\pi\)
−0.894497 + 0.447075i \(0.852466\pi\)
\(464\) 3.91305 + 5.81689i 0.181659 + 0.270042i
\(465\) 0 0
\(466\) −15.3769 + 6.68041i −0.712322 + 0.309464i
\(467\) 26.0667i 1.20622i −0.797658 0.603110i \(-0.793928\pi\)
0.797658 0.603110i \(-0.206072\pi\)
\(468\) 0 0
\(469\) 0.838620i 0.0387239i
\(470\) 0.0140355 + 0.0323069i 0.000647410 + 0.00149021i
\(471\) 0 0
\(472\) −0.670046 + 8.41368i −0.0308414 + 0.387271i
\(473\) 25.5087 + 25.5087i 1.17289 + 1.17289i
\(474\) 0 0
\(475\) −4.63363 17.2929i −0.212605 0.793454i
\(476\) −15.3416 + 9.57324i −0.703179 + 0.438789i
\(477\) 0 0
\(478\) −15.2463 6.01116i −0.697351 0.274944i
\(479\) 8.72017 32.5441i 0.398435 1.48698i −0.417415 0.908716i \(-0.637064\pi\)
0.815850 0.578263i \(-0.196269\pi\)
\(480\) 0 0
\(481\) 30.8599 28.4238i 1.40709 1.29601i
\(482\) −23.7287 + 18.8626i −1.08081 + 0.859170i
\(483\) 0 0
\(484\) −0.371964 + 0.113469i −0.0169075 + 0.00515767i
\(485\) 0.0149355 0.0258691i 0.000678186 0.00117465i
\(486\) 0 0
\(487\) 6.44555 + 24.0551i 0.292076 + 1.09004i 0.943512 + 0.331338i \(0.107500\pi\)
−0.651436 + 0.758703i \(0.725833\pi\)
\(488\) −3.85254 4.51926i −0.174396 0.204577i
\(489\) 0 0
\(490\) −0.0372366 + 0.00555324i −0.00168218 + 0.000250870i
\(491\) −31.9925 + 18.4709i −1.44380 + 0.833578i −0.998101 0.0616050i \(-0.980378\pi\)
−0.445699 + 0.895183i \(0.647045\pi\)
\(492\) 0 0
\(493\) 9.72677 0.438072
\(494\) −1.94935 18.1533i −0.0877056 0.816755i
\(495\) 0 0
\(496\) 2.08097 + 1.81349i 0.0934381 + 0.0814282i
\(497\) 1.79259 + 3.10486i 0.0804088 + 0.139272i
\(498\) 0 0
\(499\) −15.6264 15.6264i −0.699534 0.699534i 0.264776 0.964310i \(-0.414702\pi\)
−0.964310 + 0.264776i \(0.914702\pi\)
\(500\) −0.122446 + 0.00419990i −0.00547597 + 0.000187825i
\(501\) 0 0
\(502\) 1.24840 10.9270i 0.0557190 0.487695i
\(503\) −29.7238 17.1610i −1.32532 0.765173i −0.340747 0.940155i \(-0.610680\pi\)
−0.984572 + 0.174982i \(0.944013\pi\)
\(504\) 0 0
\(505\) 0.0934268 + 0.0250336i 0.00415744 + 0.00111398i
\(506\) −20.4590 + 16.2635i −0.909513 + 0.722999i
\(507\) 0 0
\(508\) −7.45124 1.72512i −0.330595 0.0765399i
\(509\) 10.3675 + 2.77797i 0.459533 + 0.123131i 0.481156 0.876635i \(-0.340217\pi\)
−0.0216237 + 0.999766i \(0.506884\pi\)
\(510\) 0 0
\(511\) 1.56876 2.71717i 0.0693977 0.120200i
\(512\) −11.7689 19.3260i −0.520117 0.854095i
\(513\) 0 0
\(514\) 17.5068 + 12.9628i 0.772192 + 0.571763i
\(515\) −0.0622820 + 0.0622820i −0.00274447 + 0.00274447i
\(516\) 0 0
\(517\) −6.80177 11.7810i −0.299141 0.518128i
\(518\) −24.5902 + 10.6831i −1.08043 + 0.469386i
\(519\) 0 0
\(520\) −0.0620193 0.00751222i −0.00271973 0.000329433i
\(521\) −36.1876 −1.58541 −0.792704 0.609607i \(-0.791327\pi\)
−0.792704 + 0.609607i \(0.791327\pi\)
\(522\) 0 0
\(523\) 5.07033 + 8.78207i 0.221710 + 0.384013i 0.955327 0.295550i \(-0.0955028\pi\)
−0.733617 + 0.679563i \(0.762170\pi\)
\(524\) 13.8259 14.8080i 0.603987 0.646892i
\(525\) 0 0
\(526\) −23.4492 17.3627i −1.02243 0.757052i
\(527\) 3.69924 0.991208i 0.161141 0.0431777i
\(528\) 0 0
\(529\) −3.75469 + 6.50332i −0.163247 + 0.282753i
\(530\) −0.0118168 + 0.0299713i −0.000513287 + 0.00130187i
\(531\) 0 0
\(532\) −2.63158 + 11.3665i −0.114094 + 0.492799i
\(533\) −13.2414 + 12.1961i −0.573548 + 0.528271i
\(534\) 0 0
\(535\) 0.0259190 + 0.00694496i 0.00112057 + 0.000300257i
\(536\) −0.825752 + 1.19909i −0.0356671 + 0.0517926i
\(537\) 0 0
\(538\) 2.56393 22.4415i 0.110539 0.967521i
\(539\) 14.0444 3.76319i 0.604936 0.162092i
\(540\) 0 0
\(541\) −16.6100 16.6100i −0.714119 0.714119i 0.253276 0.967394i \(-0.418492\pi\)
−0.967394 + 0.253276i \(0.918492\pi\)
\(542\) 32.5599 4.85579i 1.39857 0.208574i
\(543\) 0 0
\(544\) −31.3622 1.41802i −1.34464 0.0607972i
\(545\) 0.0729144i 0.00312331i
\(546\) 0 0
\(547\) 31.5052 1.34706 0.673532 0.739158i \(-0.264776\pi\)
0.673532 + 0.739158i \(0.264776\pi\)
\(548\) −30.1869 16.0747i −1.28952 0.686677i
\(549\) 0 0
\(550\) 23.3995 3.48966i 0.997758 0.148800i
\(551\) 4.43748 4.43748i 0.189043 0.189043i
\(552\) 0 0
\(553\) −5.34278 19.9395i −0.227198 0.847915i
\(554\) 8.46549 + 0.967180i 0.359664 + 0.0410915i
\(555\) 0 0
\(556\) 9.93711 + 32.5750i 0.421427 + 1.38149i
\(557\) 3.98647 14.8777i 0.168912 0.630389i −0.828596 0.559846i \(-0.810860\pi\)
0.997509 0.0705430i \(-0.0224732\pi\)
\(558\) 0 0
\(559\) −18.0389 34.4367i −0.762966 1.45652i
\(560\) 0.0358596 + 0.0175450i 0.00151535 + 0.000741412i
\(561\) 0 0
\(562\) 37.9144 + 14.9484i 1.59932 + 0.630562i
\(563\) 36.0452 + 20.8107i 1.51912 + 0.877067i 0.999746 + 0.0225229i \(0.00716986\pi\)
0.519379 + 0.854544i \(0.326163\pi\)
\(564\) 0 0
\(565\) 0.0127586 + 0.0476157i 0.000536758 + 0.00200321i
\(566\) 8.99632 + 6.66124i 0.378143 + 0.279993i
\(567\) 0 0
\(568\) −0.494114 + 6.20452i −0.0207326 + 0.260336i
\(569\) 1.73040 0.999049i 0.0725423 0.0418823i −0.463290 0.886207i \(-0.653331\pi\)
0.535832 + 0.844324i \(0.319998\pi\)
\(570\) 0 0
\(571\) 42.3453i 1.77210i −0.463592 0.886049i \(-0.653440\pi\)
0.463592 0.886049i \(-0.346560\pi\)
\(572\) 24.1264 + 0.163662i 1.00878 + 0.00684304i
\(573\) 0 0
\(574\) 10.5512 4.58389i 0.440397 0.191328i
\(575\) 23.9174 13.8087i 0.997425 0.575863i
\(576\) 0 0
\(577\) −17.1186 17.1186i −0.712659 0.712659i 0.254432 0.967091i \(-0.418111\pi\)
−0.967091 + 0.254432i \(0.918111\pi\)
\(578\) −11.6134 + 15.6845i −0.483056 + 0.652389i
\(579\) 0 0
\(580\) −0.0113678 0.0182174i −0.000472021 0.000756435i
\(581\) −7.09739 4.09768i −0.294449 0.170000i
\(582\) 0 0
\(583\) 3.22026 12.0182i 0.133369 0.497741i
\(584\) 4.91853 2.34041i 0.203530 0.0968467i
\(585\) 0 0
\(586\) −1.58611 1.99529i −0.0655218 0.0824246i
\(587\) −1.99421 + 7.44249i −0.0823098 + 0.307185i −0.994791 0.101934i \(-0.967497\pi\)
0.912481 + 0.409118i \(0.134164\pi\)
\(588\) 0 0
\(589\) 1.23544 2.13985i 0.0509054 0.0881708i
\(590\) 0.00293454 0.0256854i 0.000120813 0.00105745i
\(591\) 0 0
\(592\) −45.6790 8.93790i −1.87739 0.367345i
\(593\) −11.8828 + 11.8828i −0.487967 + 0.487967i −0.907664 0.419697i \(-0.862136\pi\)
0.419697 + 0.907664i \(0.362136\pi\)
\(594\) 0 0
\(595\) 0.0479683 0.0276945i 0.00196651 0.00113536i
\(596\) 21.3176 + 11.3517i 0.873202 + 0.464985i
\(597\) 0 0
\(598\) 26.2711 10.1525i 1.07431 0.415167i
\(599\) 45.8502i 1.87339i 0.350151 + 0.936693i \(0.386130\pi\)
−0.350151 + 0.936693i \(0.613870\pi\)
\(600\) 0 0
\(601\) 12.4138 + 21.5013i 0.506368 + 0.877056i 0.999973 + 0.00736919i \(0.00234571\pi\)
−0.493605 + 0.869686i \(0.664321\pi\)
\(602\) 3.66432 + 24.5706i 0.149346 + 1.00142i
\(603\) 0 0
\(604\) 4.96853 0.170420i 0.202167 0.00693429i
\(605\) 0.00115056 0.000308292i 4.67769e−5 1.25338e-5i
\(606\) 0 0
\(607\) 40.6484 + 23.4684i 1.64987 + 0.952551i 0.977123 + 0.212675i \(0.0682177\pi\)
0.672744 + 0.739876i \(0.265116\pi\)
\(608\) −14.9548 + 13.6609i −0.606496 + 0.554024i
\(609\) 0 0
\(610\) 0.0113188 + 0.0142387i 0.000458284 + 0.000576509i
\(611\) 3.20960 + 14.3039i 0.129846 + 0.578675i
\(612\) 0 0
\(613\) 7.13914 + 1.91293i 0.288347 + 0.0772624i 0.400093 0.916474i \(-0.368978\pi\)
−0.111746 + 0.993737i \(0.535644\pi\)
\(614\) 27.2186 + 10.7314i 1.09845 + 0.433086i
\(615\) 0 0
\(616\) −14.5287 5.16008i −0.585376 0.207906i
\(617\) 3.43254 0.919746i 0.138189 0.0370276i −0.189062 0.981965i \(-0.560545\pi\)
0.327250 + 0.944938i \(0.393878\pi\)
\(618\) 0 0
\(619\) −16.7707 + 16.7707i −0.674072 + 0.674072i −0.958652 0.284580i \(-0.908146\pi\)
0.284580 + 0.958652i \(0.408146\pi\)
\(620\) −0.00617978 0.00576991i −0.000248186 0.000231725i
\(621\) 0 0
\(622\) 14.4502 + 33.2614i 0.579400 + 1.33366i
\(623\) 24.4387 0.979117
\(624\) 0 0
\(625\) −24.9994 −0.999977
\(626\) −10.9334 25.1665i −0.436988 1.00586i
\(627\) 0 0
\(628\) −33.8775 31.6306i −1.35186 1.26220i
\(629\) −45.6641 + 45.6641i −1.82074 + 1.82074i
\(630\) 0 0
\(631\) −13.1022 + 3.51071i −0.521589 + 0.139759i −0.510001 0.860174i \(-0.670355\pi\)
−0.0115873 + 0.999933i \(0.503688\pi\)
\(632\) 11.9943 33.7710i 0.477107 1.34334i
\(633\) 0 0
\(634\) −20.9590 8.26347i −0.832388 0.328184i
\(635\) 0.0226284 + 0.00606326i 0.000897980 + 0.000240613i
\(636\) 0 0
\(637\) −15.6554 0.643326i −0.620289 0.0254895i
\(638\) 5.16048 + 6.49174i 0.204305 + 0.257011i
\(639\) 0 0
\(640\) 0.0339975 + 0.0603958i 0.00134387 + 0.00238735i
\(641\) −19.1888 11.0787i −0.757912 0.437581i 0.0706333 0.997502i \(-0.477498\pi\)
−0.828546 + 0.559921i \(0.810831\pi\)
\(642\) 0 0
\(643\) −23.0119 + 6.16601i −0.907499 + 0.243164i −0.682234 0.731134i \(-0.738991\pi\)
−0.225265 + 0.974298i \(0.572325\pi\)
\(644\) −17.9874 + 0.616964i −0.708801 + 0.0243118i
\(645\) 0 0
\(646\) 4.14522 + 27.7953i 0.163092 + 1.09359i
\(647\) −16.5037 28.5853i −0.648829 1.12380i −0.983403 0.181435i \(-0.941926\pi\)
0.334574 0.942370i \(-0.391408\pi\)
\(648\) 0 0
\(649\) 9.98424i 0.391916i
\(650\) −25.1899 3.93153i −0.988031 0.154207i
\(651\) 0 0
\(652\) 15.3262 + 8.16127i 0.600219 + 0.319620i
\(653\) 6.90829 3.98850i 0.270342 0.156082i −0.358701 0.933453i \(-0.616780\pi\)
0.629043 + 0.777370i \(0.283447\pi\)
\(654\) 0 0
\(655\) −0.0438783 + 0.0438783i −0.00171447 + 0.00171447i
\(656\) 19.5999 + 3.83508i 0.765249 + 0.149735i
\(657\) 0 0
\(658\) 1.06336 9.30734i 0.0414541 0.362838i
\(659\) −4.00689 + 6.94014i −0.156086 + 0.270350i −0.933454 0.358697i \(-0.883221\pi\)
0.777368 + 0.629046i \(0.216554\pi\)
\(660\) 0 0
\(661\) 4.42854 16.5276i 0.172250 0.642847i −0.824753 0.565493i \(-0.808686\pi\)
0.997004 0.0773545i \(-0.0246473\pi\)
\(662\) −2.83395 3.56503i −0.110144 0.138559i
\(663\) 0 0
\(664\) −6.11327 12.8475i −0.237241 0.498578i
\(665\) 0.00924918 0.0345184i 0.000358668 0.00133857i
\(666\) 0 0
\(667\) 8.38380 + 4.84039i 0.324622 + 0.187421i
\(668\) −25.4955 40.8577i −0.986451 1.58083i
\(669\) 0 0
\(670\) 0.00265367 0.00358391i 0.000102520 0.000138458i
\(671\) −4.96727 4.96727i −0.191759 0.191759i
\(672\) 0 0
\(673\) −40.8080 + 23.5605i −1.57303 + 0.908190i −0.577237 + 0.816576i \(0.695869\pi\)
−0.995795 + 0.0916142i \(0.970797\pi\)
\(674\) 18.5619 8.06408i 0.714976 0.310617i
\(675\) 0 0
\(676\) −24.7634 7.92292i −0.952439 0.304728i
\(677\) 29.4037i 1.13008i 0.825065 + 0.565038i \(0.191138\pi\)
−0.825065 + 0.565038i \(0.808862\pi\)
\(678\) 0 0
\(679\) −6.87992 + 3.97212i −0.264027 + 0.152436i
\(680\) 0.0958562 + 0.00763377i 0.00367592 + 0.000292742i
\(681\) 0 0
\(682\) 2.62415 + 1.94303i 0.100484 + 0.0744025i
\(683\) 6.46547 + 24.1295i 0.247394 + 0.923288i 0.972165 + 0.234298i \(0.0752791\pi\)
−0.724771 + 0.688990i \(0.758054\pi\)
\(684\) 0 0
\(685\) 0.0907195 + 0.0523769i 0.00346621 + 0.00200122i
\(686\) 24.3190 + 9.58824i 0.928506 + 0.366081i
\(687\) 0 0
\(688\) −18.9543 + 38.7399i −0.722624 + 1.47695i
\(689\) −7.17511 + 11.3266i −0.273350 + 0.431511i
\(690\) 0 0
\(691\) −10.1307 + 37.8084i −0.385391 + 1.43830i 0.452158 + 0.891938i \(0.350654\pi\)
−0.837549 + 0.546362i \(0.816012\pi\)
\(692\) 6.67016 + 21.8656i 0.253562 + 0.831206i
\(693\) 0 0
\(694\) −2.51583 0.287433i −0.0954996 0.0109108i
\(695\) −0.0269989 0.100761i −0.00102413 0.00382209i
\(696\) 0 0
\(697\) 19.5936 19.5936i 0.742159 0.742159i
\(698\) −14.5583 + 2.17114i −0.551041 + 0.0821790i
\(699\) 0 0
\(700\) 14.3802 + 7.65752i 0.543520 + 0.289427i
\(701\) −43.6308 −1.64791 −0.823956 0.566654i \(-0.808238\pi\)
−0.823956 + 0.566654i \(0.808238\pi\)
\(702\) 0 0
\(703\) 41.6651i 1.57143i
\(704\) −15.6926 21.6838i −0.591438 0.817238i
\(705\) 0 0
\(706\) 12.3499 1.84179i 0.464795 0.0693168i
\(707\) −18.1893 18.1893i −0.684078 0.684078i
\(708\) 0 0
\(709\) −47.8263 + 12.8150i −1.79615 + 0.481278i −0.993367 0.114987i \(-0.963317\pi\)
−0.802787 + 0.596265i \(0.796651\pi\)
\(710\) 0.00216403 0.0189412i 8.12146e−5 0.000710851i
\(711\) 0 0
\(712\) 34.9433 + 24.0637i 1.30955 + 0.901826i
\(713\) 3.68175 + 0.986522i 0.137883 + 0.0369455i
\(714\) 0 0
\(715\) −0.0738379 0.00303422i −0.00276138 0.000113473i
\(716\) 8.66948 37.4457i 0.323994 1.39941i
\(717\) 0 0
\(718\) 5.08579 12.8993i 0.189800 0.481397i
\(719\) 10.6542 18.4536i 0.397334 0.688202i −0.596062 0.802938i \(-0.703269\pi\)
0.993396 + 0.114736i \(0.0366022\pi\)
\(720\) 0 0
\(721\) 22.6268 6.06285i 0.842668 0.225792i
\(722\) −7.02303 5.20014i −0.261370 0.193529i
\(723\) 0 0
\(724\) −13.5185 + 14.4788i −0.502411 + 0.538101i
\(725\) −4.38158 7.58911i −0.162728 0.281853i
\(726\) 0 0
\(727\) 38.5908 1.43125 0.715626 0.698484i \(-0.246141\pi\)
0.715626 + 0.698484i \(0.246141\pi\)
\(728\) 13.2854 + 9.97729i 0.492390 + 0.369783i
\(729\) 0 0
\(730\) −0.0153022 + 0.00664795i −0.000566360 + 0.000246052i
\(731\) 29.9190 + 51.8212i 1.10659 + 1.91668i
\(732\) 0 0
\(733\) 2.88135 2.88135i 0.106425 0.106425i −0.651889 0.758314i \(-0.726023\pi\)
0.758314 + 0.651889i \(0.226023\pi\)
\(734\) 16.8848 + 12.5022i 0.623230 + 0.461465i
\(735\) 0 0
\(736\) −26.3264 16.8292i −0.970403 0.620332i
\(737\) −0.861114 + 1.49149i −0.0317196 + 0.0549399i
\(738\) 0 0
\(739\) −25.1494 6.73876i −0.925136 0.247889i −0.235357 0.971909i \(-0.575626\pi\)
−0.689779 + 0.724020i \(0.742292\pi\)
\(740\) 0.138893 + 0.0321566i 0.00510580 + 0.00118210i
\(741\) 0 0
\(742\) 6.70711 5.33168i 0.246226 0.195732i
\(743\) 21.0093 + 5.62943i 0.770756 + 0.206524i 0.622706 0.782456i \(-0.286033\pi\)
0.148051 + 0.988980i \(0.452700\pi\)
\(744\) 0 0
\(745\) −0.0640649 0.0369879i −0.00234716 0.00135513i
\(746\) 3.42276 29.9586i 0.125316 1.09686i
\(747\) 0 0
\(748\) −37.1151 + 1.27304i −1.35706 + 0.0465471i
\(749\) −5.04617 5.04617i −0.184383 0.184383i
\(750\) 0 0
\(751\) −2.57328 4.45706i −0.0939004 0.162640i 0.815249 0.579111i \(-0.196600\pi\)
−0.909149 + 0.416471i \(0.863267\pi\)
\(752\) 10.6849 12.2609i 0.389640 0.447108i
\(753\) 0 0
\(754\) −3.22144 8.33595i −0.117318 0.303577i
\(755\) −0.0152274 −0.000554182
\(756\) 0 0
\(757\) −44.0303 + 25.4209i −1.60031 + 0.923939i −0.608885 + 0.793259i \(0.708383\pi\)
−0.991425 + 0.130680i \(0.958284\pi\)
\(758\) −37.7535 + 5.63033i −1.37127 + 0.204503i
\(759\) 0 0
\(760\) 0.0472135 0.0402483i 0.00171261 0.00145996i
\(761\) −9.04510 33.7568i −0.327885 1.22368i −0.911380 0.411565i \(-0.864982\pi\)
0.583496 0.812116i \(-0.301685\pi\)
\(762\) 0 0
\(763\) −9.69586 + 16.7937i −0.351014 + 0.607973i
\(764\) 16.0931 4.90926i 0.582230 0.177611i
\(765\) 0 0
\(766\) 23.9603 19.0468i 0.865721 0.688188i
\(767\) 3.20908 10.2696i 0.115873 0.370814i
\(768\) 0 0
\(769\) 11.4952 42.9007i 0.414528 1.54704i −0.371251 0.928533i \(-0.621071\pi\)
0.785779 0.618507i \(-0.212262\pi\)
\(770\) 0.0439329 + 0.0173214i 0.00158323 + 0.000624219i
\(771\) 0 0
\(772\) 6.66474 4.15884i 0.239869 0.149680i
\(773\) 12.8446 + 47.9367i 0.461988 + 1.72416i 0.666687 + 0.745338i \(0.267712\pi\)
−0.204699 + 0.978825i \(0.565621\pi\)
\(774\) 0 0
\(775\) −2.43975 2.43975i −0.0876385 0.0876385i
\(776\) −13.7483 1.09488i −0.493535 0.0393040i
\(777\) 0 0
\(778\) 14.4218 + 33.1959i 0.517045 + 1.19013i
\(779\) 17.8777i 0.640535i
\(780\) 0 0
\(781\) 7.36270i 0.263458i
\(782\) −39.7615 + 17.2741i −1.42187 + 0.617722i
\(783\) 0 0
\(784\) 9.70243 + 14.4230i 0.346515 + 0.515107i
\(785\) 0.100384 + 0.100384i 0.00358285 + 0.00358285i
\(786\) 0 0
\(787\) 1.12108 + 4.18392i 0.0399621 + 0.149141i 0.983024 0.183476i \(-0.0587351\pi\)
−0.943062 + 0.332617i \(0.892068\pi\)
\(788\) −27.0495 + 16.8791i −0.963600 + 0.601293i
\(789\) 0 0
\(790\) −0.0402625 + 0.102119i −0.00143247 + 0.00363324i
\(791\) 3.39317 12.6635i 0.120647 0.450261i
\(792\) 0 0
\(793\) 3.51270 + 6.70581i 0.124740 + 0.238130i
\(794\) 6.49844 + 8.17486i 0.230621 + 0.290115i
\(795\) 0 0
\(796\) −7.49029 24.5541i −0.265486 0.870297i
\(797\) 9.64544 16.7064i 0.341659 0.591771i −0.643082 0.765797i \(-0.722345\pi\)
0.984741 + 0.174027i \(0.0556779\pi\)
\(798\) 0 0
\(799\) −5.84012 21.7956i −0.206609 0.771074i
\(800\) 13.0212 + 25.1085i 0.460369 + 0.887719i
\(801\) 0 0
\(802\) 0.0110188 + 0.0738854i 0.000389088 + 0.00260898i
\(803\) 5.58010 3.22167i 0.196917 0.113690i
\(804\) 0 0
\(805\) 0.0551272 0.00194298
\(806\) −2.07464 2.84201i −0.0730761 0.100106i
\(807\) 0 0
\(808\) −8.09743 43.9178i −0.284867 1.54502i
\(809\) −14.4841 25.0872i −0.509233 0.882018i −0.999943 0.0106948i \(-0.996596\pi\)
0.490709 0.871323i \(-0.336738\pi\)
\(810\) 0 0
\(811\) 35.5730 + 35.5730i 1.24914 + 1.24914i 0.956102 + 0.293033i \(0.0946647\pi\)
0.293033 + 0.956102i \(0.405335\pi\)
\(812\) 0.195766 + 5.70748i 0.00687003 + 0.200293i
\(813\) 0 0
\(814\) −54.7035 6.24985i −1.91736 0.219057i
\(815\) −0.0460591 0.0265923i −0.00161338 0.000931486i
\(816\) 0 0
\(817\) 37.2910 + 9.99209i 1.30465 + 0.349579i
\(818\) 8.58585 + 10.8008i 0.300197 + 0.377640i
\(819\) 0 0
\(820\) −0.0595961 0.0137978i −0.00208119 0.000481840i
\(821\) 12.8376 + 3.43981i 0.448034 + 0.120050i 0.475779 0.879565i \(-0.342166\pi\)
−0.0277455 + 0.999615i \(0.508833\pi\)
\(822\) 0 0
\(823\) 11.2358 19.4610i 0.391656 0.678367i −0.601013 0.799240i \(-0.705236\pi\)
0.992668 + 0.120872i \(0.0385692\pi\)
\(824\) 38.3224 + 13.6108i 1.33502 + 0.474155i
\(825\) 0 0
\(826\) −4.09142 + 5.52565i −0.142359 + 0.192262i
\(827\) −2.97912 + 2.97912i −0.103594 + 0.103594i −0.757004 0.653410i \(-0.773338\pi\)
0.653410 + 0.757004i \(0.273338\pi\)
\(828\) 0 0
\(829\) −7.48252 12.9601i −0.259879 0.450123i 0.706331 0.707882i \(-0.250349\pi\)
−0.966209 + 0.257759i \(0.917016\pi\)
\(830\) 0.0173648 + 0.0399702i 0.000602741 + 0.00138739i
\(831\) 0 0
\(832\) 9.17169 + 27.3474i 0.317971 + 0.948100i
\(833\) 24.1176 0.835624
\(834\) 0 0
\(835\) 0.0737561 + 0.127749i 0.00255244 + 0.00442095i
\(836\) −16.3516 + 17.5132i −0.565533 + 0.605707i
\(837\) 0 0
\(838\) 7.98106 10.7788i 0.275701 0.372347i
\(839\) −9.03430 + 2.42073i −0.311899 + 0.0835730i −0.411373 0.911467i \(-0.634951\pi\)
0.0994743 + 0.995040i \(0.468284\pi\)
\(840\) 0 0
\(841\) −12.9641 + 22.4545i −0.447039 + 0.774294i
\(842\) 29.0851 + 11.4673i 1.00234 + 0.395191i
\(843\) 0 0
\(844\) 10.6752 + 2.47154i 0.367456 + 0.0850740i
\(845\) 0.0749732 + 0.0268535i 0.00257916 + 0.000923790i
\(846\) 0 0
\(847\) −0.305993 0.0819907i −0.0105141 0.00281723i
\(848\) 14.8399 1.01921i 0.509604 0.0349999i
\(849\) 0 0
\(850\) 38.9889 + 4.45447i 1.33731 + 0.152787i
\(851\) −62.0833 + 16.6352i −2.12819 + 0.570247i
\(852\) 0 0
\(853\) 7.92636 + 7.92636i 0.271393 + 0.271393i 0.829661 0.558268i \(-0.188534\pi\)
−0.558268 + 0.829661i \(0.688534\pi\)
\(854\) −0.713547 4.78460i −0.0244171 0.163726i
\(855\) 0 0
\(856\) −2.24643 12.1839i −0.0767815 0.416437i
\(857\) 38.4399i 1.31308i 0.754291 + 0.656541i \(0.227981\pi\)
−0.754291 + 0.656541i \(0.772019\pi\)
\(858\) 0 0
\(859\) 1.82343 0.0622145 0.0311072 0.999516i \(-0.490097\pi\)
0.0311072 + 0.999516i \(0.490097\pi\)
\(860\) 0.0620898 0.116599i 0.00211725 0.00397601i
\(861\) 0 0
\(862\) 8.17870 + 54.8413i 0.278568 + 1.86790i
\(863\) 25.6067 25.6067i 0.871661 0.871661i −0.120993 0.992653i \(-0.538608\pi\)
0.992653 + 0.120993i \(0.0386078\pi\)
\(864\) 0 0
\(865\) −0.0181227 0.0676348i −0.000616190 0.00229965i
\(866\) 0.949189 8.30802i 0.0322548 0.282318i
\(867\) 0 0
\(868\) 0.656075 + 2.15069i 0.0222686 + 0.0729993i
\(869\) 10.9722 40.9487i 0.372205 1.38909i
\(870\) 0 0
\(871\) 1.36512 1.25735i 0.0462552 0.0426037i
\(872\) −30.3995 + 14.4651i −1.02946 + 0.489850i
\(873\) 0 0
\(874\) −10.2590 + 26.0204i −0.347017 + 0.880154i
\(875\) −0.0864327 0.0499019i −0.00292196 0.00168699i
\(876\) 0 0
\(877\) 2.98286 + 11.1322i 0.100724 + 0.375907i 0.997825 0.0659183i \(-0.0209977\pi\)
−0.897101 + 0.441826i \(0.854331\pi\)
\(878\) −6.22027 + 8.40077i −0.209924 + 0.283512i
\(879\) 0 0
\(880\) 0.0457611 + 0.0680254i 0.00154261 + 0.00229314i
\(881\) −11.9623 + 6.90643i −0.403020 + 0.232684i −0.687786 0.725913i \(-0.741417\pi\)
0.284766 + 0.958597i \(0.408084\pi\)
\(882\) 0 0
\(883\) 46.3198i 1.55879i 0.626536 + 0.779393i \(0.284472\pi\)
−0.626536 + 0.779393i \(0.715528\pi\)
\(884\) 38.5851 + 10.6199i 1.29776 + 0.357186i
\(885\) 0 0
\(886\) 15.4214 + 35.4968i 0.518091 + 1.19254i
\(887\) −40.2976 + 23.2659i −1.35306 + 0.781191i −0.988677 0.150058i \(-0.952054\pi\)
−0.364385 + 0.931248i \(0.618721\pi\)
\(888\) 0 0
\(889\) −4.40552 4.40552i −0.147757 0.147757i
\(890\) −0.104441 0.0773322i −0.00350086 0.00259218i
\(891\) 0 0
\(892\) 24.3318 15.1832i 0.814690 0.508373i
\(893\) −12.6078 7.27912i −0.421904 0.243586i
\(894\) 0 0
\(895\) −0.0304705 + 0.113717i −0.00101852 + 0.00380115i
\(896\) 0.200856 18.4313i 0.00671014 0.615745i
\(897\) 0 0
\(898\) 18.5680 14.7602i 0.619622 0.492556i
\(899\) 0.313029 1.16824i 0.0104401 0.0389629i
\(900\) 0 0
\(901\) 10.3190 17.8730i 0.343776 0.595437i
\(902\) 23.4722 + 2.68169i 0.781538 + 0.0892905i
\(903\) 0 0
\(904\) 17.3208 14.7655i 0.576082 0.491094i
\(905\) 0.0429027 0.0429027i 0.00142613 0.00142613i
\(906\) 0 0
\(907\) −23.2692 + 13.4345i −0.772642 + 0.446085i −0.833816 0.552042i \(-0.813849\pi\)
0.0611745 + 0.998127i \(0.480515\pi\)
\(908\) −9.00607 + 16.9126i −0.298877 + 0.561266i
\(909\) 0 0
\(910\) −0.0396213 0.0319371i −0.00131343 0.00105871i
\(911\) 34.1859i 1.13263i 0.824189 + 0.566315i \(0.191632\pi\)
−0.824189 + 0.566315i \(0.808368\pi\)
\(912\) 0 0
\(913\) −8.41517 14.5755i −0.278502 0.482379i
\(914\) 40.0827 5.97770i 1.32582 0.197725i
\(915\) 0 0
\(916\) 48.7986 1.67379i 1.61235 0.0553035i
\(917\) 15.9408 4.27133i 0.526413 0.141052i
\(918\) 0 0
\(919\) 12.0258 + 6.94309i 0.396694 + 0.229031i 0.685057 0.728490i \(-0.259777\pi\)
−0.288362 + 0.957521i \(0.593111\pi\)
\(920\) 0.0788226 + 0.0542813i 0.00259870 + 0.00178960i
\(921\) 0 0
\(922\) 40.5200 32.2105i 1.33445 1.06080i
\(923\) 2.36648 7.57315i 0.0778936 0.249273i
\(924\) 0 0
\(925\) 56.1986 + 15.0584i 1.84780 + 0.495116i
\(926\) 7.06244 17.9127i 0.232086 0.588649i
\(927\) 0 0
\(928\) −5.33999 + 8.35350i −0.175294 + 0.274217i
\(929\) −26.6246 + 7.13405i −0.873526 + 0.234061i −0.667612 0.744510i \(-0.732683\pi\)
−0.205914 + 0.978570i \(0.566017\pi\)
\(930\) 0 0
\(931\) 11.0028 11.0028i 0.360601 0.360601i
\(932\) −17.3302 16.1808i −0.567670 0.530020i
\(933\) 0 0
\(934\) 33.8109 14.6889i 1.10633 0.480636i
\(935\) 0.113749 0.00372000
\(936\) 0 0
\(937\) 28.0766 0.917224 0.458612 0.888637i \(-0.348347\pi\)
0.458612 + 0.888637i \(0.348347\pi\)
\(938\) −1.08777 + 0.472574i −0.0355169 + 0.0154301i
\(939\) 0 0
\(940\) −0.0339958 + 0.0364108i −0.00110882 + 0.00118759i
\(941\) −4.25969 + 4.25969i −0.138862 + 0.138862i −0.773121 0.634259i \(-0.781305\pi\)
0.634259 + 0.773121i \(0.281305\pi\)
\(942\) 0 0
\(943\) 26.6388 7.13783i 0.867477 0.232440i
\(944\) −11.2909 + 3.87211i −0.367488 + 0.126027i
\(945\) 0 0
\(946\) −18.7127 + 47.4617i −0.608401 + 1.54311i
\(947\) −6.23584 1.67089i −0.202637 0.0542965i 0.156073 0.987746i \(-0.450117\pi\)
−0.358710 + 0.933449i \(0.616783\pi\)
\(948\) 0 0
\(949\) −6.77508 + 1.52023i −0.219929 + 0.0493488i
\(950\) 19.8194 15.7551i 0.643027 0.511162i
\(951\) 0 0
\(952\) −21.0626 14.5048i −0.682642 0.470102i
\(953\) −14.7203 8.49878i −0.476838 0.275302i 0.242260 0.970211i \(-0.422111\pi\)
−0.719098 + 0.694909i \(0.755445\pi\)
\(954\) 0 0
\(955\) −0.0497794 + 0.0133383i −0.00161082 + 0.000431618i
\(956\) −0.794499 23.1633i −0.0256959 0.749155i
\(957\) 0 0
\(958\) 47.1267 7.02820i 1.52260 0.227071i
\(959\) −13.9297 24.1270i −0.449815 0.779102i
\(960\) 0 0
\(961\) 30.5238i 0.984639i
\(962\) 54.2583 + 24.0110i 1.74936 + 0.774145i
\(963\) 0 0
\(964\) −37.8381 20.1490i −1.21868 0.648954i
\(965\) −0.0208386 + 0.0120312i −0.000670817 + 0.000387297i
\(966\) 0 0
\(967\) −14.8731 + 14.8731i −0.478288 + 0.478288i −0.904584 0.426296i \(-0.859818\pi\)
0.426296 + 0.904584i \(0.359818\pi\)
\(968\) −0.356786 0.418531i −0.0114676 0.0134521i
\(969\) 0 0
\(970\) 0.0419710 + 0.00479517i 0.00134761 + 0.000153964i
\(971\) 7.95576 13.7798i 0.255313 0.442214i −0.709668 0.704536i \(-0.751155\pi\)
0.964980 + 0.262322i \(0.0844883\pi\)
\(972\) 0 0
\(973\) −7.18040 + 26.7976i −0.230193 + 0.859092i
\(974\) −27.5696 + 21.9159i −0.883387 + 0.702230i
\(975\) 0 0
\(976\) 3.69093 7.54378i 0.118144 0.241470i
\(977\) 2.13713 7.97588i 0.0683729 0.255171i −0.923276 0.384137i \(-0.874499\pi\)
0.991649 + 0.128966i \(0.0411658\pi\)
\(978\) 0 0
\(979\) 43.4645 + 25.0942i 1.38913 + 0.802015i
\(980\) −0.0281864 0.0451700i −0.000900383 0.00144290i
\(981\) 0 0
\(982\) −41.9866 31.0886i −1.33985 0.992078i
\(983\) 30.1467 + 30.1467i 0.961530 + 0.961530i 0.999287 0.0377570i \(-0.0120213\pi\)
−0.0377570 + 0.999287i \(0.512021\pi\)
\(984\) 0 0
\(985\) 0.0845755 0.0488297i 0.00269480 0.00155584i
\(986\) 5.48117 + 12.6165i 0.174556 + 0.401792i
\(987\) 0 0
\(988\) 22.4480 12.7581i 0.714166 0.405890i
\(989\) 59.5551i 1.89374i
\(990\) 0 0
\(991\) 2.25938 1.30446i 0.0717717 0.0414374i −0.463685 0.886000i \(-0.653473\pi\)
0.535456 + 0.844563i \(0.320140\pi\)
\(992\) −1.17962 + 3.72114i −0.0374528 + 0.118146i
\(993\) 0 0
\(994\) −3.01715 + 4.07480i −0.0956981 + 0.129245i
\(995\) 0.0203509 + 0.0759508i 0.000645168 + 0.00240780i
\(996\) 0 0
\(997\) −21.3384 12.3197i −0.675794 0.390170i 0.122475 0.992472i \(-0.460917\pi\)
−0.798268 + 0.602302i \(0.794250\pi\)
\(998\) 11.4632 29.0746i 0.362862 0.920341i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.ed.e.739.10 56
3.2 odd 2 312.2.bt.d.115.5 yes 56
8.3 odd 2 inner 936.2.ed.e.739.4 56
13.6 odd 12 inner 936.2.ed.e.19.4 56
24.11 even 2 312.2.bt.d.115.11 yes 56
39.32 even 12 312.2.bt.d.19.11 yes 56
104.19 even 12 inner 936.2.ed.e.19.10 56
312.227 odd 12 312.2.bt.d.19.5 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bt.d.19.5 56 312.227 odd 12
312.2.bt.d.19.11 yes 56 39.32 even 12
312.2.bt.d.115.5 yes 56 3.2 odd 2
312.2.bt.d.115.11 yes 56 24.11 even 2
936.2.ed.e.19.4 56 13.6 odd 12 inner
936.2.ed.e.19.10 56 104.19 even 12 inner
936.2.ed.e.739.4 56 8.3 odd 2 inner
936.2.ed.e.739.10 56 1.1 even 1 trivial