| L(s) = 1 | + (−1.13 − 0.841i)2-s + (0.583 + 1.91i)4-s + (−0.00433 − 0.00433i)5-s + (1.57 + 0.421i)7-s + (0.946 − 2.66i)8-s + (0.00127 + 0.00856i)10-s + (−3.23 + 0.865i)11-s + (−3.04 + 1.92i)13-s + (−1.43 − 1.80i)14-s + (−3.31 + 2.23i)16-s + (−4.80 + 2.77i)17-s + (−3.45 − 0.926i)19-s + (0.00575 − 0.0108i)20-s + (4.40 + 1.73i)22-s + (2.76 − 4.78i)23-s + ⋯ |
| L(s) = 1 | + (−0.803 − 0.595i)2-s + (0.291 + 0.956i)4-s + (−0.00193 − 0.00193i)5-s + (0.594 + 0.159i)7-s + (0.334 − 0.942i)8-s + (0.000404 + 0.00270i)10-s + (−0.974 + 0.261i)11-s + (−0.844 + 0.535i)13-s + (−0.383 − 0.482i)14-s + (−0.829 + 0.558i)16-s + (−1.16 + 0.673i)17-s + (−0.793 − 0.212i)19-s + (0.00128 − 0.00241i)20-s + (0.938 + 0.370i)22-s + (0.575 − 0.997i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.943 - 0.332i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.943 - 0.332i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.00437278 + 0.0255649i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.00437278 + 0.0255649i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (1.13 + 0.841i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (3.04 - 1.92i)T \) |
| good | 5 | \( 1 + (0.00433 + 0.00433i)T + 5iT^{2} \) |
| 7 | \( 1 + (-1.57 - 0.421i)T + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (3.23 - 0.865i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (4.80 - 2.77i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.45 + 0.926i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-2.76 + 4.78i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.51 - 0.876i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.487 - 0.487i)T + 31iT^{2} \) |
| 37 | \( 1 + (3.01 + 11.2i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (1.29 + 4.82i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (9.33 - 5.39i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (2.87 - 2.87i)T - 47iT^{2} \) |
| 53 | \( 1 - 3.71iT - 53T^{2} \) |
| 59 | \( 1 + (0.772 - 2.88i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (1.81 - 1.04i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.133 - 0.497i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (-0.569 + 2.12i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (1.36 + 1.36i)T + 73iT^{2} \) |
| 79 | \( 1 - 12.6iT - 79T^{2} \) |
| 83 | \( 1 + (-3.55 + 3.55i)T - 83iT^{2} \) |
| 89 | \( 1 + (14.4 - 3.88i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-4.70 - 1.26i)T + (84.0 + 48.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.634529124377948738625555563247, −8.682420987675151978369563290245, −8.230417734720543309189625980668, −7.20102962805138064423965616450, −6.45505368125825282471339454363, −4.91246622959547654705575233608, −4.19834941943955458564635355004, −2.63048585876482900377740420017, −1.96050710550647404626155354509, −0.01467591205926992353214346065,
1.72548363372290765938462086287, 2.96827785310411812386452533879, 4.83098571370728817649394483508, 5.21988867186133095801502353660, 6.48162565397758673752470514108, 7.27964859576254209239197796109, 8.045173671210887448523180249985, 8.674966604526236027011814590875, 9.696057481925381056688134138470, 10.33354872113604112104154870730